Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Misc utility routines for accessing chip-specific features |
| 3 | * of the SiliconBackplane-based Broadcom chips. |
| 4 | * |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 5 | * Copyright (C) 1999-2012, Broadcom Corporation |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 6 | * |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 7 | * Unless you and Broadcom execute a separate written software license |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 8 | * agreement governing use of this software, this software is licensed to you |
| 9 | * under the terms of the GNU General Public License version 2 (the "GPL"), |
| 10 | * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| 11 | * following added to such license: |
| 12 | * |
| 13 | * As a special exception, the copyright holders of this software give you |
| 14 | * permission to link this software with independent modules, and to copy and |
| 15 | * distribute the resulting executable under terms of your choice, provided that |
| 16 | * you also meet, for each linked independent module, the terms and conditions of |
| 17 | * the license of that module. An independent module is a module which is not |
| 18 | * derived from this software. The special exception does not apply to any |
| 19 | * modifications of the software. |
| 20 | * |
| 21 | * Notwithstanding the above, under no circumstances may you combine this |
| 22 | * software in any way with any other Broadcom software provided under a license |
| 23 | * other than the GPL, without Broadcom's express prior written consent. |
| 24 | * |
Dmitry Shmidt | 4a3a0fa | 2012-04-12 10:18:39 -0700 | [diff] [blame] | 25 | * $Id: sbutils.c 310902 2012-01-26 19:45:33Z $ |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 26 | */ |
| 27 | |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 28 | #include <bcm_cfg.h> |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 29 | #include <typedefs.h> |
| 30 | #include <bcmdefs.h> |
| 31 | #include <osl.h> |
| 32 | #include <bcmutils.h> |
| 33 | #include <siutils.h> |
| 34 | #include <bcmdevs.h> |
| 35 | #include <hndsoc.h> |
| 36 | #include <sbchipc.h> |
| 37 | #include <pcicfg.h> |
| 38 | #include <sbpcmcia.h> |
| 39 | |
| 40 | #include "siutils_priv.h" |
| 41 | |
| 42 | |
| 43 | /* local prototypes */ |
| 44 | static uint _sb_coreidx(si_info_t *sii, uint32 sba); |
| 45 | static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, |
| 46 | uint ncores); |
| 47 | static uint32 _sb_coresba(si_info_t *sii); |
| 48 | static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); |
| 49 | |
| 50 | #define SET_SBREG(sii, r, mask, val) \ |
| 51 | W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) |
| 52 | #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) |
| 53 | |
| 54 | /* sonicsrev */ |
| 55 | #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) |
| 56 | #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) |
| 57 | |
| 58 | #define R_SBREG(sii, sbr) sb_read_sbreg((sii), (sbr)) |
| 59 | #define W_SBREG(sii, sbr, v) sb_write_sbreg((sii), (sbr), (v)) |
| 60 | #define AND_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) |
| 61 | #define OR_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) |
| 62 | |
| 63 | static uint32 |
| 64 | sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) |
| 65 | { |
| 66 | uint8 tmp; |
| 67 | uint32 val, intr_val = 0; |
| 68 | |
| 69 | |
| 70 | /* |
| 71 | * compact flash only has 11 bits address, while we needs 12 bits address. |
| 72 | * MEM_SEG will be OR'd with other 11 bits address in hardware, |
| 73 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). |
| 74 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special |
| 75 | */ |
| 76 | if (PCMCIA(sii)) { |
| 77 | INTR_OFF(sii, intr_val); |
| 78 | tmp = 1; |
| 79 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| 80 | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ |
| 81 | } |
| 82 | |
| 83 | val = R_REG(sii->osh, sbr); |
| 84 | |
| 85 | if (PCMCIA(sii)) { |
| 86 | tmp = 0; |
| 87 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| 88 | INTR_RESTORE(sii, intr_val); |
