blob: 1f9504370e426966f42c6bb55c1b951e80d3526b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Uwe Zeisbergerf30c2262006-10-03 23:01:26 +02002 * mm/page-writeback.c
Linus Torvalds1da177e2005-04-16 15:20:36 -07003 *
4 * Copyright (C) 2002, Linus Torvalds.
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07005 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
Francois Camie1f8e872008-10-15 22:01:59 -070010 * 10Apr2002 Andrew Morton
Linus Torvalds1da177e2005-04-16 15:20:36 -070011 * Initial version
12 */
13
14#include <linux/kernel.h>
Paul Gortmakerb95f1b312011-10-16 02:01:52 -040015#include <linux/export.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070016#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
Andrew Morton55e829a2006-12-10 02:19:27 -080025#include <linux/task_io_accounting_ops.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#include <linux/blkdev.h>
27#include <linux/mpage.h>
Peter Zijlstrad08b3852006-09-25 23:30:57 -070028#include <linux/rmap.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
Al Viroff01bb42011-09-16 02:31:11 -040035#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
David Howells811d7362006-08-29 19:06:09 +010036#include <linux/pagevec.h>
Lisa Du36abcfd2013-09-11 14:22:36 -070037#include <linux/mm_inline.h>
Dave Chinner028c2dd2010-07-07 13:24:07 +100038#include <trace/events/writeback.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039
Lisa Du36abcfd2013-09-11 14:22:36 -070040#include "internal.h"
41
Linus Torvalds1da177e2005-04-16 15:20:36 -070042/*
Wu Fengguangffd1f602011-06-19 22:18:42 -060043 * Sleep at most 200ms at a time in balance_dirty_pages().
44 */
45#define MAX_PAUSE max(HZ/5, 1)
46
47/*
Wu Fengguang5b9b3572011-12-06 13:17:17 -060048 * Try to keep balance_dirty_pages() call intervals higher than this many pages
49 * by raising pause time to max_pause when falls below it.
50 */
51#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
52
53/*
Wu Fengguange98be2d2010-08-29 11:22:30 -060054 * Estimate write bandwidth at 200ms intervals.
55 */
56#define BANDWIDTH_INTERVAL max(HZ/5, 1)
57
Wu Fengguang6c14ae12011-03-02 16:04:18 -060058#define RATELIMIT_CALC_SHIFT 10
59
Wu Fengguange98be2d2010-08-29 11:22:30 -060060/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070061 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
62 * will look to see if it needs to force writeback or throttling.
63 */
64static long ratelimit_pages = 32;
65
Linus Torvalds1da177e2005-04-16 15:20:36 -070066/* The following parameters are exported via /proc/sys/vm */
67
68/*
Jens Axboe5b0830c2009-09-23 19:37:09 +020069 * Start background writeback (via writeback threads) at this percentage
Linus Torvalds1da177e2005-04-16 15:20:36 -070070 */
Wu Fengguang1b5e62b2009-03-23 08:57:38 +080071int dirty_background_ratio = 10;
Linus Torvalds1da177e2005-04-16 15:20:36 -070072
73/*
David Rientjes2da02992009-01-06 14:39:31 -080074 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
75 * dirty_background_ratio * the amount of dirtyable memory
76 */
77unsigned long dirty_background_bytes;
78
79/*
Bron Gondwana195cf452008-02-04 22:29:20 -080080 * free highmem will not be subtracted from the total free memory
81 * for calculating free ratios if vm_highmem_is_dirtyable is true
82 */
83int vm_highmem_is_dirtyable;
84
85/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070086 * The generator of dirty data starts writeback at this percentage
87 */
Wu Fengguang1b5e62b2009-03-23 08:57:38 +080088int vm_dirty_ratio = 20;
Linus Torvalds1da177e2005-04-16 15:20:36 -070089
90/*
David Rientjes2da02992009-01-06 14:39:31 -080091 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
92 * vm_dirty_ratio * the amount of dirtyable memory
93 */
94unsigned long vm_dirty_bytes;
95
96/*
Alexey Dobriyan704503d2009-03-31 15:23:18 -070097 * The interval between `kupdate'-style writebacks
Linus Torvalds1da177e2005-04-16 15:20:36 -070098 */
Toshiyuki Okajima22ef37e2009-05-16 22:56:28 -070099unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100
Artem Bityutskiy91913a22012-03-21 22:33:00 -0400101EXPORT_SYMBOL_GPL(dirty_writeback_interval);
102
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103/*
Alexey Dobriyan704503d2009-03-31 15:23:18 -0700104 * The longest time for which data is allowed to remain dirty
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105 */
Toshiyuki Okajima22ef37e2009-05-16 22:56:28 -0700106unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700107
108/*
109 * Flag that makes the machine dump writes/reads and block dirtyings.
110 */
111int block_dump;
112
113/*
Bart Samweled5b43f2006-03-24 03:15:49 -0800114 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115 * a full sync is triggered after this time elapses without any disk activity.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700116 */
117int laptop_mode;
118
119EXPORT_SYMBOL(laptop_mode);
120
121/* End of sysctl-exported parameters */
122
Wu Fengguangc42843f2011-03-02 15:54:09 -0600123unsigned long global_dirty_limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125/*
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700126 * Scale the writeback cache size proportional to the relative writeout speeds.
127 *
128 * We do this by keeping a floating proportion between BDIs, based on page
129 * writeback completions [end_page_writeback()]. Those devices that write out
130 * pages fastest will get the larger share, while the slower will get a smaller
131 * share.
132 *
133 * We use page writeout completions because we are interested in getting rid of
134 * dirty pages. Having them written out is the primary goal.
135 *
136 * We introduce a concept of time, a period over which we measure these events,
137 * because demand can/will vary over time. The length of this period itself is
138 * measured in page writeback completions.
139 *
140 */
141static struct prop_descriptor vm_completions;
142
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700143/*
Johannes Weiner1edf2232012-01-10 15:06:57 -0800144 * Work out the current dirty-memory clamping and background writeout
145 * thresholds.
146 *
147 * The main aim here is to lower them aggressively if there is a lot of mapped
148 * memory around. To avoid stressing page reclaim with lots of unreclaimable
149 * pages. It is better to clamp down on writers than to start swapping, and
150 * performing lots of scanning.
151 *
152 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
153 *
154 * We don't permit the clamping level to fall below 5% - that is getting rather
155 * excessive.
156 *
157 * We make sure that the background writeout level is below the adjusted
158 * clamping level.
159 */
Johannes Weinerccafa282012-01-10 15:07:44 -0800160
Johannes Weinera756cf52012-01-10 15:07:49 -0800161/*
162 * In a memory zone, there is a certain amount of pages we consider
163 * available for the page cache, which is essentially the number of
164 * free and reclaimable pages, minus some zone reserves to protect
165 * lowmem and the ability to uphold the zone's watermarks without
166 * requiring writeback.
167 *
168 * This number of dirtyable pages is the base value of which the
169 * user-configurable dirty ratio is the effictive number of pages that
170 * are allowed to be actually dirtied. Per individual zone, or
171 * globally by using the sum of dirtyable pages over all zones.
172 *
173 * Because the user is allowed to specify the dirty limit globally as
174 * absolute number of bytes, calculating the per-zone dirty limit can
175 * require translating the configured limit into a percentage of
176 * global dirtyable memory first.
177 */
178
Johannes Weiner74febf02014-01-29 14:05:39 -0800179/**
180 * zone_dirtyable_memory - number of dirtyable pages in a zone
181 * @zone: the zone
182 *
183 * Returns the zone's number of pages potentially available for dirty
184 * page cache. This is the base value for the per-zone dirty limits.
