blob: 0d9688952f4af4cba74e1dfb296da89693d08934 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include "../pci.h"
37#include "cpqphp.h"
38#include "cpqphp_nvram.h"
39#include "../../../arch/i386/pci/pci.h" /* horrible hack showing how processor dependent we are... */
40
41
42u8 cpqhp_nic_irq;
43u8 cpqhp_disk_irq;
44
45static u16 unused_IRQ;
46
47/*
48 * detect_HRT_floating_pointer
49 *
50 * find the Hot Plug Resource Table in the specified region of memory.
51 *
52 */
53static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54{
55 void __iomem *fp;
56 void __iomem *endp;
57 u8 temp1, temp2, temp3, temp4;
58 int status = 0;
59
60 endp = (end - sizeof(struct hrt) + 1);
61
62 for (fp = begin; fp <= endp; fp += 16) {
63 temp1 = readb(fp + SIG0);
64 temp2 = readb(fp + SIG1);
65 temp3 = readb(fp + SIG2);
66 temp4 = readb(fp + SIG3);
67 if (temp1 == '$' &&
68 temp2 == 'H' &&
69 temp3 == 'R' &&
70 temp4 == 'T') {
71 status = 1;
72 break;
73 }
74 }
75
76 if (!status)
77 fp = NULL;
78
79 dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 return fp;
81}
82
83
84int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
85{
86 unsigned char bus;
87 struct pci_bus *child;
88 int num;
89
90 if (func->pci_dev == NULL)
91 func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
92
93 /* No pci device, we need to create it then */
94 if (func->pci_dev == NULL) {
95 dbg("INFO: pci_dev still null\n");
96
97 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
98 if (num)
99 pci_bus_add_devices(ctrl->pci_dev->bus);
100
101 func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
102 if (func->pci_dev == NULL) {
103 dbg("ERROR: pci_dev still null\n");
104 return 0;
105 }
106 }
107
108 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
109 pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
110 child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
111 pci_do_scan_bus(child);
112 }
113
114 return 0;
115}
116
117
118int cpqhp_unconfigure_device(struct pci_func* func)
119{
120 int j;
121
122 dbg("%s: bus/dev/func = %x/%x/%x\n", __FUNCTION__, func->bus, func->device, func->function);
123
124 for (j=0; j<8 ; j++) {
125 struct pci_dev* temp = pci_find_slot(func->bus, PCI_DEVFN(func->device, j));
126 if (temp)
127 pci_remove_bus_device(temp);
128 }
129 return 0;
130}
131
132static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
133{
134 u32 vendID = 0;
135
136 if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
137 return -1;
138 if (vendID == 0xffffffff)
139 return -1;
140 return pci_bus_read_config_dword (bus, devfn, offset, value);
141}
142
143
144/*
145 * cpqhp_set_irq
146 *
147 * @bus_num: bus number of PCI device
148 * @dev_num: device number of PCI device
149 * @slot: pointer to u8 where slot number will be returned
150 */
151int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
152{
153 int rc = 0;
154
155 if (cpqhp_legacy_mode) {
156 struct pci_dev *fakedev;
157 struct pci_bus *fakebus;
158 u16 temp_word;
159
160 fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
161 fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
162 if (!fakedev || !fakebus) {
163 kfree(fakedev);
164 kfree(fakebus);
165 return -ENOMEM;
166 }
167
168 fakedev->devfn = dev_num << 3;
169 fakedev->bus = fakebus;
170 fakebus->number = bus_num;
171 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
172 __FUNCTION__, dev_num, bus_num, int_pin, irq_num);
173 rc = pcibios_set_irq_routing(fakedev, int_pin - 0x0a, irq_num);
174 kfree(fakedev);
175 kfree(fakebus);
176 dbg("%s: rc %d\n", __FUNCTION__, rc);
177 if (!rc)
178 return !rc;
179
180 // set the Edge Level Control Register (ELCR)
181 temp_word = inb(0x4d0);
182 temp_word |= inb(0x4d1) << 8;
183
184 temp_word |= 0x01 << irq_num;
185
186 // This should only be for x86 as it sets the Edge Level Control Register
187 outb((u8) (temp_word & 0xFF), 0x4d0);
188 outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1);
189 rc = 0;
190 }
191
192 return rc;
193}
194
195
196/*
197 * WTF??? This function isn't in the code, yet a function calls it, but the
198 * compiler optimizes it away? strange. Here as a placeholder to keep the
199 * compiler happy.
200 */
201static int PCI_ScanBusNonBridge (u8 bus, u8 device)
202{
203 return 0;
204}
205
206static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
207{
208 u16 tdevice;
209 u32 work;
210 u8 tbus;
211
212 ctrl->pci_bus->number = bus_num;
213
214 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
215 //Scan for access first
216 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
217 continue;
218 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
219 //Yep we got one. Not a bridge ?
220 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
221 *dev_num = tdevice;
222 dbg("found it !\n");
223 return 0;
224 }
225 }
226 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
227 //Scan for access first
228 if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
229 continue;
230 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
231 //Yep we got one. bridge ?