| 89 | } |
| 90 | |
| 91 | return (val); |
| 92 | } |
| 93 | |
| 94 | static void |
| 95 | sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) |
| 96 | { |
| 97 | uint8 tmp; |
| 98 | volatile uint32 dummy; |
| 99 | uint32 intr_val = 0; |
| 100 | |
| 101 | |
| 102 | /* |
| 103 | * compact flash only has 11 bits address, while we needs 12 bits address. |
| 104 | * MEM_SEG will be OR'd with other 11 bits address in hardware, |
| 105 | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). |
| 106 | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special |
| 107 | */ |
| 108 | if (PCMCIA(sii)) { |
| 109 | INTR_OFF(sii, intr_val); |
| 110 | tmp = 1; |
| 111 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| 112 | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ |
| 113 | } |
| 114 | |
| 115 | if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { |
| 116 | dummy = R_REG(sii->osh, sbr); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 117 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 118 | W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); |
| 119 | dummy = R_REG(sii->osh, sbr); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 120 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 121 | W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); |
| 122 | } else |
| 123 | W_REG(sii->osh, sbr, v); |
| 124 | |
| 125 | if (PCMCIA(sii)) { |
| 126 | tmp = 0; |
| 127 | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| 128 | INTR_RESTORE(sii, intr_val); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | uint |
| 133 | sb_coreid(si_t *sih) |
| 134 | { |
| 135 | si_info_t *sii; |
| 136 | sbconfig_t *sb; |
| 137 | |
| 138 | sii = SI_INFO(sih); |
| 139 | sb = REGS2SB(sii->curmap); |
| 140 | |
| 141 | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); |
| 142 | } |
| 143 | |
| 144 | uint |
| 145 | sb_intflag(si_t *sih) |
| 146 | { |
| 147 | si_info_t *sii; |
| 148 | void *corereg; |
| 149 | sbconfig_t *sb; |
| 150 | uint origidx, intflag, intr_val = 0; |
| 151 | |
| 152 | sii = SI_INFO(sih); |
| 153 | |
| 154 | INTR_OFF(sii, intr_val); |
| 155 | origidx = si_coreidx(sih); |
| 156 | corereg = si_setcore(sih, CC_CORE_ID, 0); |
| 157 | ASSERT(corereg != NULL); |
| 158 | sb = REGS2SB(corereg); |
| 159 | intflag = R_SBREG(sii, &sb->sbflagst); |
| 160 | sb_setcoreidx(sih, origidx); |
| 161 | INTR_RESTORE(sii, intr_val); |
| 162 | |
| 163 | return intflag; |
| 164 | } |
| 165 | |
| 166 | uint |
| 167 | sb_flag(si_t *sih) |
| 168 | { |
| 169 | si_info_t *sii; |
| 170 | sbconfig_t *sb; |
| 171 | |
| 172 | sii = SI_INFO(sih); |
| 173 | sb = REGS2SB(sii->curmap); |
| 174 | |
| 175 | return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; |
| 176 | } |
| 177 | |
| 178 | void |
| 179 | sb_setint(si_t *sih, int siflag) |
| 180 | { |
| 181 | si_info_t *sii; |
| 182 | sbconfig_t *sb; |
| 183 | uint32 vec; |
| 184 | |
| 185 | sii = SI_INFO(sih); |
| 186 | sb = REGS2SB(sii->curmap); |
| 187 | |
| 188 | if (siflag == -1) |
| 189 | vec = 0; |
| 190 | else |
| 191 | vec = 1 << siflag; |
| 192 | W_SBREG(sii, &sb->sbintvec, vec); |
| 193 | } |
| 194 | |
| 195 | /* return core index of the core with address 'sba' */ |
| 196 | static uint |
| 197 | _sb_coreidx(si_info_t *sii, uint32 sba) |
| 198 | { |
| 199 | uint i; |
| 200 | |
| 201 | for (i = 0; i < sii->numcores; i ++) |
| 202 | if (sba == sii->coresba[i]) |
| 203 | return i; |
| 204 | return BADIDX; |
| 205 | } |
| 206 | |
| 207 | /* return core address of the current core */ |
| 208 | static uint32 |
| 209 | _sb_coresba(si_info_t *sii) |
| 210 | { |
| 211 | uint32 sbaddr; |
| 212 | |
| 213 | |
| 214 | switch (BUSTYPE(sii->pub.bustype)) { |
| 215 | case SI_BUS: { |
| 216 | sbconfig_t *sb = REGS2SB(sii->curmap); |
| 217 | sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); |
| 218 | break; |
| 219 | } |
| 220 | |
| 221 | case PCI_BUS: |
| 222 | sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); |
| 223 | break; |
| 224 | |
| 225 | case PCMCIA_BUS: { |
| 226 | uint8 tmp = 0; |
| 227 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); |
| 228 | sbaddr = (uint32)tmp << 12; |
| 229 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); |