185 */
186static unsigned long zone_dirtyable_memory(struct zone *zone)
187{
188 unsigned long nr_pages;
189
190 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
191 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
192
Johannes Weiner58aa30e2014-01-29 14:05:41 -0800193 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
194 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
Johannes Weiner74febf02014-01-29 14:05:39 -0800195
196 return nr_pages;
197}
198
Johannes Weiner1edf2232012-01-10 15:06:57 -0800199static unsigned long highmem_dirtyable_memory(unsigned long total)
200{
201#ifdef CONFIG_HIGHMEM
202 int node;
203 unsigned long x = 0;
204
205 for_each_node_state(node, N_HIGH_MEMORY) {
Johannes Weiner74febf02014-01-29 14:05:39 -0800206 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
Johannes Weiner1edf2232012-01-10 15:06:57 -0800207
Johannes Weiner74febf02014-01-29 14:05:39 -0800208 x += zone_dirtyable_memory(z);
Johannes Weiner1edf2232012-01-10 15:06:57 -0800209 }
210 /*
Sonny Rao711cf002012-12-20 15:05:07 -0800211 * Unreclaimable memory (kernel memory or anonymous memory
212 * without swap) can bring down the dirtyable pages below
213 * the zone's dirty balance reserve and the above calculation
214 * will underflow. However we still want to add in nodes
215 * which are below threshold (negative values) to get a more
216 * accurate calculation but make sure that the total never
217 * underflows.
218 */
219 if ((long)x < 0)
220 x = 0;
221
222 /*
Johannes Weiner1edf2232012-01-10 15:06:57 -0800223 * Make sure that the number of highmem pages is never larger
224 * than the number of the total dirtyable memory. This can only
225 * occur in very strange VM situations but we want to make sure
226 * that this does not occur.
227 */
228 return min(x, total);
229#else
230 return 0;
231#endif
232}
233
234/**
Johannes Weinerccafa282012-01-10 15:07:44 -0800235 * global_dirtyable_memory - number of globally dirtyable pages
Johannes Weiner1edf2232012-01-10 15:06:57 -0800236 *
Johannes Weinerccafa282012-01-10 15:07:44 -0800237 * Returns the global number of pages potentially available for dirty
238 * page cache. This is the base value for the global dirty limits.
Johannes Weiner1edf2232012-01-10 15:06:57 -0800239 */
Johannes Weinerccafa282012-01-10 15:07:44 -0800240unsigned long global_dirtyable_memory(void)
Johannes Weiner1edf2232012-01-10 15:06:57 -0800241{
242 unsigned long x;
243
Johannes Weiner74febf02014-01-29 14:05:39 -0800244 x = global_page_state(NR_FREE_PAGES);
Sonny Rao711cf002012-12-20 15:05:07 -0800245 x -= min(x, dirty_balance_reserve);
Johannes Weiner1edf2232012-01-10 15:06:57 -0800246
Johannes Weiner58aa30e2014-01-29 14:05:41 -0800247 x += global_page_state(NR_INACTIVE_FILE);
248 x += global_page_state(NR_ACTIVE_FILE);
Johannes Weiner74febf02014-01-29 14:05:39 -0800249
Johannes Weiner1edf2232012-01-10 15:06:57 -0800250 if (!vm_highmem_is_dirtyable)
251 x -= highmem_dirtyable_memory(x);
252
253 return x + 1; /* Ensure that we never return 0 */
254}
255
256/*
Johannes Weinerccafa282012-01-10 15:07:44 -0800257 * global_dirty_limits - background-writeback and dirty-throttling thresholds
258 *
259 * Calculate the dirty thresholds based on sysctl parameters
260 * - vm.dirty_background_ratio or vm.dirty_background_bytes
261 * - vm.dirty_ratio or vm.dirty_bytes
262 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
263 * real-time tasks.
264 */
265void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
266{
267 unsigned long background;
268 unsigned long dirty;
269 unsigned long uninitialized_var(available_memory);
270 struct task_struct *tsk;
271
272 if (!vm_dirty_bytes || !dirty_background_bytes)
273 available_memory = global_dirtyable_memory();
274
275 if (vm_dirty_bytes)
276 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
277 else
278 dirty = (vm_dirty_ratio * available_memory) / 100;
279
280 if (dirty_background_bytes)
281 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
282 else
283 background = (dirty_background_ratio * available_memory) / 100;
284
285 if (background >= dirty)
286 background = dirty / 2;
287 tsk = current;
288 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
289 background += background / 4;
290 dirty += dirty / 4;
291 }
292 *pbackground = background;
293 *pdirty = dirty;
294 trace_global_dirty_state(background, dirty);
295}
296
Johannes Weinera756cf52012-01-10 15:07:49 -0800297/**
Johannes Weinera756cf52012-01-10 15:07:49 -0800298 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
299 * @zone: the zone
300 *
301 * Returns the maximum number of dirty pages allowed in a zone, based
302 * on the zone's dirtyable memory.
303 */
304static unsigned long zone_dirty_limit(struct zone *zone)
305{
306 unsigned long zone_memory = zone_dirtyable_memory(zone);
307 struct task_struct *tsk = current;
308 unsigned long dirty;
309
310 if (vm_dirty_bytes)
311 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
312 zone_memory / global_dirtyable_memory();
313 else
314 dirty = vm_dirty_ratio * zone_memory / 100;
315
316 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
317 dirty += dirty / 4;
318
319 return dirty;
320}
321
322/**
323 * zone_dirty_ok - tells whether a zone is within its dirty limits
324 * @zone: the zone to check
325 *
326 * Returns %true when the dirty pages in @zone are within the zone's
327 * dirty limit, %false if the limit is exceeded.
328 */
329bool zone_dirty_ok(struct zone *zone)
330{
331 unsigned long limit = zone_dirty_limit(zone);
332
333 return zone_page_state(zone, NR_FILE_DIRTY) +
334 zone_page_state(zone, NR_UNSTABLE_NFS) +
335 zone_page_state(zone, NR_WRITEBACK) <= limit;
336}
337
Johannes Weinerccafa282012-01-10 15:07:44 -0800338/*
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700339 * couple the period to the dirty_ratio:
340 *
341 * period/2 ~ roundup_pow_of_two(dirty limit)
342 */
343static int calc_period_shift(void)
344{
345 unsigned long dirty_total;
346
David Rientjes2da02992009-01-06 14:39:31 -0800347 if (vm_dirty_bytes)
348 dirty_total = vm_dirty_bytes / PAGE_SIZE;
349 else
Johannes Weinerccafa282012-01-10 15:07:44 -0800350 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
David Rientjes2da02992009-01-06 14:39:31 -0800351 100;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700352 return 2 + ilog2(dirty_total - 1);
353}
354
355/*
David Rientjes2da02992009-01-06 14:39:31 -0800356 * update the period when the dirty threshold changes.