232 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
233 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
234 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
235 if (PCI_ScanBusNonBridge(tbus, tdevice) == 0)
236 return 0;
237 }
238 }
239
240 return -1;
241}
242
243
244static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
245{
246 struct irq_routing_table *PCIIRQRoutingInfoLength;
247 long len;
248 long loop;
249 u32 work;
250
251 u8 tbus, tdevice, tslot;
252
253 PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table();
254 if (!PCIIRQRoutingInfoLength)
255 return -1;
256
257 len = (PCIIRQRoutingInfoLength->size -
258 sizeof(struct irq_routing_table)) / sizeof(struct irq_info);
259 // Make sure I got at least one entry
260 if (len == 0) {
Jesper Juhl6044ec82005-11-07 01:01:32 -0800261 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262 return -1;
263 }
264
265 for (loop = 0; loop < len; ++loop) {
266 tbus = PCIIRQRoutingInfoLength->slots[loop].bus;
267 tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn;
268 tslot = PCIIRQRoutingInfoLength->slots[loop].slot;
269
270 if (tslot == slot) {
271 *bus_num = tbus;
272 *dev_num = tdevice;
273 ctrl->pci_bus->number = tbus;
274 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
275 if (!nobridge || (work == 0xffffffff)) {
Jesper Juhl6044ec82005-11-07 01:01:32 -0800276 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277 return 0;
278 }
279
280 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
281 pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
282 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
283
284 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
285 pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
286 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
287 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
288 *bus_num = tbus;
Jesper Juhl6044ec82005-11-07 01:01:32 -0800289 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700290 return 0;
291 }
292 } else {
Jesper Juhl6044ec82005-11-07 01:01:32 -0800293 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 return 0;
295 }
296
297 }
298 }
Jesper Juhl6044ec82005-11-07 01:01:32 -0800299 kfree(PCIIRQRoutingInfoLength );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300 return -1;
301}
302
303
304int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
305{
306 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); //plain (bridges allowed)
307}
308
309
310/* More PCI configuration routines; this time centered around hotplug controller */
311
312
313/*
314 * cpqhp_save_config
315 *
316 * Reads configuration for all slots in a PCI bus and saves info.
317 *
318 * Note: For non-hot plug busses, the slot # saved is the device #
319 *
320 * returns 0 if success
321 */
322int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
323{
324 long rc;
325 u8 class_code;
326 u8 header_type;
327 u32 ID;
328 u8 secondary_bus;
329 struct pci_func *new_slot;
330 int sub_bus;
331 int FirstSupported;
332 int LastSupported;
333 int max_functions;
334 int function;
335 u8 DevError;
336 int device = 0;
337 int cloop = 0;
338 int stop_it;
339 int index;
340
341 // Decide which slots are supported
342
343 if (is_hot_plug) {
344 //*********************************
345 // is_hot_plug is the slot mask
346 //*********************************
347 FirstSupported = is_hot_plug >> 4;
348 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
349 } else {
350 FirstSupported = 0;
351 LastSupported = 0x1F;
352 }
353
354 // Save PCI configuration space for all devices in supported slots
355 ctrl->pci_bus->number = busnumber;
356 for (device = FirstSupported; device <= LastSupported; device++) {
357 ID = 0xFFFFFFFF;
358 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
359
360 if (ID != 0xFFFFFFFF) { // device in slot
361 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
362 if (rc)
363 return rc;
364
365 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
366 if (rc)
367 return rc;
368
369 // If multi-function device, set max_functions to 8
370 if (header_type & 0x80)
371 max_functions = 8;
372 else
373 max_functions = 1;
374
375 function = 0;
376
377 do {
378 DevError = 0;
379
380 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // P-P Bridge
381 // Recurse the subordinate bus
382 // get the subordinate bus number
383 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
384 if (rc) {
385 return rc;
386 } else {
387 sub_bus = (int) secondary_bus;
388
389 // Save secondary bus cfg spc
390 // with this recursive call.
391 rc = cpqhp_save_config(ctrl, sub_bus, 0);
392 if (rc)
393 return rc;
394 ctrl->pci_bus->number = busnumber;
395 }
396 }
397
398 index = 0;
399 new_slot = cpqhp_slot_find(busnumber, device, index++);
400 while (new_slot &&
401 (new_slot->function != (u8) function))
402 new_slot = cpqhp_slot_find(busnumber, device, index++);
403
404 if (!new_slot) {
405 // Setup slot structure.
406 new_slot = cpqhp_slot_create(busnumber);
407
408 if (new_slot == NULL)
409 return(1);
410 }
411
412 new_slot->bus = (u8) busnumber;
413 new_slot->device = (u8) device;
414 new_slot->function = (u8) function;
415 new_slot->is_a_board = 1;
416 new_slot->switch_save = 0x10;
417 // In case of unsupported board
418 new_slot->status = DevError;
419 new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
420
421 for (cloop = 0; cloop < 0x20; cloop++) {
422 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
423 if (rc)
424 return rc;
425 }
426
427 function++;
428
429 stop_it = 0;
430
431 // this loop skips to the next present function
432 // reading in Class Code and Header type.
433
434 while ((function < max_functions)&&(!stop_it)) {
435 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
436 if (ID == 0xFFFFFFFF) { // nothing there.