| 230 | sbaddr |= (uint32)tmp << 16; |
| 231 | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); |
| 232 | sbaddr |= (uint32)tmp << 24; |
| 233 | break; |
| 234 | } |
| 235 | |
| 236 | case SPI_BUS: |
| 237 | case SDIO_BUS: |
| 238 | sbaddr = (uint32)(uintptr)sii->curmap; |
| 239 | break; |
| 240 | |
| 241 | |
| 242 | default: |
| 243 | sbaddr = BADCOREADDR; |
| 244 | break; |
| 245 | } |
| 246 | |
| 247 | return sbaddr; |
| 248 | } |
| 249 | |
| 250 | uint |
| 251 | sb_corevendor(si_t *sih) |
| 252 | { |
| 253 | si_info_t *sii; |
| 254 | sbconfig_t *sb; |
| 255 | |
| 256 | sii = SI_INFO(sih); |
| 257 | sb = REGS2SB(sii->curmap); |
| 258 | |
| 259 | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); |
| 260 | } |
| 261 | |
| 262 | uint |
| 263 | sb_corerev(si_t *sih) |
| 264 | { |
| 265 | si_info_t *sii; |
| 266 | sbconfig_t *sb; |
| 267 | uint sbidh; |
| 268 | |
| 269 | sii = SI_INFO(sih); |
| 270 | sb = REGS2SB(sii->curmap); |
| 271 | sbidh = R_SBREG(sii, &sb->sbidhigh); |
| 272 | |
| 273 | return (SBCOREREV(sbidh)); |
| 274 | } |
| 275 | |
| 276 | /* set core-specific control flags */ |
| 277 | void |
| 278 | sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) |
| 279 | { |
| 280 | si_info_t *sii; |
| 281 | sbconfig_t *sb; |
| 282 | uint32 w; |
| 283 | |
| 284 | sii = SI_INFO(sih); |
| 285 | sb = REGS2SB(sii->curmap); |
| 286 | |
| 287 | ASSERT((val & ~mask) == 0); |
| 288 | |
| 289 | /* mask and set */ |
| 290 | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | |
| 291 | (val << SBTML_SICF_SHIFT); |
| 292 | W_SBREG(sii, &sb->sbtmstatelow, w); |
| 293 | } |
| 294 | |
| 295 | /* set/clear core-specific control flags */ |
| 296 | uint32 |
| 297 | sb_core_cflags(si_t *sih, uint32 mask, uint32 val) |
| 298 | { |
| 299 | si_info_t *sii; |
| 300 | sbconfig_t *sb; |
| 301 | uint32 w; |
| 302 | |
| 303 | sii = SI_INFO(sih); |
| 304 | sb = REGS2SB(sii->curmap); |
| 305 | |
| 306 | ASSERT((val & ~mask) == 0); |
| 307 | |
| 308 | /* mask and set */ |
| 309 | if (mask || val) { |
| 310 | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | |
| 311 | (val << SBTML_SICF_SHIFT); |
| 312 | W_SBREG(sii, &sb->sbtmstatelow, w); |
| 313 | } |
| 314 | |
| 315 | /* return the new value |
| 316 | * for write operation, the following readback ensures the completion of write opration. |
| 317 | */ |
| 318 | return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); |
| 319 | } |
| 320 | |
| 321 | /* set/clear core-specific status flags */ |
| 322 | uint32 |
| 323 | sb_core_sflags(si_t *sih, uint32 mask, uint32 val) |
| 324 | { |
| 325 | si_info_t *sii; |
| 326 | sbconfig_t *sb; |
| 327 | uint32 w; |
| 328 | |
| 329 | sii = SI_INFO(sih); |
| 330 | sb = REGS2SB(sii->curmap); |
| 331 | |
| 332 | ASSERT((val & ~mask) == 0); |
| 333 | ASSERT((mask & ~SISF_CORE_BITS) == 0); |
| 334 | |
| 335 | /* mask and set */ |
| 336 | if (mask || val) { |
| 337 | w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | |
| 338 | (val << SBTMH_SISF_SHIFT); |
| 339 | W_SBREG(sii, &sb->sbtmstatehigh, w); |
| 340 | } |
| 341 | |
| 342 | /* return the new value */ |
| 343 | return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); |
| 344 | } |
| 345 | |
| 346 | bool |
| 347 | sb_iscoreup(si_t *sih) |
| 348 | { |
| 349 | si_info_t *sii; |
| 350 | sbconfig_t *sb; |
| 351 | |
| 352 | sii = SI_INFO(sih); |
| 353 | sb = REGS2SB(sii->curmap); |
| 354 | |
| 355 | return ((R_SBREG(sii, &sb->sbtmstatelow) & |
| 356 | (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == |
| 357 | (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, |
| 362 | * switch back to the original core, and return the new value. |
| 363 | * |
| 364 | * When using the silicon backplane, no fidleing with interrupts or core switches are needed. |
| 365 | * |
| 366 | * Also, when using pci/pcie, we can optimize away the core switching for pci registers |
| 367 | * and (on newer pci cores) chipcommon registers. |
| 368 | */ |
| 369 | uint |
| 370 | sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) |
| 371 | { |
| 372 | uint origidx = 0; |
| 373 | uint32 *r = NULL; |
| 374 | uint w; |
| 375 | uint intr_val = 0; |