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700357 */
David Rientjes2da02992009-01-06 14:39:31 -0800358static void update_completion_period(void)
359{
360 int shift = calc_period_shift();
361 prop_change_shift(&vm_completions, shift);
Wu Fengguang9d823e82011-06-11 18:10:12 -0600362
363 writeback_set_ratelimit();
David Rientjes2da02992009-01-06 14:39:31 -0800364}
365
366int dirty_background_ratio_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700367 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800368 loff_t *ppos)
369{
370 int ret;
371
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700372 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800373 if (ret == 0 && write)
374 dirty_background_bytes = 0;
375 return ret;
376}
377
378int dirty_background_bytes_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700379 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800380 loff_t *ppos)
381{
382 int ret;
383
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700384 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800385 if (ret == 0 && write)
386 dirty_background_ratio = 0;
387 return ret;
388}
389
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700390int dirty_ratio_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700391 void __user *buffer, size_t *lenp,
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700392 loff_t *ppos)
393{
394 int old_ratio = vm_dirty_ratio;
David Rientjes2da02992009-01-06 14:39:31 -0800395 int ret;
396
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700397 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700398 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
David Rientjes2da02992009-01-06 14:39:31 -0800399 update_completion_period();
400 vm_dirty_bytes = 0;
401 }
402 return ret;
403}
404
David Rientjes2da02992009-01-06 14:39:31 -0800405int dirty_bytes_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700406 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800407 loff_t *ppos)
408{
Sven Wegenerfc3501d2009-02-11 13:04:23 -0800409 unsigned long old_bytes = vm_dirty_bytes;
David Rientjes2da02992009-01-06 14:39:31 -0800410 int ret;
411
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700412 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800413 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
414 update_completion_period();
415 vm_dirty_ratio = 0;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700416 }
417 return ret;
418}
419
420/*
421 * Increment the BDI's writeout completion count and the global writeout
422 * completion count. Called from test_clear_page_writeback().
423 */
424static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
425{
Jan Karaf7d2b1e2010-12-08 22:44:24 -0600426 __inc_bdi_stat(bdi, BDI_WRITTEN);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700427 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
428 bdi->max_prop_frac);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700429}
430
Miklos Szeredidd5656e2008-04-30 00:54:37 -0700431void bdi_writeout_inc(struct backing_dev_info *bdi)
432{
433 unsigned long flags;
434
435 local_irq_save(flags);
436 __bdi_writeout_inc(bdi);
437 local_irq_restore(flags);
438}
439EXPORT_SYMBOL_GPL(bdi_writeout_inc);
440
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700441/*
442 * Obtain an accurate fraction of the BDI's portion.
443 */
444static void bdi_writeout_fraction(struct backing_dev_info *bdi,
445 long *numerator, long *denominator)
446{
Wu Fengguang3efaf0f2010-12-16 22:22:00 -0600447 prop_fraction_percpu(&vm_completions, &bdi->completions,
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700448 numerator, denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700449}
450
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700451/*
Johannes Weinerd08c4292011-10-31 17:07:05 -0700452 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
453 * registered backing devices, which, for obvious reasons, can not
454 * exceed 100%.
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700455 */
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700456static unsigned int bdi_min_ratio;
457
458int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
459{
460 int ret = 0;
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700461
Jens Axboecfc4ba52009-09-14 13:12:40 +0200462 spin_lock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700463 if (min_ratio > bdi->max_ratio) {
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700464 ret = -EINVAL;
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700465 } else {
466 min_ratio -= bdi->min_ratio;
467 if (bdi_min_ratio + min_ratio < 100) {
468 bdi_min_ratio += min_ratio;
469 bdi->min_ratio += min_ratio;
470 } else {
471 ret = -EINVAL;
472 }
473 }
Jens Axboecfc4ba52009-09-14 13:12:40 +0200474 spin_unlock_bh(&bdi_lock);
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700475
476 return ret;
477}
478
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700479int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
480{
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700481 int ret = 0;
482
483 if (max_ratio > 100)
484 return -EINVAL;
485
Jens Axboecfc4ba52009-09-14 13:12:40 +0200486 spin_lock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700487 if (bdi->min_ratio > max_ratio) {
488 ret = -EINVAL;
489 } else {
490 bdi->max_ratio = max_ratio;
491 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
492 }
Jens Axboecfc4ba52009-09-14 13:12:40 +0200493 spin_unlock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700494
495 return ret;
496}
497EXPORT_SYMBOL(bdi_set_max_ratio);
498
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600499static unsigned long dirty_freerun_ceiling(unsigned long thresh,
500 unsigned long bg_thresh)
501{
502 return (thresh + bg_thresh) / 2;
503}
504
Wu Fengguangffd1f602011-06-19 22:18:42 -0600505static unsigned long hard_dirty_limit(unsigned long thresh)
506{
507 return max(thresh, global_dirty_limit);
508}
509
Wu Fengguang6f718652011-03-02 17:14:34 -0600510/**
Wu Fengguang1babe182010-08-11 14:17:40 -0700511 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
Wu Fengguang6f718652011-03-02 17:14:34 -0600512 * @bdi: the backing_dev_info to query
513 * @dirty: global dirty limit in pages
Wu Fengguang1babe182010-08-11 14:17:40 -0700514 *
Wu Fengguang6f718652011-03-02 17:14:34 -0600515 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
516 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
Wu Fengguangaed21ad2011-11-23 11:44:41 -0600517 *
518 * Note that balance_dirty_pages() will only seriously take it as a hard limit
519 * when sleeping max_pause per page is not enough to keep the dirty pages under
520 * control. For example, when the device is completely stalled due to some error
521 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
522 * In the other normal situations, it acts more gently by throttling the tasks
523 * more (rather than completely block them) when the bdi dirty pages go high.
Wu Fengguang6f718652011-03-02 17:14:34 -0600524 *
525 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
Wu Fengguang1babe182010-08-11 14:17:40 -0700526 * - starving fast devices
527 * - piling up dirty pages (that will take long time to sync) on slow devices
528 *
529 * The bdi's share of dirty limit will be adapting to its throughput and
530 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
531 */
532unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
Wu Fengguang16c40422010-08-11 14:17:39 -0700533{
534 u64 bdi_dirty;
535 long numerator, denominator;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700536
Wu Fengguang16c40422010-08-11 14:17:39 -0700537 /*
538 * Calculate this BDI's share of the dirty ratio.
539 */
540 bdi_writeout_fraction(bdi, &numerator, &denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700541
Wu Fengguang16c40422010-08-11 14:17:39 -0700542 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
543 bdi_dirty *= numerator;
544 do_div(bdi_dirty, denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700545
Wu Fengguang16c40422010-08-11 14:17:39 -0700546 bdi_dirty += (dirty * bdi->min_ratio) / 100;
547 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
548 bdi_dirty = dirty * bdi->max_ratio / 100;
549
550 return bdi_dirty;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551}
552
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600553/*
554 * Dirty position control.
555 *
556 * (o) global/bdi setpoints
557 *
558 * We want the dirty pages be balanced around the global/bdi setpoints.
559 * When the number of dirty pages is higher/lower than the setpoint, the
560 * dirty position control ratio (and hence task dirty ratelimit) will be
561 * decreased/increased to bring the dirty pages back to the setpoint.
562 *
563 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
564 *
565 * if (dirty < setpoint) scale up pos_ratio
566 * if (dirty > setpoint) scale down pos_ratio
567 *
568 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
569 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
570 *
571 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
572 *
573 * (o) global control line
574 *
575 * ^ pos_ratio
576 * |
577 * | |<===== global dirty control scope ======>|
578 * 2.0 .............*
579 * | .*
580 * | . *
581 * | . *
582 * | . *
583 * | . *
584 * | . *
585 * 1.0 ................................*
586 * | . . *
587 * | . . *
588 * | . . *
589 * | . . *
590 * | . . *
591 * 0 +------------.------------------.----------------------*------------->
592 * freerun^ setpoint^ limit^ dirty pages
593 *
594 * (o) bdi control line
595 *
596 * ^ pos_ratio
597 * |
598 * | *
599 * | *
600 * | *
601 * | *
602 * | * |<=========== span ============>|
603 * 1.0 .......................*
604 * | . *
605 * | . *
606 * | . *
607 * | . *
608 * | . *
609 * | . *
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * | . *
615 * 1/4 ...............................................* * * * * * * * * * * *
616 * | . .