437 function++;
438 } else { // Something there
439 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
440 if (rc)
441 return rc;
442
443 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
444 if (rc)
445 return rc;
446
447 stop_it++;
448 }
449 }
450
451 } while (function < max_functions);
452 } // End of IF (device in slot?)
453 else if (is_hot_plug) {
454 // Setup slot structure with entry for empty slot
455 new_slot = cpqhp_slot_create(busnumber);
456
457 if (new_slot == NULL) {
458 return(1);
459 }
460
461 new_slot->bus = (u8) busnumber;
462 new_slot->device = (u8) device;
463 new_slot->function = 0;
464 new_slot->is_a_board = 0;
465 new_slot->presence_save = 0;
466 new_slot->switch_save = 0;
467 }
468 } // End of FOR loop
469
470 return(0);
471}
472
473
474/*
475 * cpqhp_save_slot_config
476 *
477 * Saves configuration info for all PCI devices in a given slot
478 * including subordinate busses.
479 *
480 * returns 0 if success
481 */
482int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
483{
484 long rc;
485 u8 class_code;
486 u8 header_type;
487 u32 ID;
488 u8 secondary_bus;
489 int sub_bus;
490 int max_functions;
491 int function;
492 int cloop = 0;
493 int stop_it;
494
495 ID = 0xFFFFFFFF;
496
497 ctrl->pci_bus->number = new_slot->bus;
498 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
499
500 if (ID != 0xFFFFFFFF) { // device in slot
501 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
502 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
503
504 if (header_type & 0x80) // Multi-function device
505 max_functions = 8;
506 else
507 max_functions = 1;
508
509 function = 0;
510
511 do {
512 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
513 // Recurse the subordinate bus
514 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
515
516 sub_bus = (int) secondary_bus;
517
518 // Save the config headers for the secondary bus.
519 rc = cpqhp_save_config(ctrl, sub_bus, 0);
520 if (rc)
521 return(rc);
522 ctrl->pci_bus->number = new_slot->bus;
523
524 } // End of IF
525
526 new_slot->status = 0;
527
528 for (cloop = 0; cloop < 0x20; cloop++) {
529 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
530 }
531
532 function++;
533
534 stop_it = 0;
535
536 // this loop skips to the next present function
537 // reading in the Class Code and the Header type.
538
539 while ((function < max_functions) && (!stop_it)) {
540 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
541
542 if (ID == 0xFFFFFFFF) { // nothing there.
543 function++;
544 } else { // Something there
545 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
546
547 pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
548
549 stop_it++;
550 }
551 }
552
553 } while (function < max_functions);
554 } // End of IF (device in slot?)
555 else {
556 return 2;
557 }
558
559 return 0;
560}
561
562
563/*
564 * cpqhp_save_base_addr_length
565 *
566 * Saves the length of all base address registers for the
567 * specified slot. this is for hot plug REPLACE
568 *
569 * returns 0 if success
570 */
571int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
572{
573 u8 cloop;
574 u8 header_type;
575 u8 secondary_bus;
576 u8 type;
577 int sub_bus;
578 u32 temp_register;
579 u32 base;
580 u32 rc;
581 struct pci_func *next;
582 int index = 0;
583 struct pci_bus *pci_bus = ctrl->pci_bus;
584 unsigned int devfn;
585
586 func = cpqhp_slot_find(func->bus, func->device, index++);
587
588 while (func != NULL) {
589 pci_bus->number = func->bus;
590 devfn = PCI_DEVFN(func->device, func->function);
591
592 // Check for Bridge
593 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
594
595 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
596 // PCI-PCI Bridge
597 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
598
599 sub_bus = (int) secondary_bus;
600
601 next = cpqhp_slot_list[sub_bus];
602
603 while (next != NULL) {
604 rc = cpqhp_save_base_addr_length(ctrl, next);
605 if (rc)
606 return rc;
607
608 next = next->next;
609 }
610 pci_bus->number = func->bus;
611
612 //FIXME: this loop is duplicated in the non-bridge case. The two could be rolled together
613 // Figure out IO and memory base lengths
614 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
615 temp_register = 0xFFFFFFFF;
616 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
617 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
618
619 if (base) { // If this register is implemented
620 if (base & 0x01L) {
621 // IO base
622 // set base = amount of IO space requested
623 base = base & 0xFFFFFFFE;
624 base = (~base) + 1;
625
626 type = 1;
627 } else {
628 // memory base
629 base = base & 0xFFFFFFF0;
630 base = (~base) + 1;
631
632 type = 0;
633 }
634 } else {
635 base = 0x0L;
636 type = 0;
637 }
638
639 // Save information in slot structure
640 func->base_length[(cloop - 0x10) >> 2] =
641 base;
642 func->base_type[(cloop - 0x10) >> 2] = type;
643
644 } // End of base register loop
645
646
647 } else if ((header_type & 0x7F) == 0x00) { // PCI-PCI Bridge
648 // Figure out IO and memory base lengths
649 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
650 temp_register = 0xFFFFFFFF;
651 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
652 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
653
654 if (base) { // If this register is implemented
655 if (base & 0x01L) {
656 // IO base
657 // base = amount of IO space requested
658 base = base & 0xFFFFFFFE;
659 base = (~base) + 1;
660
661 type = 1;
662 } else {
663 // memory base
664 // base = amount of memory space requested
665 base = base & 0xFFFFFFF0;
666 base = (~base) + 1;
667
668 type = 0;
669 }
670 } else {
671 base = 0x0L;
672 type = 0;
673 }
674
675 // Save information in slot structure
676 func->base_length[(cloop - 0x10) >> 2] = base;
677 func->base_type[(cloop - 0x10) >> 2] = type;
678
679 } // End of base register loop
680
681 } else { // Some other unknown header type
682 }
683
684 // find the next device in this slot
685 func = cpqhp_slot_find(func->bus, func->device, index++);
686 }
687
688 return(0);
689}
690
691
692/*
693 * cpqhp_save_used_resources
694 *
695 * Stores used resource information for existing boards. this is
696 * for boards that were in the system when this driver was loaded.