| 376 | bool fast = FALSE; |
| 377 | si_info_t *sii; |
| 378 | |
| 379 | sii = SI_INFO(sih); |
| 380 | |
| 381 | ASSERT(GOODIDX(coreidx)); |
| 382 | ASSERT(regoff < SI_CORE_SIZE); |
| 383 | ASSERT((val & ~mask) == 0); |
| 384 | |
| 385 | if (coreidx >= SI_MAXCORES) |
| 386 | return 0; |
| 387 | |
| 388 | if (BUSTYPE(sii->pub.bustype) == SI_BUS) { |
| 389 | /* If internal bus, we can always get at everything */ |
| 390 | fast = TRUE; |
| 391 | /* map if does not exist */ |
| 392 | if (!sii->regs[coreidx]) { |
| 393 | sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx], |
| 394 | SI_CORE_SIZE); |
| 395 | ASSERT(GOODREGS(sii->regs[coreidx])); |
| 396 | } |
| 397 | r = (uint32 *)((uchar *)sii->regs[coreidx] + regoff); |
| 398 | } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { |
| 399 | /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ |
| 400 | |
| 401 | if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { |
| 402 | /* Chipc registers are mapped at 12KB */ |
| 403 | |
| 404 | fast = TRUE; |
| 405 | r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); |
| 406 | } else if (sii->pub.buscoreidx == coreidx) { |
| 407 | /* pci registers are at either in the last 2KB of an 8KB window |
| 408 | * or, in pcie and pci rev 13 at 8KB |
| 409 | */ |
| 410 | fast = TRUE; |
| 411 | if (SI_FAST(sii)) |
| 412 | r = (uint32 *)((char *)sii->curmap + |
| 413 | PCI_16KB0_PCIREGS_OFFSET + regoff); |
| 414 | else |
| 415 | r = (uint32 *)((char *)sii->curmap + |
| 416 | ((regoff >= SBCONFIGOFF) ? |
| 417 | PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + |
| 418 | regoff); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | if (!fast) { |
| 423 | INTR_OFF(sii, intr_val); |
| 424 | |
| 425 | /* save current core index */ |
| 426 | origidx = si_coreidx(&sii->pub); |
| 427 | |
| 428 | /* switch core */ |
| 429 | r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); |
| 430 | } |
| 431 | ASSERT(r != NULL); |
| 432 | |
| 433 | /* mask and set */ |
| 434 | if (mask || val) { |
| 435 | if (regoff >= SBCONFIGOFF) { |
| 436 | w = (R_SBREG(sii, r) & ~mask) | val; |
| 437 | W_SBREG(sii, r, w); |
| 438 | } else { |
| 439 | w = (R_REG(sii->osh, r) & ~mask) | val; |
| 440 | W_REG(sii->osh, r, w); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /* readback */ |
| 445 | if (regoff >= SBCONFIGOFF) |
| 446 | w = R_SBREG(sii, r); |
| 447 | else { |
| 448 | if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && |
| 449 | (coreidx == SI_CC_IDX) && |
| 450 | (regoff == OFFSETOF(chipcregs_t, watchdog))) { |
| 451 | w = val; |
| 452 | } else |
| 453 | w = R_REG(sii->osh, r); |
| 454 | } |
| 455 | |
| 456 | if (!fast) { |
| 457 | /* restore core index */ |
| 458 | if (origidx != coreidx) |
| 459 | sb_setcoreidx(&sii->pub, origidx); |
| 460 | |
| 461 | INTR_RESTORE(sii, intr_val); |
| 462 | } |
| 463 | |
| 464 | return (w); |
| 465 | } |
| 466 | |
| 467 | /* Scan the enumeration space to find all cores starting from the given |
| 468 | * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' |
| 469 | * is the default core address at chip POR time and 'regs' is the virtual |
| 470 | * address that the default core is mapped at. 'ncores' is the number of |
| 471 | * cores expected on bus 'sbba'. It returns the total number of cores |
| 472 | * starting from bus 'sbba', inclusive. |
| 473 | */ |
| 474 | #define SB_MAXBUSES 2 |
| 475 | static uint |
| 476 | _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) |
| 477 | { |
| 478 | uint next; |
| 479 | uint ncc = 0; |
| 480 | uint i; |
| 481 | |
| 482 | if (bus >= SB_MAXBUSES) { |
| 483 | SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); |
| 484 | return 0; |
| 485 | } |
| 486 | SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); |
| 487 | |
| 488 | /* Scan all cores on the bus starting from core 0. |
| 489 | * Core addresses must be contiguous on each bus. |
| 490 | */ |
| 491 | for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { |
| 492 | sii->coresba[next] = sbba + (i * SI_CORE_SIZE); |
| 493 | |
| 494 | /* keep and reuse the initial register mapping */ |
| 495 | if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && (sii->coresba[next] == sba)) { |