617 * | . .
618 * | . .
619 * 0 +----------------------.-------------------------------.------------->
620 * bdi_setpoint^ x_intercept^
621 *
622 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
623 * be smoothly throttled down to normal if it starts high in situations like
624 * - start writing to a slow SD card and a fast disk at the same time. The SD
625 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
626 * - the bdi dirty thresh drops quickly due to change of JBOD workload
627 */
628static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
629 unsigned long thresh,
630 unsigned long bg_thresh,
631 unsigned long dirty,
632 unsigned long bdi_thresh,
633 unsigned long bdi_dirty)
634{
635 unsigned long write_bw = bdi->avg_write_bandwidth;
636 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
637 unsigned long limit = hard_dirty_limit(thresh);
638 unsigned long x_intercept;
639 unsigned long setpoint; /* dirty pages' target balance point */
640 unsigned long bdi_setpoint;
641 unsigned long span;
642 long long pos_ratio; /* for scaling up/down the rate limit */
643 long x;
644
645 if (unlikely(dirty >= limit))
646 return 0;
647
648 /*
649 * global setpoint
650 *
651 * setpoint - dirty 3
652 * f(dirty) := 1.0 + (----------------)
653 * limit - setpoint
654 *
655 * it's a 3rd order polynomial that subjects to
656 *
657 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
658 * (2) f(setpoint) = 1.0 => the balance point
659 * (3) f(limit) = 0 => the hard limit
660 * (4) df/dx <= 0 => negative feedback control
661 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
662 * => fast response on large errors; small oscillation near setpoint
663 */
664 setpoint = (freerun + limit) / 2;
665 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
666 limit - setpoint + 1);
667 pos_ratio = x;
668 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
669 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
670 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
671
672 /*
673 * We have computed basic pos_ratio above based on global situation. If
674 * the bdi is over/under its share of dirty pages, we want to scale
675 * pos_ratio further down/up. That is done by the following mechanism.
676 */
677
678 /*
679 * bdi setpoint
680 *
681 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
682 *
683 * x_intercept - bdi_dirty
684 * := --------------------------
685 * x_intercept - bdi_setpoint
686 *
687 * The main bdi control line is a linear function that subjects to
688 *
689 * (1) f(bdi_setpoint) = 1.0
690 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
691 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
692 *
693 * For single bdi case, the dirty pages are observed to fluctuate
694 * regularly within range
695 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
696 * for various filesystems, where (2) can yield in a reasonable 12.5%
697 * fluctuation range for pos_ratio.
698 *
699 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
700 * own size, so move the slope over accordingly and choose a slope that
701 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
702 */
703 if (unlikely(bdi_thresh > thresh))
704 bdi_thresh = thresh;
Wu Fengguangaed21ad2011-11-23 11:44:41 -0600705 /*
706 * It's very possible that bdi_thresh is close to 0 not because the
707 * device is slow, but that it has remained inactive for long time.
708 * Honour such devices a reasonable good (hopefully IO efficient)
709 * threshold, so that the occasional writes won't be blocked and active
710 * writes can rampup the threshold quickly.
711 */
Wu Fengguang8927f662011-08-04 22:16:46 -0600712 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600713 /*
714 * scale global setpoint to bdi's:
715 * bdi_setpoint = setpoint * bdi_thresh / thresh
716 */
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600717 x = div_u64((u64)bdi_thresh << 16, thresh | 1);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600718 bdi_setpoint = setpoint * (u64)x >> 16;
719 /*
720 * Use span=(8*write_bw) in single bdi case as indicated by
721 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
722 *
723 * bdi_thresh thresh - bdi_thresh
724 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
725 * thresh thresh
726 */
727 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
728 x_intercept = bdi_setpoint + span;
729
730 if (bdi_dirty < x_intercept - span / 4) {
Wu Fengguang50657fc2011-10-11 17:06:33 -0600731 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
732 x_intercept - bdi_setpoint + 1);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600733 } else
734 pos_ratio /= 4;
735
Wu Fengguang8927f662011-08-04 22:16:46 -0600736 /*
737 * bdi reserve area, safeguard against dirty pool underrun and disk idle
738 * It may push the desired control point of global dirty pages higher
739 * than setpoint.
740 */
741 x_intercept = bdi_thresh / 2;
742 if (bdi_dirty < x_intercept) {
Wu Fengguang50657fc2011-10-11 17:06:33 -0600743 if (bdi_dirty > x_intercept / 8)
744 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
745 else
Wu Fengguang8927f662011-08-04 22:16:46 -0600746 pos_ratio *= 8;
747 }
748
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600749 return pos_ratio;
750}
751
Wu Fengguange98be2d2010-08-29 11:22:30 -0600752static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
753 unsigned long elapsed,
754 unsigned long written)
755{
756 const unsigned long period = roundup_pow_of_two(3 * HZ);
757 unsigned long avg = bdi->avg_write_bandwidth;
758 unsigned long old = bdi->write_bandwidth;
759 u64 bw;
760
761 /*
762 * bw = written * HZ / elapsed
763 *
764 * bw * elapsed + write_bandwidth * (period - elapsed)
765 * write_bandwidth = ---------------------------------------------------
766 * period
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600767 *
768 * @written may have decreased due to account_page_redirty().
769 * Avoid underflowing @bw calculation.
Wu Fengguange98be2d2010-08-29 11:22:30 -0600770 */
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600771 bw = written - min(written, bdi->written_stamp);
Wu Fengguange98be2d2010-08-29 11:22:30 -0600772 bw *= HZ;
773 if (unlikely(elapsed > period)) {
774 do_div(bw, elapsed);
775 avg = bw;
776 goto out;
777 }
778 bw += (u64)bdi->write_bandwidth * (period - elapsed);
779 bw >>= ilog2(period);
780
781 /*
782 * one more level of smoothing, for filtering out sudden spikes
783 */
784 if (avg > old && old >= (unsigned long)bw)
785 avg -= (avg - old) >> 3;
786
787 if (avg < old && old <= (unsigned long)bw)
788 avg += (old - avg) >> 3;
789
790out:
791 bdi->write_bandwidth = bw;
792 bdi->avg_write_bandwidth = avg;
793}
794
Wu Fengguangc42843f2011-03-02 15:54:09 -0600795/*
796 * The global dirtyable memory and dirty threshold could be suddenly knocked
797 * down by a large amount (eg. on the startup of KVM in a swapless system).
798 * This may throw the system into deep dirty exceeded state and throttle
799 * heavy/light dirtiers alike. To retain good responsiveness, maintain
800 * global_dirty_limit for tracking slowly down to the knocked down dirty
801 * threshold.
802 */
803static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
804{
805 unsigned long limit = global_dirty_limit;
806
807 /*
808 * Follow up in one step.
809 */
810 if (limit < thresh) {
811 limit = thresh;
812 goto update;
813 }
814
815 /*
816 * Follow down slowly. Use the higher one as the target, because thresh
817 * may drop below dirty. This is exactly the reason to introduce
818 * global_dirty_limit which is guaranteed to lie above the dirty pages.