697 * this function is for hot plug ADD
698 *
699 * returns 0 if success
700 */
701int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
702{
703 u8 cloop;
704 u8 header_type;
705 u8 secondary_bus;
706 u8 temp_byte;
707 u8 b_base;
708 u8 b_length;
709 u16 command;
710 u16 save_command;
711 u16 w_base;
712 u16 w_length;
713 u32 temp_register;
714 u32 save_base;
715 u32 base;
716 int index = 0;
717 struct pci_resource *mem_node;
718 struct pci_resource *p_mem_node;
719 struct pci_resource *io_node;
720 struct pci_resource *bus_node;
721 struct pci_bus *pci_bus = ctrl->pci_bus;
722 unsigned int devfn;
723
724 func = cpqhp_slot_find(func->bus, func->device, index++);
725
726 while ((func != NULL) && func->is_a_board) {
727 pci_bus->number = func->bus;
728 devfn = PCI_DEVFN(func->device, func->function);
729
730 // Save the command register
731 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
732
733 // disable card
734 command = 0x00;
735 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
736
737 // Check for Bridge
738 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
739
740 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
741 // Clear Bridge Control Register
742 command = 0x00;
743 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
744 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
745 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
746
747 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
748 if (!bus_node)
749 return -ENOMEM;
750
751 bus_node->base = secondary_bus;
752 bus_node->length = temp_byte - secondary_bus + 1;
753
754 bus_node->next = func->bus_head;
755 func->bus_head = bus_node;
756
757 // Save IO base and Limit registers
758 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
759 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
760
761 if ((b_base <= b_length) && (save_command & 0x01)) {
762 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
763 if (!io_node)
764 return -ENOMEM;
765
766 io_node->base = (b_base & 0xF0) << 8;
767 io_node->length = (b_length - b_base + 0x10) << 8;
768
769 io_node->next = func->io_head;
770 func->io_head = io_node;
771 }
772
773 // Save memory base and Limit registers
774 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
775 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
776
777 if ((w_base <= w_length) && (save_command & 0x02)) {
778 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
779 if (!mem_node)
780 return -ENOMEM;
781
782 mem_node->base = w_base << 16;
783 mem_node->length = (w_length - w_base + 0x10) << 16;
784
785 mem_node->next = func->mem_head;
786 func->mem_head = mem_node;
787 }
788
789 // Save prefetchable memory base and Limit registers
790 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
791 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
792
793 if ((w_base <= w_length) && (save_command & 0x02)) {
794 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
795 if (!p_mem_node)
796 return -ENOMEM;
797
798 p_mem_node->base = w_base << 16;
799 p_mem_node->length = (w_length - w_base + 0x10) << 16;
800
801 p_mem_node->next = func->p_mem_head;
802 func->p_mem_head = p_mem_node;
803 }
804 // Figure out IO and memory base lengths
805 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
806 pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
807
808 temp_register = 0xFFFFFFFF;
809 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
810 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
811
812 temp_register = base;
813
814 if (base) { // If this register is implemented
815 if (((base & 0x03L) == 0x01)
816 && (save_command & 0x01)) {
817 // IO base
818 // set temp_register = amount of IO space requested
819 temp_register = base & 0xFFFFFFFE;
820 temp_register = (~temp_register) + 1;
821
822 io_node = kmalloc(sizeof(*io_node),
823 GFP_KERNEL);
824 if (!io_node)
825 return -ENOMEM;
826
827 io_node->base =
828 save_base & (~0x03L);
829 io_node->length = temp_register;
830
831 io_node->next = func->io_head;
832 func->io_head = io_node;
833 } else
834 if (((base & 0x0BL) == 0x08)
835 && (save_command & 0x02)) {
836 // prefetchable memory base
837 temp_register = base & 0xFFFFFFF0;
838 temp_register = (~temp_register) + 1;
839
840 p_mem_node = kmalloc(sizeof(*p_mem_node),
841 GFP_KERNEL);
842 if (!p_mem_node)