| 496 | SI_VMSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); |
| 497 | sii->regs[next] = regs; |
| 498 | } |
| 499 | |
| 500 | /* change core to 'next' and read its coreid */ |
| 501 | sii->curmap = _sb_setcoreidx(sii, next); |
| 502 | sii->curidx = next; |
| 503 | |
| 504 | sii->coreid[next] = sb_coreid(&sii->pub); |
| 505 | |
| 506 | /* core specific processing... */ |
| 507 | /* chipc provides # cores */ |
| 508 | if (sii->coreid[next] == CC_CORE_ID) { |
| 509 | chipcregs_t *cc = (chipcregs_t *)sii->curmap; |
| 510 | uint32 ccrev = sb_corerev(&sii->pub); |
| 511 | |
| 512 | /* determine numcores - this is the total # cores in the chip */ |
| 513 | if (((ccrev == 4) || (ccrev >= 6))) |
| 514 | numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> |
| 515 | CID_CC_SHIFT; |
| 516 | else { |
| 517 | /* Older chips */ |
| 518 | uint chip = CHIPID(sii->pub.chip); |
| 519 | |
| 520 | if (chip == BCM4306_CHIP_ID) /* < 4306c0 */ |
| 521 | numcores = 6; |
| 522 | else if (chip == BCM4704_CHIP_ID) |
| 523 | numcores = 9; |
| 524 | else if (chip == BCM5365_CHIP_ID) |
| 525 | numcores = 7; |
| 526 | else { |
| 527 | SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", |
| 528 | chip)); |
| 529 | ASSERT(0); |
| 530 | numcores = 1; |
| 531 | } |
| 532 | } |
| 533 | SI_VMSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, |
| 534 | sii->pub.issim ? "QT" : "")); |
| 535 | } |
| 536 | /* scan bridged SB(s) and add results to the end of the list */ |
| 537 | else if (sii->coreid[next] == OCP_CORE_ID) { |
| 538 | sbconfig_t *sb = REGS2SB(sii->curmap); |
| 539 | uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); |
| 540 | uint nsbcc; |
| 541 | |
| 542 | sii->numcores = next + 1; |
| 543 | |
| 544 | if ((nsbba & 0xfff00000) != SI_ENUM_BASE) |
| 545 | continue; |
| 546 | nsbba &= 0xfffff000; |
| 547 | if (_sb_coreidx(sii, nsbba) != BADIDX) |
| 548 | continue; |
| 549 | |
| 550 | nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; |
| 551 | nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); |
| 552 | if (sbba == SI_ENUM_BASE) |
| 553 | numcores -= nsbcc; |
| 554 | ncc += nsbcc; |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); |
| 559 | |
| 560 | sii->numcores = i + ncc; |
| 561 | return sii->numcores; |
| 562 | } |
| 563 | |
| 564 | /* scan the sb enumerated space to identify all cores */ |
| 565 | void |
| 566 | sb_scan(si_t *sih, void *regs, uint devid) |
| 567 | { |
| 568 | si_info_t *sii; |
| 569 | uint32 origsba; |
| 570 | sbconfig_t *sb; |
| 571 | |
| 572 | sii = SI_INFO(sih); |
| 573 | sb = REGS2SB(sii->curmap); |
| 574 | |
| 575 | sii->pub.socirev = (R_SBREG(sii, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT; |
| 576 | |
| 577 | /* Save the current core info and validate it later till we know |
| 578 | * for sure what is good and what is bad. |
| 579 | */ |
| 580 | origsba = _sb_coresba(sii); |
| 581 | |
| 582 | /* scan all SB(s) starting from SI_ENUM_BASE */ |
| 583 | sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * This function changes logical "focus" to the indicated core; |
| 588 | * must be called with interrupts off. |
| 589 | * Moreover, callers should keep interrupts off during switching out of and back to d11 core |
| 590 | */ |
| 591 | void * |
| 592 | sb_setcoreidx(si_t *sih, uint coreidx) |
| 593 | { |
| 594 | si_info_t *sii; |
| 595 | |
| 596 | sii = SI_INFO(sih); |
| 597 | |
| 598 | if (coreidx >= sii->numcores) |
| 599 | return (NULL); |
| 600 | |
| 601 | /* |
| 602 | * If the user has provided an interrupt mask enabled function, |
| 603 | * then assert interrupts are disabled before switching the core. |
| 604 | */ |
| 605 | ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); |
| 606 | |
| 607 | sii->curmap = _sb_setcoreidx(sii, coreidx); |
| 608 | sii->curidx = coreidx; |
| 609 | |
| 610 | return (sii->curmap); |
| 611 | } |
| 612 | |
| 613 | /* This function changes the logical "focus" to the indicated core. |
| 614 | * Return the current core's virtual address. |
| 615 | */ |
| 616 | static void * |
| 617 | _sb_setcoreidx(si_info_t *sii, uint coreidx) |
| 618 | { |
| 619 | uint32 sbaddr = sii->coresba[coreidx]; |