819 */
820 thresh = max(thresh, dirty);
821 if (limit > thresh) {
822 limit -= (limit - thresh) >> 5;
823 goto update;
824 }
825 return;
826update:
827 global_dirty_limit = limit;
828}
829
830static void global_update_bandwidth(unsigned long thresh,
831 unsigned long dirty,
832 unsigned long now)
833{
834 static DEFINE_SPINLOCK(dirty_lock);
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600835 static unsigned long update_time = INITIAL_JIFFIES;
Wu Fengguangc42843f2011-03-02 15:54:09 -0600836
837 /*
838 * check locklessly first to optimize away locking for the most time
839 */
840 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
841 return;
842
843 spin_lock(&dirty_lock);
844 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
845 update_dirty_limit(thresh, dirty);
846 update_time = now;
847 }
848 spin_unlock(&dirty_lock);
849}
850
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600851/*
852 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
853 *
854 * Normal bdi tasks will be curbed at or below it in long term.
855 * Obviously it should be around (write_bw / N) when there are N dd tasks.
856 */
857static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
858 unsigned long thresh,
859 unsigned long bg_thresh,
860 unsigned long dirty,
861 unsigned long bdi_thresh,
862 unsigned long bdi_dirty,
863 unsigned long dirtied,
864 unsigned long elapsed)
865{
Wu Fengguang73811312011-08-26 15:53:24 -0600866 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
867 unsigned long limit = hard_dirty_limit(thresh);
868 unsigned long setpoint = (freerun + limit) / 2;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600869 unsigned long write_bw = bdi->avg_write_bandwidth;
870 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
871 unsigned long dirty_rate;
872 unsigned long task_ratelimit;
873 unsigned long balanced_dirty_ratelimit;
874 unsigned long pos_ratio;
Wu Fengguang73811312011-08-26 15:53:24 -0600875 unsigned long step;
876 unsigned long x;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600877
878 /*
879 * The dirty rate will match the writeout rate in long term, except
880 * when dirty pages are truncated by userspace or re-dirtied by FS.
881 */
882 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
883
884 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
885 bdi_thresh, bdi_dirty);
886 /*
887 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
888 */
889 task_ratelimit = (u64)dirty_ratelimit *
890 pos_ratio >> RATELIMIT_CALC_SHIFT;
891 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
892
893 /*
894 * A linear estimation of the "balanced" throttle rate. The theory is,
895 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
896 * dirty_rate will be measured to be (N * task_ratelimit). So the below
897 * formula will yield the balanced rate limit (write_bw / N).
898 *
899 * Note that the expanded form is not a pure rate feedback:
900 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
901 * but also takes pos_ratio into account:
902 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
903 *
904 * (1) is not realistic because pos_ratio also takes part in balancing
905 * the dirty rate. Consider the state
906 * pos_ratio = 0.5 (3)
907 * rate = 2 * (write_bw / N) (4)
908 * If (1) is used, it will stuck in that state! Because each dd will
909 * be throttled at
910 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
911 * yielding
912 * dirty_rate = N * task_ratelimit = write_bw (6)
913 * put (6) into (1) we get
914 * rate_(i+1) = rate_(i) (7)
915 *
916 * So we end up using (2) to always keep
917 * rate_(i+1) ~= (write_bw / N) (8)
918 * regardless of the value of pos_ratio. As long as (8) is satisfied,
919 * pos_ratio is able to drive itself to 1.0, which is not only where
920 * the dirty count meet the setpoint, but also where the slope of
921 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
922 */
923 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
924 dirty_rate | 1);
Wu Fengguangbdaac492011-08-03 14:30:36 -0600925 /*
926 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
927 */
928 if (unlikely(balanced_dirty_ratelimit > write_bw))
929 balanced_dirty_ratelimit = write_bw;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600930
Wu Fengguang73811312011-08-26 15:53:24 -0600931 /*
932 * We could safely do this and return immediately:
933 *
934 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
935 *
936 * However to get a more stable dirty_ratelimit, the below elaborated
Wanpeng Lia012a972012-06-09 11:10:55 +0800937 * code makes use of task_ratelimit to filter out singular points and
Wu Fengguang73811312011-08-26 15:53:24 -0600938 * limit the step size.
939 *
940 * The below code essentially only uses the relative value of
941 *
942 * task_ratelimit - dirty_ratelimit
943 * = (pos_ratio - 1) * dirty_ratelimit
944 *
945 * which reflects the direction and size of dirty position error.
946 */
947
948 /*
949 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
950 * task_ratelimit is on the same side of dirty_ratelimit, too.
951 * For example, when
952 * - dirty_ratelimit > balanced_dirty_ratelimit
953 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
954 * lowering dirty_ratelimit will help meet both the position and rate
955 * control targets. Otherwise, don't update dirty_ratelimit if it will
956 * only help meet the rate target. After all, what the users ultimately
957 * feel and care are stable dirty rate and small position error.
958 *
959 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
Wanpeng Lia012a972012-06-09 11:10:55 +0800960 * and filter out the singular points of balanced_dirty_ratelimit. Which
Wu Fengguang73811312011-08-26 15:53:24 -0600961 * keeps jumping around randomly and can even leap far away at times
962 * due to the small 200ms estimation period of dirty_rate (we want to
963 * keep that period small to reduce time lags).
964 */
965 step = 0;
966 if (dirty < setpoint) {
967 x = min(bdi->balanced_dirty_ratelimit,
968 min(balanced_dirty_ratelimit, task_ratelimit));
969 if (dirty_ratelimit < x)
970 step = x - dirty_ratelimit;
971 } else {
972 x = max(bdi->balanced_dirty_ratelimit,
973 max(balanced_dirty_ratelimit, task_ratelimit));
974 if (dirty_ratelimit > x)
975 step = dirty_ratelimit - x;
976 }
977
978 /*
979 * Don't pursue 100% rate matching. It's impossible since the balanced
980 * rate itself is constantly fluctuating. So decrease the track speed
981 * when it gets close to the target. Helps eliminate pointless tremors.
982 */
983 step >>= dirty_ratelimit / (2 * step + 1);
984 /*
985 * Limit the tracking speed to avoid overshooting.
986 */
987 step = (step + 7) / 8;
988
989 if (dirty_ratelimit < balanced_dirty_ratelimit)
990 dirty_ratelimit += step;
991 else
992 dirty_ratelimit -= step;
993
994 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
995 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
Wu Fengguangb48c1042011-03-02 17:22:49 -0600996
997 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600998}
999
Wu Fengguange98be2d2010-08-29 11:22:30 -06001000void __bdi_update_bandwidth(struct backing_dev_info *bdi,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001001 unsigned long thresh,
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001002 unsigned long bg_thresh,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001003 unsigned long dirty,
1004 unsigned long bdi_thresh,
1005 unsigned long bdi_dirty,
Wu Fengguange98be2d2010-08-29 11:22:30 -06001006 unsigned long start_time)
1007{
1008 unsigned long now = jiffies;
1009 unsigned long elapsed = now - bdi->bw_time_stamp;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001010 unsigned long dirtied;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001011 unsigned long written;
1012
1013 /*
1014 * rate-limit, only update once every 200ms.
1015 */
1016 if (elapsed < BANDWIDTH_INTERVAL)
1017 return;
1018
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001019 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001020 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1021
1022 /*
1023 * Skip quiet periods when disk bandwidth is under-utilized.