843 return -ENOMEM;
844
845 p_mem_node->base = save_base & (~0x0FL);
846 p_mem_node->length = temp_register;
847
848 p_mem_node->next = func->p_mem_head;
849 func->p_mem_head = p_mem_node;
850 } else
851 if (((base & 0x0BL) == 0x00)
852 && (save_command & 0x02)) {
853 // prefetchable memory base
854 temp_register = base & 0xFFFFFFF0;
855 temp_register = (~temp_register) + 1;
856
857 mem_node = kmalloc(sizeof(*mem_node),
858 GFP_KERNEL);
859 if (!mem_node)
860 return -ENOMEM;
861
862 mem_node->base = save_base & (~0x0FL);
863 mem_node->length = temp_register;
864
865 mem_node->next = func->mem_head;
866 func->mem_head = mem_node;
867 } else
868 return(1);
869 }
870 } // End of base register loop
871 } else if ((header_type & 0x7F) == 0x00) { // Standard header
872 // Figure out IO and memory base lengths
873 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
874 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
875
876 temp_register = 0xFFFFFFFF;
877 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
878 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
879
880 temp_register = base;
881
882 if (base) { // If this register is implemented
883 if (((base & 0x03L) == 0x01)
884 && (save_command & 0x01)) {
885 // IO base
886 // set temp_register = amount of IO space requested
887 temp_register = base & 0xFFFFFFFE;
888 temp_register = (~temp_register) + 1;
889
890 io_node = kmalloc(sizeof(*io_node),
891 GFP_KERNEL);
892 if (!io_node)
893 return -ENOMEM;
894
895 io_node->base = save_base & (~0x01L);
896 io_node->length = temp_register;
897
898 io_node->next = func->io_head;
899 func->io_head = io_node;
900 } else
901 if (((base & 0x0BL) == 0x08)
902 && (save_command & 0x02)) {
903 // prefetchable memory base
904 temp_register = base & 0xFFFFFFF0;
905 temp_register = (~temp_register) + 1;
906
907 p_mem_node = kmalloc(sizeof(*p_mem_node),
908 GFP_KERNEL);
909 if (!p_mem_node)
910 return -ENOMEM;
911
912 p_mem_node->base = save_base & (~0x0FL);
913 p_mem_node->length = temp_register;
914
915 p_mem_node->next = func->p_mem_head;
916 func->p_mem_head = p_mem_node;
917 } else
918 if (((base & 0x0BL) == 0x00)
919 && (save_command & 0x02)) {
920 // prefetchable memory base
921 temp_register = base & 0xFFFFFFF0;
922 temp_register = (~temp_register) + 1;
923
924 mem_node = kmalloc(sizeof(*mem_node),
925 GFP_KERNEL);
926 if (!mem_node)
927 return -ENOMEM;
928
929 mem_node->base = save_base & (~0x0FL);
930 mem_node->length = temp_register;
931
932 mem_node->next = func->mem_head;
933 func->mem_head = mem_node;
934 } else
935 return(1);
936 }
937 } // End of base register loop
938 } else { // Some other unknown header type
939 }
940
941 // find the next device in this slot
942 func = cpqhp_slot_find(func->bus, func->device, index++);
943 }
944
945 return(0);
946}
947
948
949/*
950 * cpqhp_configure_board
951 *
952 * Copies saved configuration information to one slot.
953 * this is called recursively for bridge devices.
954 * this is for hot plug REPLACE!
955 *
956 * returns 0 if success
957 */
958int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
959{
960 int cloop;
961 u8 header_type;
962 u8 secondary_bus;
963 int sub_bus;
964 struct pci_func *next;
965 u32 temp;
966 u32 rc;
967 int index = 0;
968 struct pci_bus *pci_bus = ctrl->pci_bus;
969 unsigned int devfn;
970
971 func = cpqhp_slot_find(func->bus, func->device, index++);
972
973 while (func != NULL) {
974 pci_bus->number = func->bus;
975 devfn = PCI_DEVFN(func->device, func->function);
976
977 // Start at the top of config space so that the control
978 // registers are programmed last
979 for (cloop = 0x3C; cloop > 0; cloop -= 4) {
980 pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
981 }
982
983 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
984
985 // If this is a bridge device, restore subordinate devices
986 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
987 pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
988
989 sub_bus = (int) secondary_bus;
990
991 next = cpqhp_slot_list[sub_bus];
992
993 while (next != NULL) {
994 rc = cpqhp_configure_board(ctrl, next);
995 if (rc)
996 return rc;
997
998 next = next->next;
999 }
1000 } else {
1001
1002 // Check all the base Address Registers to make sure
1003 // they are the same. If not, the board is different.