| 620 | void *regs; |
| 621 | |
| 622 | switch (BUSTYPE(sii->pub.bustype)) { |
| 623 | case SI_BUS: |
| 624 | /* map new one */ |
| 625 | if (!sii->regs[coreidx]) { |
| 626 | sii->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); |
| 627 | ASSERT(GOODREGS(sii->regs[coreidx])); |
| 628 | } |
| 629 | regs = sii->regs[coreidx]; |
| 630 | break; |
| 631 | |
| 632 | case PCI_BUS: |
| 633 | /* point bar0 window */ |
| 634 | OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); |
| 635 | regs = sii->curmap; |
| 636 | break; |
| 637 | |
| 638 | case PCMCIA_BUS: { |
| 639 | uint8 tmp = (sbaddr >> 12) & 0x0f; |
| 640 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); |
| 641 | tmp = (sbaddr >> 16) & 0xff; |
| 642 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); |
| 643 | tmp = (sbaddr >> 24) & 0xff; |
| 644 | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); |
| 645 | regs = sii->curmap; |
| 646 | break; |
| 647 | } |
| 648 | case SPI_BUS: |
| 649 | case SDIO_BUS: |
| 650 | /* map new one */ |
| 651 | if (!sii->regs[coreidx]) { |
| 652 | sii->regs[coreidx] = (void *)(uintptr)sbaddr; |
| 653 | ASSERT(GOODREGS(sii->regs[coreidx])); |
| 654 | } |
| 655 | regs = sii->regs[coreidx]; |
| 656 | break; |
| 657 | |
| 658 | |
| 659 | default: |
| 660 | ASSERT(0); |
| 661 | regs = NULL; |
| 662 | break; |
| 663 | } |
| 664 | |
| 665 | return regs; |
| 666 | } |
| 667 | |
| 668 | /* Return the address of sbadmatch0/1/2/3 register */ |
| 669 | static volatile uint32 * |
| 670 | sb_admatch(si_info_t *sii, uint asidx) |
| 671 | { |
| 672 | sbconfig_t *sb; |
| 673 | volatile uint32 *addrm; |
| 674 | |
| 675 | sb = REGS2SB(sii->curmap); |
| 676 | |
| 677 | switch (asidx) { |
| 678 | case 0: |
| 679 | addrm = &sb->sbadmatch0; |
| 680 | break; |
| 681 | |
| 682 | case 1: |
| 683 | addrm = &sb->sbadmatch1; |
| 684 | break; |
| 685 | |
| 686 | case 2: |
| 687 | addrm = &sb->sbadmatch2; |
| 688 | break; |
| 689 | |
| 690 | case 3: |
| 691 | addrm = &sb->sbadmatch3; |
| 692 | break; |
| 693 | |
| 694 | default: |
| 695 | SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | return (addrm); |
| 700 | } |
| 701 | |
| 702 | /* Return the number of address spaces in current core */ |
| 703 | int |
| 704 | sb_numaddrspaces(si_t *sih) |
| 705 | { |
| 706 | si_info_t *sii; |
| 707 | sbconfig_t *sb; |
| 708 | |
| 709 | sii = SI_INFO(sih); |
| 710 | sb = REGS2SB(sii->curmap); |
| 711 | |
| 712 | /* + 1 because of enumeration space */ |
| 713 | return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; |
| 714 | } |
| 715 | |
| 716 | /* Return the address of the nth address space in the current core */ |
| 717 | uint32 |
| 718 | sb_addrspace(si_t *sih, uint asidx) |
| 719 | { |
| 720 | si_info_t *sii; |
| 721 | |
| 722 | sii = SI_INFO(sih); |
| 723 | |
| 724 | return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); |
| 725 | } |
| 726 | |
| 727 | /* Return the size of the nth address space in the current core */ |
| 728 | uint32 |
| 729 | sb_addrspacesize(si_t *sih, uint asidx) |
| 730 | { |
| 731 | si_info_t *sii; |
| 732 | |
| 733 | sii = SI_INFO(sih); |
| 734 | |
| 735 | return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); |
| 736 | } |
| 737 | |
| 738 | |
| 739 | /* do buffered registers update */ |
| 740 | void |
| 741 | sb_commit(si_t *sih) |
| 742 | { |
| 743 | si_info_t *sii; |
| 744 | uint origidx; |
| 745 | uint intr_val = 0; |
| 746 | |
| 747 | sii = SI_INFO(sih); |
| 748 | |
| 749 | origidx = sii->curidx; |
| 750 | ASSERT(GOODIDX(origidx)); |
| 751 | |
| 752 | INTR_OFF(sii, intr_val); |
| 753 | |
| 754 | /* switch over to chipcommon core if there is one, else use pci */ |
| 755 | if (sii->pub.ccrev != NOREV) { |
| 756 | chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); |
| 757 | ASSERT(ccregs != NULL); |
| 758 | |
| 759 | /* do the buffer registers update */ |
| 760 | W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); |
| 761 | W_REG(sii->osh, &ccregs->broadcastdata, 0x0); |
| 762 | } else |
| 763 | ASSERT(0); |
| 764 | |
| 765 | /* restore core index */ |
| 766 | sb_setcoreidx(sih, origidx); |
| 767 | INTR_RESTORE(sii, intr_val); |
| 768 | } |
| 769 | |
| 770 | void |