1024 * (at least 1s idle time between two flusher runs)
1025 */
1026 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1027 goto snapshot;
1028
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001029 if (thresh) {
Wu Fengguangc42843f2011-03-02 15:54:09 -06001030 global_update_bandwidth(thresh, dirty, now);
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001031 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1032 bdi_thresh, bdi_dirty,
1033 dirtied, elapsed);
1034 }
Wu Fengguange98be2d2010-08-29 11:22:30 -06001035 bdi_update_write_bandwidth(bdi, elapsed, written);
1036
1037snapshot:
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001038 bdi->dirtied_stamp = dirtied;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001039 bdi->written_stamp = written;
1040 bdi->bw_time_stamp = now;
1041}
1042
1043static void bdi_update_bandwidth(struct backing_dev_info *bdi,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001044 unsigned long thresh,
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001045 unsigned long bg_thresh,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001046 unsigned long dirty,
1047 unsigned long bdi_thresh,
1048 unsigned long bdi_dirty,
Wu Fengguange98be2d2010-08-29 11:22:30 -06001049 unsigned long start_time)
1050{
1051 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1052 return;
1053 spin_lock(&bdi->wb.list_lock);
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001054 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1055 bdi_thresh, bdi_dirty, start_time);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001056 spin_unlock(&bdi->wb.list_lock);
1057}
1058
Linus Torvalds1da177e2005-04-16 15:20:36 -07001059/*
Wu Fengguang9d823e82011-06-11 18:10:12 -06001060 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1061 * will look to see if it needs to start dirty throttling.
1062 *
1063 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1064 * global_page_state() too often. So scale it near-sqrt to the safety margin
1065 * (the number of pages we may dirty without exceeding the dirty limits).
1066 */
1067static unsigned long dirty_poll_interval(unsigned long dirty,
1068 unsigned long thresh)
1069{
1070 if (thresh > dirty)
1071 return 1UL << (ilog2(thresh - dirty) >> 1);
1072
1073 return 1;
1074}
1075
Fengguang Wu60c6aa32013-10-16 13:47:03 -07001076static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1077 unsigned long bdi_dirty)
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001078{
Fengguang Wu60c6aa32013-10-16 13:47:03 -07001079 unsigned long bw = bdi->avg_write_bandwidth;
1080 unsigned long t;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001081
1082 /*
1083 * Limit pause time for small memory systems. If sleeping for too long
1084 * time, a small pool of dirty/writeback pages may go empty and disk go
1085 * idle.
1086 *
1087 * 8 serves as the safety ratio.
1088 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001089 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1090 t++;
1091
Fengguang Wu60c6aa32013-10-16 13:47:03 -07001092 return min_t(unsigned long, t, MAX_PAUSE);
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001093}
1094
1095static long bdi_min_pause(struct backing_dev_info *bdi,
1096 long max_pause,
1097 unsigned long task_ratelimit,
1098 unsigned long dirty_ratelimit,
1099 int *nr_dirtied_pause)
1100{
1101 long hi = ilog2(bdi->avg_write_bandwidth);
1102 long lo = ilog2(bdi->dirty_ratelimit);
1103 long t; /* target pause */
1104 long pause; /* estimated next pause */
1105 int pages; /* target nr_dirtied_pause */
1106
1107 /* target for 10ms pause on 1-dd case */
1108 t = max(1, HZ / 100);
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001109
1110 /*
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001111 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1112 * overheads.
1113 *
1114 * (N * 10ms) on 2^N concurrent tasks.
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001115 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001116 if (hi > lo)
1117 t += (hi - lo) * (10 * HZ) / 1024;
1118
1119 /*
1120 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1121 * on the much more stable dirty_ratelimit. However the next pause time
1122 * will be computed based on task_ratelimit and the two rate limits may
1123 * depart considerably at some time. Especially if task_ratelimit goes
1124 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1125 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1126 * result task_ratelimit won't be executed faithfully, which could
1127 * eventually bring down dirty_ratelimit.
1128 *
1129 * We apply two rules to fix it up:
1130 * 1) try to estimate the next pause time and if necessary, use a lower
1131 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1132 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1133 * 2) limit the target pause time to max_pause/2, so that the normal
1134 * small fluctuations of task_ratelimit won't trigger rule (1) and
1135 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1136 */
1137 t = min(t, 1 + max_pause / 2);
1138 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1139
Wu Fengguang5b9b3572011-12-06 13:17:17 -06001140 /*
1141 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1142 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1143 * When the 16 consecutive reads are often interrupted by some dirty
1144 * throttling pause during the async writes, cfq will go into idles
1145 * (deadline is fine). So push nr_dirtied_pause as high as possible
1146 * until reaches DIRTY_POLL_THRESH=32 pages.
1147 */
1148 if (pages < DIRTY_POLL_THRESH) {
1149 t = max_pause;
1150 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1151 if (pages > DIRTY_POLL_THRESH) {
1152 pages = DIRTY_POLL_THRESH;
1153 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1154 }
1155 }
1156
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001157 pause = HZ * pages / (task_ratelimit + 1);
1158 if (pause > max_pause) {
1159 t = max_pause;
1160 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1161 }
1162
1163 *nr_dirtied_pause = pages;
1164 /*
1165 * The minimal pause time will normally be half the target pause time.
1166 */
Wu Fengguang5b9b3572011-12-06 13:17:17 -06001167 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001168}
1169
Wu Fengguang9d823e82011-06-11 18:10:12 -06001170/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171 * balance_dirty_pages() must be called by processes which are generating dirty
1172 * data. It looks at the number of dirty pages in the machine and will force
Wu Fengguang143dfe82010-08-27 18:45:12 -06001173 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
Jens Axboe5b0830c2009-09-23 19:37:09 +02001174 * If we're over `background_thresh' then the writeback threads are woken to
1175 * perform some writeout.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 */
Wu Fengguang3a2e9a52009-09-23 21:56:00 +08001177static void balance_dirty_pages(struct address_space *mapping,
Wu Fengguang143dfe82010-08-27 18:45:12 -06001178 unsigned long pages_dirtied)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179{
Wu Fengguang143dfe82010-08-27 18:45:12 -06001180 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1181 unsigned long bdi_reclaimable;
Wu Fengguang77627412010-09-12 13:34:05 -06001182 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1183 unsigned long bdi_dirty;
Wu Fengguang6c14ae12011-03-02 16:04:18 -06001184 unsigned long freerun;
David Rientjes364aeb22009-01-06 14:39:29 -08001185 unsigned long background_thresh;
1186 unsigned long dirty_thresh;
1187 unsigned long bdi_thresh;
Wu Fengguang83712352011-06-11 19:25:42 -06001188 long period;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001189 long pause;
1190 long max_pause;
1191 long min_pause;
1192 int nr_dirtied_pause;
Wu Fengguange50e3722010-08-11 14:17:37 -07001193 bool dirty_exceeded = false;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001194 unsigned long task_ratelimit;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001195 unsigned long dirty_ratelimit;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001196 unsigned long pos_ratio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197 struct backing_dev_info *bdi = mapping->backing_dev_info;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001198 unsigned long start_time = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001199
1200 for (;;) {
Wu Fengguang83712352011-06-11 19:25:42 -06001201 unsigned long now = jiffies;
1202
Wu Fengguang143dfe82010-08-27 18:45:12 -06001203 /*
1204 * Unstable writes are a feature of certain networked
1205 * filesystems (i.e. NFS) in which data may have been
1206 * written to the server's write cache, but has not yet
1207 * been flushed to permanent storage.
1208 */
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001209 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1210 global_page_state(NR_UNSTABLE_NFS);
Wu Fengguang77627412010-09-12 13:34:05 -06001211 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001212
Wu Fengguang16c40422010-08-11 14:17:39 -07001213 global_dirty_limits(&background_thresh, &dirty_thresh);
1214
1215 /*
1216 * Throttle it only when the background writeback cannot
1217 * catch-up. This avoids (excessively) small writeouts
1218 * when the bdi limits are ramping up.