1004
1005 for (cloop = 16; cloop < 40; cloop += 4) {
1006 pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
1007
1008 if (temp != func->config_space[cloop >> 2]) {
1009 dbg("Config space compare failure!!! offset = %x\n", cloop);
1010 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1011 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1012 return 1;
1013 }
1014 }
1015 }
1016
1017 func->configured = 1;
1018
1019 func = cpqhp_slot_find(func->bus, func->device, index++);
1020 }
1021
1022 return 0;
1023}
1024
1025
1026/*
1027 * cpqhp_valid_replace
1028 *
1029 * this function checks to see if a board is the same as the
1030 * one it is replacing. this check will detect if the device's
1031 * vendor or device id's are the same
1032 *
1033 * returns 0 if the board is the same nonzero otherwise
1034 */
1035int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1036{
1037 u8 cloop;
1038 u8 header_type;
1039 u8 secondary_bus;
1040 u8 type;
1041 u32 temp_register = 0;
1042 u32 base;
1043 u32 rc;
1044 struct pci_func *next;
1045 int index = 0;
1046 struct pci_bus *pci_bus = ctrl->pci_bus;
1047 unsigned int devfn;
1048
1049 if (!func->is_a_board)
1050 return(ADD_NOT_SUPPORTED);
1051
1052 func = cpqhp_slot_find(func->bus, func->device, index++);
1053
1054 while (func != NULL) {
1055 pci_bus->number = func->bus;
1056 devfn = PCI_DEVFN(func->device, func->function);
1057
1058 pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1059
1060 // No adapter present
1061 if (temp_register == 0xFFFFFFFF)
1062 return(NO_ADAPTER_PRESENT);
1063
1064 if (temp_register != func->config_space[0])
1065 return(ADAPTER_NOT_SAME);
1066
1067 // Check for same revision number and class code
1068 pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1069
1070 // Adapter not the same
1071 if (temp_register != func->config_space[0x08 >> 2])
1072 return(ADAPTER_NOT_SAME);
1073
1074 // Check for Bridge
1075 pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1076
1077 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge
1078 // In order to continue checking, we must program the
1079 // bus registers in the bridge to respond to accesses
1080 // for it's subordinate bus(es)
1081
1082 temp_register = func->config_space[0x18 >> 2];
1083 pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1084
1085 secondary_bus = (temp_register >> 8) & 0xFF;
1086
1087 next = cpqhp_slot_list[secondary_bus];
1088
1089 while (next != NULL) {
1090 rc = cpqhp_valid_replace(ctrl, next);
1091 if (rc)
1092 return rc;
1093
1094 next = next->next;
1095 }
1096
1097 }
1098 // Check to see if it is a standard config header
1099 else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1100 // Check subsystem vendor and ID
1101 pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1102
1103 if (temp_register != func->config_space[0x2C >> 2]) {
1104 // If it's a SMART-2 and the register isn't filled
1105 // in, ignore the difference because
1106 // they just have an old rev of the firmware
1107
1108 if (!((func->config_space[0] == 0xAE100E11)
1109 && (temp_register == 0x00L)))
1110 return(ADAPTER_NOT_SAME);
1111 }
1112 // Figure out IO and memory base lengths
1113 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1114 temp_register = 0xFFFFFFFF;
1115 pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1116 pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1117 if (base) { // If this register is implemented
1118 if (base & 0x01L) {
1119 // IO base
1120 // set base = amount of IO space requested
1121 base = base & 0xFFFFFFFE;
1122 base = (~base) + 1;
1123
1124 type = 1;
1125 } else {
1126 // memory base
1127 base = base & 0xFFFFFFF0;
1128 base = (~base) + 1;
1129
1130 type = 0;
1131 }
1132 } else {
1133 base = 0x0L;
1134 type = 0;
1135 }
1136
1137 // Check information in slot structure
1138 if (func->base_length[(cloop - 0x10) >> 2] != base)
1139 return(ADAPTER_NOT_SAME);
1140
1141 if (func->base_type[(cloop - 0x10) >> 2] != type)
1142 return(ADAPTER_NOT_SAME);
1143
1144 } // End of base register loop
1145
1146 } // End of (type 0 config space) else
1147 else {
1148 // this is not a type 0 or 1 config space header so
1149 // we don't know how to do it
1150 return(DEVICE_TYPE_NOT_SUPPORTED);
1151 }
1152
1153 // Get the next function
1154 func = cpqhp_slot_find(func->bus, func->device, index++);
1155 }
1156
1157
1158 return 0;
1159}
1160
1161
1162/*
1163 * cpqhp_find_available_resources
1164 *
1165 * Finds available memory, IO, and IRQ resources for programming
1166 * devices which may be added to the system
1167 * this function is for hot plug ADD!