| 771 | sb_core_disable(si_t *sih, uint32 bits) |
| 772 | { |
| 773 | si_info_t *sii; |
| 774 | volatile uint32 dummy; |
| 775 | sbconfig_t *sb; |
| 776 | |
| 777 | sii = SI_INFO(sih); |
| 778 | |
| 779 | ASSERT(GOODREGS(sii->curmap)); |
| 780 | sb = REGS2SB(sii->curmap); |
| 781 | |
| 782 | /* if core is already in reset, just return */ |
| 783 | if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) |
| 784 | return; |
| 785 | |
| 786 | /* if clocks are not enabled, put into reset and return */ |
| 787 | if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) |
| 788 | goto disable; |
| 789 | |
| 790 | /* set target reject and spin until busy is clear (preserve core-specific bits) */ |
| 791 | OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); |
| 792 | dummy = R_SBREG(sii, &sb->sbtmstatelow); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 793 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 794 | OSL_DELAY(1); |
| 795 | SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); |
| 796 | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) |
| 797 | SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); |
| 798 | |
| 799 | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { |
| 800 | OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); |
| 801 | dummy = R_SBREG(sii, &sb->sbimstate); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 802 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 803 | OSL_DELAY(1); |
| 804 | SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); |
| 805 | } |
| 806 | |
| 807 | /* set reset and reject while enabling the clocks */ |
| 808 | W_SBREG(sii, &sb->sbtmstatelow, |
| 809 | (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | |
| 810 | SBTML_REJ | SBTML_RESET)); |
| 811 | dummy = R_SBREG(sii, &sb->sbtmstatelow); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 812 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 813 | OSL_DELAY(10); |
| 814 | |
| 815 | /* don't forget to clear the initiator reject bit */ |
| 816 | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) |
| 817 | AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); |
| 818 | |
| 819 | disable: |
| 820 | /* leave reset and reject asserted */ |
| 821 | W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); |
| 822 | OSL_DELAY(1); |
| 823 | } |
| 824 | |
| 825 | /* reset and re-enable a core |
| 826 | * inputs: |
| 827 | * bits - core specific bits that are set during and after reset sequence |
| 828 | * resetbits - core specific bits that are set only during reset sequence |
| 829 | */ |
| 830 | void |
| 831 | sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) |
| 832 | { |
| 833 | si_info_t *sii; |
| 834 | sbconfig_t *sb; |
| 835 | volatile uint32 dummy; |
| 836 | |
| 837 | sii = SI_INFO(sih); |
| 838 | ASSERT(GOODREGS(sii->curmap)); |
| 839 | sb = REGS2SB(sii->curmap); |
| 840 | |
| 841 | /* |
| 842 | * Must do the disable sequence first to work for arbitrary current core state. |
| 843 | */ |
| 844 | sb_core_disable(sih, (bits | resetbits)); |
| 845 | |
| 846 | /* |
| 847 | * Now do the initialization sequence. |
| 848 | */ |
| 849 | |
| 850 | /* set reset while enabling the clock and forcing them on throughout the core */ |
| 851 | W_SBREG(sii, &sb->sbtmstatelow, |
| 852 | (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | |
| 853 | SBTML_RESET)); |
| 854 | dummy = R_SBREG(sii, &sb->sbtmstatelow); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 855 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 856 | OSL_DELAY(1); |
| 857 | |
| 858 | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { |
| 859 | W_SBREG(sii, &sb->sbtmstatehigh, 0); |
| 860 | } |
| 861 | if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { |
| 862 | AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); |
| 863 | } |
| 864 | |
| 865 | /* clear reset and allow it to propagate throughout the core */ |
| 866 | W_SBREG(sii, &sb->sbtmstatelow, |
| 867 | ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); |
| 868 | dummy = R_SBREG(sii, &sb->sbtmstatelow); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 869 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 870 | OSL_DELAY(1); |