1219 */
Wu Fengguang6c14ae12011-03-02 16:04:18 -06001220 freerun = dirty_freerun_ceiling(dirty_thresh,
1221 background_thresh);
Wu Fengguang83712352011-06-11 19:25:42 -06001222 if (nr_dirty <= freerun) {
1223 current->dirty_paused_when = now;
1224 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001225 current->nr_dirtied_pause =
1226 dirty_poll_interval(nr_dirty, dirty_thresh);
Wu Fengguang16c40422010-08-11 14:17:39 -07001227 break;
Wu Fengguang83712352011-06-11 19:25:42 -06001228 }
Wu Fengguang16c40422010-08-11 14:17:39 -07001229
Wu Fengguang143dfe82010-08-27 18:45:12 -06001230 if (unlikely(!writeback_in_progress(bdi)))
1231 bdi_start_background_writeback(bdi);
1232
1233 /*
1234 * bdi_thresh is not treated as some limiting factor as
1235 * dirty_thresh, due to reasons
1236 * - in JBOD setup, bdi_thresh can fluctuate a lot
1237 * - in a system with HDD and USB key, the USB key may somehow
1238 * go into state (bdi_dirty >> bdi_thresh) either because
1239 * bdi_dirty starts high, or because bdi_thresh drops low.
1240 * In this case we don't want to hard throttle the USB key
1241 * dirtiers for 100 seconds until bdi_dirty drops under
1242 * bdi_thresh. Instead the auxiliary bdi control line in
1243 * bdi_position_ratio() will let the dirtier task progress
1244 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1245 */
Wu Fengguang16c40422010-08-11 14:17:39 -07001246 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
Wu Fengguang16c40422010-08-11 14:17:39 -07001247
Wu Fengguange50e3722010-08-11 14:17:37 -07001248 /*
1249 * In order to avoid the stacked BDI deadlock we need
1250 * to ensure we accurately count the 'dirty' pages when
1251 * the threshold is low.
1252 *
1253 * Otherwise it would be possible to get thresh+n pages
1254 * reported dirty, even though there are thresh-m pages
1255 * actually dirty; with m+n sitting in the percpu
1256 * deltas.
1257 */
Wu Fengguang143dfe82010-08-27 18:45:12 -06001258 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1259 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1260 bdi_dirty = bdi_reclaimable +
Wu Fengguang77627412010-09-12 13:34:05 -06001261 bdi_stat_sum(bdi, BDI_WRITEBACK);
Wu Fengguange50e3722010-08-11 14:17:37 -07001262 } else {
Wu Fengguang143dfe82010-08-27 18:45:12 -06001263 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1264 bdi_dirty = bdi_reclaimable +
Wu Fengguang77627412010-09-12 13:34:05 -06001265 bdi_stat(bdi, BDI_WRITEBACK);
Wu Fengguange50e3722010-08-11 14:17:37 -07001266 }
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001267
Wu Fengguang82791942011-12-03 21:26:01 -06001268 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
Wu Fengguang77627412010-09-12 13:34:05 -06001269 (nr_dirty > dirty_thresh);
Wu Fengguang143dfe82010-08-27 18:45:12 -06001270 if (dirty_exceeded && !bdi->dirty_exceeded)
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001271 bdi->dirty_exceeded = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001273 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1274 nr_dirty, bdi_thresh, bdi_dirty,
1275 start_time);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001276
Wu Fengguang143dfe82010-08-27 18:45:12 -06001277 dirty_ratelimit = bdi->dirty_ratelimit;
1278 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1279 background_thresh, nr_dirty,
1280 bdi_thresh, bdi_dirty);
Wu Fengguang3a73dbb2011-11-07 19:19:28 +08001281 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1282 RATELIMIT_CALC_SHIFT;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001283 max_pause = bdi_max_pause(bdi, bdi_dirty);
1284 min_pause = bdi_min_pause(bdi, max_pause,
1285 task_ratelimit, dirty_ratelimit,
1286 &nr_dirtied_pause);
1287
Wu Fengguang3a73dbb2011-11-07 19:19:28 +08001288 if (unlikely(task_ratelimit == 0)) {
Wu Fengguang83712352011-06-11 19:25:42 -06001289 period = max_pause;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001290 pause = max_pause;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001291 goto pause;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001292 }
Wu Fengguang83712352011-06-11 19:25:42 -06001293 period = HZ * pages_dirtied / task_ratelimit;
1294 pause = period;
1295 if (current->dirty_paused_when)
1296 pause -= now - current->dirty_paused_when;
1297 /*
1298 * For less than 1s think time (ext3/4 may block the dirtier
1299 * for up to 800ms from time to time on 1-HDD; so does xfs,
1300 * however at much less frequency), try to compensate it in
1301 * future periods by updating the virtual time; otherwise just
1302 * do a reset, as it may be a light dirtier.
1303 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001304 if (pause < min_pause) {
Wu Fengguangece13ac2010-08-29 23:33:20 -06001305 trace_balance_dirty_pages(bdi,
1306 dirty_thresh,
1307 background_thresh,
1308 nr_dirty,
1309 bdi_thresh,
1310 bdi_dirty,
1311 dirty_ratelimit,
1312 task_ratelimit,
1313 pages_dirtied,
Wu Fengguang83712352011-06-11 19:25:42 -06001314 period,
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001315 min(pause, 0L),
Wu Fengguangece13ac2010-08-29 23:33:20 -06001316 start_time);
Wu Fengguang83712352011-06-11 19:25:42 -06001317 if (pause < -HZ) {
1318 current->dirty_paused_when = now;
1319 current->nr_dirtied = 0;
1320 } else if (period) {
1321 current->dirty_paused_when += period;
1322 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001323 } else if (current->nr_dirtied_pause <= pages_dirtied)
1324 current->nr_dirtied_pause += pages_dirtied;
Wu Fengguang57fc9782011-06-11 19:32:32 -06001325 break;
1326 }
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001327 if (unlikely(pause > max_pause)) {
1328 /* for occasional dropped task_ratelimit */
1329 now += min(pause - max_pause, max_pause);
1330 pause = max_pause;
1331 }
Wu Fengguang143dfe82010-08-27 18:45:12 -06001332
1333pause:
Wu Fengguangece13ac2010-08-29 23:33:20 -06001334 trace_balance_dirty_pages(bdi,
1335 dirty_thresh,
1336 background_thresh,
1337 nr_dirty,
1338 bdi_thresh,
1339 bdi_dirty,
1340 dirty_ratelimit,
1341 task_ratelimit,
1342 pages_dirtied,
Wu Fengguang83712352011-06-11 19:25:42 -06001343 period,
Wu Fengguangece13ac2010-08-29 23:33:20 -06001344 pause,
1345 start_time);
Jan Kara499d05e2011-11-16 19:34:48 +08001346 __set_current_state(TASK_KILLABLE);
Wu Fengguangd25105e2009-10-09 12:40:42 +02001347 io_schedule_timeout(pause);
Jens Axboe87c6a9b2009-09-17 19:59:14 +02001348
Wu Fengguang83712352011-06-11 19:25:42 -06001349 current->dirty_paused_when = now + pause;
1350 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001351 current->nr_dirtied_pause = nr_dirtied_pause;
Wu Fengguang83712352011-06-11 19:25:42 -06001352
Wu Fengguangffd1f602011-06-19 22:18:42 -06001353 /*
Wu Fengguang1df64712011-11-13 19:47:32 -06001354 * This is typically equal to (nr_dirty < dirty_thresh) and can
1355 * also keep "1000+ dd on a slow USB stick" under control.