1168 *
1169 * returns 0 if success
1170 */
1171int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1172{
1173 u8 temp;
1174 u8 populated_slot;
1175 u8 bridged_slot;
1176 void __iomem *one_slot;
1177 void __iomem *rom_resource_table;
1178 struct pci_func *func = NULL;
1179 int i = 10, index;
1180 u32 temp_dword, rc;
1181 struct pci_resource *mem_node;
1182 struct pci_resource *p_mem_node;
1183 struct pci_resource *io_node;
1184 struct pci_resource *bus_node;
1185
1186 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1187 dbg("rom_resource_table = %p\n", rom_resource_table);
1188
1189 if (rom_resource_table == NULL) {
1190 return -ENODEV;
1191 }
1192 // Sum all resources and setup resource maps
1193 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1194 dbg("unused_IRQ = %x\n", unused_IRQ);
1195
1196 temp = 0;
1197 while (unused_IRQ) {
1198 if (unused_IRQ & 1) {
1199 cpqhp_disk_irq = temp;
1200 break;
1201 }
1202 unused_IRQ = unused_IRQ >> 1;
1203 temp++;
1204 }
1205
1206 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1207 unused_IRQ = unused_IRQ >> 1;
1208 temp++;
1209
1210 while (unused_IRQ) {
1211 if (unused_IRQ & 1) {
1212 cpqhp_nic_irq = temp;
1213 break;
1214 }
1215 unused_IRQ = unused_IRQ >> 1;
1216 temp++;
1217 }
1218
1219 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1220 unused_IRQ = readl(rom_resource_table + PCIIRQ);
1221
1222 temp = 0;
1223
1224 if (!cpqhp_nic_irq) {
1225 cpqhp_nic_irq = ctrl->cfgspc_irq;
1226 }
1227
1228 if (!cpqhp_disk_irq) {
1229 cpqhp_disk_irq = ctrl->cfgspc_irq;
1230 }
1231
1232 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1233
1234 rc = compaq_nvram_load(rom_start, ctrl);
1235 if (rc)
1236 return rc;
1237
1238 one_slot = rom_resource_table + sizeof (struct hrt);
1239
1240 i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1241 dbg("number_of_entries = %d\n", i);
1242
1243 if (!readb(one_slot + SECONDARY_BUS))
1244 return 1;
1245
1246 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1247
1248 while (i && readb(one_slot + SECONDARY_BUS)) {
1249 u8 dev_func = readb(one_slot + DEV_FUNC);
1250 u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1251 u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1252 u8 max_bus = readb(one_slot + MAX_BUS);
1253 u16 io_base = readw(one_slot + IO_BASE);
1254 u16 io_length = readw(one_slot + IO_LENGTH);
1255 u16 mem_base = readw(one_slot + MEM_BASE);
1256 u16 mem_length = readw(one_slot + MEM_LENGTH);
1257 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1258 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1259
1260 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1261 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1262 primary_bus, secondary_bus, max_bus);
1263
1264 // If this entry isn't for our controller's bus, ignore it
1265 if (primary_bus != ctrl->bus) {
1266 i--;
1267 one_slot += sizeof (struct slot_rt);
1268 continue;
1269 }
1270 // find out if this entry is for an occupied slot
1271 ctrl->pci_bus->number = primary_bus;
1272 pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1273 dbg("temp_D_word = %x\n", temp_dword);
1274
1275 if (temp_dword != 0xFFFFFFFF) {
1276 index = 0;
1277 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1278
1279 while (func && (func->function != (dev_func & 0x07))) {
1280 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1281 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1282 }
1283
1284 // If we can't find a match, skip this table entry
1285 if (!func) {
1286 i--;
1287 one_slot += sizeof (struct slot_rt);
1288 continue;
1289 }
1290 // this may not work and shouldn't be used
1291 if (secondary_bus != primary_bus)
1292 bridged_slot = 1;
1293 else
1294 bridged_slot = 0;
1295
1296 populated_slot = 1;
1297 } else {
1298 populated_slot = 0;
1299 bridged_slot = 0;
1300 }
1301
1302
1303 // If we've got a valid IO base, use it
1304
1305 temp_dword = io_base + io_length;
1306
1307 if ((io_base) && (temp_dword < 0x10000)) {
1308 io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1309 if (!io_node)
1310 return -ENOMEM;
1311
1312 io_node->base = io_base;
1313 io_node->length = io_length;
1314
1315 dbg("found io_node(base, length) = %x, %x\n",
1316 io_node->base, io_node->length);
1317 dbg("populated slot =%d \n", populated_slot);
1318 if (!populated_slot) {
1319 io_node->next = ctrl->io_head;
1320 ctrl->io_head = io_node;
1321 } else {
1322 io_node->next = func->io_head;
1323 func->io_head = io_node;
1324 }
1325 }
1326
1327 // If we've got a valid memory base, use it
1328 temp_dword = mem_base + mem_length;
1329 if ((mem_base) && (temp_dword < 0x10000)) {
1330 mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1331 if (!mem_node)
1332 return -ENOMEM;
1333
1334 mem_node->base = mem_base << 16;
1335
1336 mem_node->length = mem_length << 16;
1337
1338 dbg("found mem_node(base, length) = %x, %x\n",
1339 mem_node->base, mem_node->length);
1340 dbg("populated slot =%d \n", populated_slot);
1341 if (!populated_slot) {
1342 mem_node->next = ctrl->mem_head;
1343 ctrl->mem_head = mem_node;
1344 } else {
1345 mem_node->next = func->mem_head;
1346 func->mem_head = mem_node;
1347 }
1348 }