| 871 | |
| 872 | /* leave clock enabled */ |
| 873 | W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); |
| 874 | dummy = R_SBREG(sii, &sb->sbtmstatelow); |
Dmitry Shmidt | 8325232 | 2012-03-16 12:52:00 -0700 | [diff] [blame] | 875 | BCM_REFERENCE(dummy); |
Dmitry Shmidt | 8ce1727 | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 876 | OSL_DELAY(1); |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Set the initiator timeout for the "master core". |
| 881 | * The master core is defined to be the core in control |
| 882 | * of the chip and so it issues accesses to non-memory |
| 883 | * locations (Because of dma *any* core can access memeory). |
| 884 | * |
| 885 | * The routine uses the bus to decide who is the master: |
| 886 | * SI_BUS => mips |
| 887 | * JTAG_BUS => chipc |
| 888 | * PCI_BUS => pci or pcie |
| 889 | * PCMCIA_BUS => pcmcia |
| 890 | * SDIO_BUS => pcmcia |
| 891 | * |
| 892 | * This routine exists so callers can disable initiator |
| 893 | * timeouts so accesses to very slow devices like otp |
| 894 | * won't cause an abort. The routine allows arbitrary |
| 895 | * settings of the service and request timeouts, though. |
| 896 | * |
| 897 | * Returns the timeout state before changing it or -1 |
| 898 | * on error. |
| 899 | */ |
| 900 | |
| 901 | #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK) |
| 902 | |
| 903 | uint32 |
| 904 | sb_set_initiator_to(si_t *sih, uint32 to, uint idx) |
| 905 | { |
| 906 | si_info_t *sii; |
| 907 | uint origidx; |
| 908 | uint intr_val = 0; |
| 909 | uint32 tmp, ret = 0xffffffff; |
| 910 | sbconfig_t *sb; |
| 911 | |
| 912 | sii = SI_INFO(sih); |
| 913 | |
| 914 | if ((to & ~TO_MASK) != 0) |
| 915 | return ret; |
| 916 | |
| 917 | /* Figure out the master core */ |
| 918 | if (idx == BADIDX) { |
| 919 | switch (BUSTYPE(sii->pub.bustype)) { |
| 920 | case PCI_BUS: |
| 921 | idx = sii->pub.buscoreidx; |
| 922 | break; |
| 923 | case JTAG_BUS: |
| 924 | idx = SI_CC_IDX; |
| 925 | break; |
| 926 | case PCMCIA_BUS: |
| 927 | case SDIO_BUS: |
| 928 | idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); |
| 929 | break; |
| 930 | case SI_BUS: |
| 931 | idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); |
| 932 | break; |
| 933 | default: |
| 934 | ASSERT(0); |
| 935 | } |
| 936 | if (idx == BADIDX) |
| 937 | return ret; |
| 938 | } |
| 939 | |
| 940 | INTR_OFF(sii, intr_val); |
| 941 | origidx = si_coreidx(sih); |
| 942 | |
| 943 | sb = REGS2SB(sb_setcoreidx(sih, idx)); |
| 944 | |
| 945 | tmp = R_SBREG(sii, &sb->sbimconfiglow); |
| 946 | ret = tmp & TO_MASK; |
| 947 | W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); |
| 948 | |
| 949 | sb_commit(sih); |
| 950 | sb_setcoreidx(sih, origidx); |
| 951 | INTR_RESTORE(sii, intr_val); |
| 952 | return ret; |
| 953 | } |
| 954 | |
| 955 | uint32 |
| 956 | sb_base(uint32 admatch) |
| 957 | { |
| 958 | uint32 base; |
| 959 | uint type; |
| 960 | |
| 961 | type = admatch & SBAM_TYPE_MASK; |
| 962 | ASSERT(type < 3); |
| 963 | |
| 964 | base = 0; |
| 965 | |
| 966 | if (type == 0) { |
| 967 | base = admatch & SBAM_BASE0_MASK; |
| 968 | } else if (type == 1) { |
| 969 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 970 | base = admatch & SBAM_BASE1_MASK; |
| 971 | } else if (type == 2) { |
| 972 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 973 | base = admatch & SBAM_BASE2_MASK; |
| 974 | } |
| 975 | |
| 976 | return (base); |
| 977 | } |
| 978 | |
| 979 | uint32 |
| 980 | sb_size(uint32 admatch) |
| 981 | { |
| 982 | uint32 size; |
| 983 | uint type; |
| 984 | |
| 985 | type = admatch & SBAM_TYPE_MASK; |
| 986 | ASSERT(type < 3); |
| 987 | |
| 988 | size = 0; |
| 989 | |
| 990 | if (type == 0) { |
| 991 | size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); |
| 992 | } else if (type == 1) { |
| 993 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 994 | size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); |
| 995 | } else if (type == 2) { |
| 996 | ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| 997 | size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); |
| 998 | } |
| 999 | |
| 1000 | return (size); |
| 1001 | } |