1349
1350 // If we've got a valid prefetchable memory base, and
1351 // the base + length isn't greater than 0xFFFF
1352 temp_dword = pre_mem_base + pre_mem_length;
1353 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1354 p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1355 if (!p_mem_node)
1356 return -ENOMEM;
1357
1358 p_mem_node->base = pre_mem_base << 16;
1359
1360 p_mem_node->length = pre_mem_length << 16;
1361 dbg("found p_mem_node(base, length) = %x, %x\n",
1362 p_mem_node->base, p_mem_node->length);
1363 dbg("populated slot =%d \n", populated_slot);
1364
1365 if (!populated_slot) {
1366 p_mem_node->next = ctrl->p_mem_head;
1367 ctrl->p_mem_head = p_mem_node;
1368 } else {
1369 p_mem_node->next = func->p_mem_head;
1370 func->p_mem_head = p_mem_node;
1371 }
1372 }
1373
1374 // If we've got a valid bus number, use it
1375 // The second condition is to ignore bus numbers on
1376 // populated slots that don't have PCI-PCI bridges
1377 if (secondary_bus && (secondary_bus != primary_bus)) {
1378 bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1379 if (!bus_node)
1380 return -ENOMEM;
1381
1382 bus_node->base = secondary_bus;
1383 bus_node->length = max_bus - secondary_bus + 1;
1384 dbg("found bus_node(base, length) = %x, %x\n",
1385 bus_node->base, bus_node->length);
1386 dbg("populated slot =%d \n", populated_slot);
1387 if (!populated_slot) {
1388 bus_node->next = ctrl->bus_head;
1389 ctrl->bus_head = bus_node;
1390 } else {
1391 bus_node->next = func->bus_head;
1392 func->bus_head = bus_node;
1393 }
1394 }
1395
1396 i--;
1397 one_slot += sizeof (struct slot_rt);
1398 }
1399
1400 // If all of the following fail, we don't have any resources for
1401 // hot plug add
1402 rc = 1;
1403 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1404 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1405 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1406 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1407
1408 return rc;
1409}
1410
1411
1412/*
1413 * cpqhp_return_board_resources
1414 *
1415 * this routine returns all resources allocated to a board to
1416 * the available pool.
1417 *
1418 * returns 0 if success
1419 */
1420int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1421{
1422 int rc = 0;
1423 struct pci_resource *node;
1424 struct pci_resource *t_node;
1425 dbg("%s\n", __FUNCTION__);
1426
1427 if (!func)
1428 return 1;
1429
1430 node = func->io_head;
1431 func->io_head = NULL;
1432 while (node) {
1433 t_node = node->next;
1434 return_resource(&(resources->io_head), node);
1435 node = t_node;
1436 }
1437
1438 node = func->mem_head;
1439 func->mem_head = NULL;
1440 while (node) {
1441 t_node = node->next;
1442 return_resource(&(resources->mem_head), node);
1443 node = t_node;
1444 }
1445
1446 node = func->p_mem_head;
1447 func->p_mem_head = NULL;
1448 while (node) {
1449 t_node = node->next;
1450 return_resource(&(resources->p_mem_head), node);
1451 node = t_node;
1452 }
1453
1454 node = func->bus_head;
1455 func->bus_head = NULL;
1456 while (node) {
1457 t_node = node->next;
1458 return_resource(&(resources->bus_head), node);
1459 node = t_node;
1460 }
1461
1462 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1463 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1464 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1465 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1466
1467 return rc;
1468}
1469
1470
1471/*
1472 * cpqhp_destroy_resource_list
1473 *
1474 * Puts node back in the resource list pointed to by head
1475 */
1476void cpqhp_destroy_resource_list (struct resource_lists * resources)
1477{
1478 struct pci_resource *res, *tres;
1479
1480 res = resources->io_head;
1481 resources->io_head = NULL;
1482
1483 while (res) {
1484 tres = res;
1485 res = res->next;
1486 kfree(tres);
1487 }
1488
1489 res = resources->mem_head;
1490 resources->mem_head = NULL;
1491
1492 while (res) {
1493 tres = res;
1494 res = res->next;
1495 kfree(tres);
1496 }
1497
1498 res = resources->p_mem_head;
1499 resources->p_mem_head = NULL;
1500
1501 while (res) {
1502 tres = res;
1503 res = res->next;
1504 kfree(tres);
1505 }
1506
1507 res = resources->bus_head;
1508 resources->bus_head = NULL;
1509
1510 while (res) {
1511 tres = res;
1512 res = res->next;
1513 kfree(tres);
1514 }
1515}
1516
1517
1518/*
1519 * cpqhp_destroy_board_resources
1520 *
1521 * Puts node back in the resource list pointed to by head
1522 */
1523void cpqhp_destroy_board_resources (struct pci_func * func)
1524{
1525 struct pci_resource *res, *tres;
1526
1527 res = func->io_head;
1528 func->io_head = NULL;
1529
1530 while (res) {
1531 tres = res;
1532 res = res->next;
1533 kfree(tres);
1534 }
1535
1536 res = func->mem_head;
1537 func->mem_head = NULL;
1538
1539 while (res) {
1540 tres = res;
1541 res = res->next;
1542 kfree(tres);
1543 }
1544
1545 res = func->p_mem_head;
1546 func->p_mem_head = NULL;
1547
1548 while (res) {
1549 tres = res;
1550 res = res->next;
1551 kfree(tres);
1552 }
1553
1554 res = func->bus_head;
1555 func->bus_head = NULL;
1556
1557 while (res) {
1558 tres = res;
1559 res = res->next;
1560 kfree(tres);
1561 }
1562}
1563