Wu Fengguangffd1f602011-06-19 22:18:42 -06001356 */
Wu Fengguang1df64712011-11-13 19:47:32 -06001357 if (task_ratelimit)
Wu Fengguangffd1f602011-06-19 22:18:42 -06001358 break;
Jan Kara499d05e2011-11-16 19:34:48 +08001359
Wu Fengguangc5c63432011-12-02 10:21:33 -06001360 /*
1361 * In the case of an unresponding NFS server and the NFS dirty
1362 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1363 * to go through, so that tasks on them still remain responsive.
1364 *
1365 * In theory 1 page is enough to keep the comsumer-producer
1366 * pipe going: the flusher cleans 1 page => the task dirties 1
1367 * more page. However bdi_dirty has accounting errors. So use
1368 * the larger and more IO friendly bdi_stat_error.
1369 */
1370 if (bdi_dirty <= bdi_stat_error(bdi))
1371 break;
1372
Jan Kara499d05e2011-11-16 19:34:48 +08001373 if (fatal_signal_pending(current))
1374 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 }
1376
Wu Fengguang143dfe82010-08-27 18:45:12 -06001377 if (!dirty_exceeded && bdi->dirty_exceeded)
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001378 bdi->dirty_exceeded = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379
1380 if (writeback_in_progress(bdi))
Jens Axboe5b0830c2009-09-23 19:37:09 +02001381 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001382
1383 /*
1384 * In laptop mode, we wait until hitting the higher threshold before
1385 * starting background writeout, and then write out all the way down
1386 * to the lower threshold. So slow writers cause minimal disk activity.
1387 *
1388 * In normal mode, we start background writeout at the lower
1389 * background_thresh, to keep the amount of dirty memory low.
1390 */
Wu Fengguang143dfe82010-08-27 18:45:12 -06001391 if (laptop_mode)
1392 return;
1393
1394 if (nr_reclaimable > background_thresh)
Christoph Hellwigc5444192010-06-08 18:15:15 +02001395 bdi_start_background_writeback(bdi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001396}
1397
Wu Fengguang9d823e82011-06-11 18:10:12 -06001398static DEFINE_PER_CPU(int, bdp_ratelimits);
Tejun Heo245b2e72009-06-24 15:13:48 +09001399
Wu Fengguang54848d72011-04-05 13:21:19 -06001400/*
1401 * Normal tasks are throttled by
1402 * loop {
1403 * dirty tsk->nr_dirtied_pause pages;
1404 * take a snap in balance_dirty_pages();
1405 * }
1406 * However there is a worst case. If every task exit immediately when dirtied
1407 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1408 * called to throttle the page dirties. The solution is to save the not yet
1409 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1410 * randomly into the running tasks. This works well for the above worst case,
1411 * as the new task will pick up and accumulate the old task's leaked dirty
1412 * count and eventually get throttled.
1413 */
1414DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1415
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416/**
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001417 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
Martin Waitz67be2dd2005-05-01 08:59:26 -07001418 * @mapping: address_space which was dirtied
Martin Waitza5802902006-04-02 13:59:55 +02001419 * @nr_pages_dirtied: number of pages which the caller has just dirtied
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 *
1421 * Processes which are dirtying memory should call in here once for each page
1422 * which was newly dirtied. The function will periodically check the system's
1423 * dirty state and will initiate writeback if needed.
1424 *
1425 * On really big machines, get_writeback_state is expensive, so try to avoid
1426 * calling it too often (ratelimiting). But once we're over the dirty memory
1427 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1428 * from overshooting the limit by (ratelimit_pages) each.
1429 */
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001430void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1431 unsigned long nr_pages_dirtied)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432{
Wu Fengguang36715ce2011-06-11 17:53:57 -06001433 struct backing_dev_info *bdi = mapping->backing_dev_info;
Wu Fengguang9d823e82011-06-11 18:10:12 -06001434 int ratelimit;
1435 int *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436
Wu Fengguang36715ce2011-06-11 17:53:57 -06001437 if (!bdi_cap_account_dirty(bdi))
1438 return;
1439
Wu Fengguang9d823e82011-06-11 18:10:12 -06001440 ratelimit = current->nr_dirtied_pause;
1441 if (bdi->dirty_exceeded)
1442 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001444 preempt_disable();
Wu Fengguang9d823e82011-06-11 18:10:12 -06001445 /*
1446 * This prevents one CPU to accumulate too many dirtied pages without
1447 * calling into balance_dirty_pages(), which can happen when there are
1448 * 1000+ tasks, all of them start dirtying pages at exactly the same
1449 * time, hence all honoured too large initial task->nr_dirtied_pause.
1450 */
Tejun Heo245b2e72009-06-24 15:13:48 +09001451 p = &__get_cpu_var(bdp_ratelimits);
Wu Fengguang9d823e82011-06-11 18:10:12 -06001452 if (unlikely(current->nr_dirtied >= ratelimit))
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001453 *p = 0;
Wu Fengguangd3bc1fe2011-04-14 07:52:37 -06001454 else if (unlikely(*p >= ratelimit_pages)) {
1455 *p = 0;
1456 ratelimit = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 }
Wu Fengguang54848d72011-04-05 13:21:19 -06001458 /*
1459 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1460 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1461 * the dirty throttling and livelock other long-run dirtiers.
1462 */
1463 p = &__get_cpu_var(dirty_throttle_leaks);
1464 if (*p > 0 && current->nr_dirtied < ratelimit) {
1465 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1466 *p -= nr_pages_dirtied;
1467 current->nr_dirtied += nr_pages_dirtied;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001468 }
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001469 preempt_enable();
Wu Fengguang9d823e82011-06-11 18:10:12 -06001470
1471 if (unlikely(current->nr_dirtied >= ratelimit))
1472 balance_dirty_pages(mapping, current->nr_dirtied);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473}
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001474EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475
Andrew Morton232ea4d2007-02-28 20:13:21 -08001476void throttle_vm_writeout(gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477{
David Rientjes364aeb22009-01-06 14:39:29 -08001478 unsigned long background_thresh;
1479 unsigned long dirty_thresh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480
1481 for ( ; ; ) {
Wu Fengguang16c40422010-08-11 14:17:39 -07001482 global_dirty_limits(&background_thresh, &dirty_thresh);
Fengguang Wu47a13332012-03-21 16:34:09 -07001483 dirty_thresh = hard_dirty_limit(dirty_thresh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001484
1485 /*
1486 * Boost the allowable dirty threshold a bit for page
1487 * allocators so they don't get DoS'ed by heavy writers
1488 */
1489 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1490
Christoph Lameterc24f21b2006-06-30 01:55:42 -07001491 if (global_page_state(NR_UNSTABLE_NFS) +
1492 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1493 break;
Jens Axboe8aa7e842009-07-09 14:52:32 +02001494 congestion_wait(BLK_RW_ASYNC, HZ/10);
Fengguang Wu369f2382007-10-16 23:30:45 -07001495
1496 /*
1497 * The caller might hold locks which can prevent IO completion
1498 * or progress in the filesystem. So we cannot just sit here
1499 * waiting for IO to complete.
1500 */
1501 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1502 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001503 }
1504}
1505
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1508 */
1509int dirty_writeback_centisecs_handler(ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001510 void __user *buffer, size_t *length, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001512 proc_dointvec(table, write, buffer, length, ppos);
Jens Axboe64231042010-05-21 20:00:35 +02001513 bdi_arm_supers_timer();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 return 0;
1515}
1516
Jens Axboec2c49862010-05-20 09:18:47 +02001517#ifdef CONFIG_BLOCK
Matthew Garrett31373d02010-04-06 14:25:14 +02001518void laptop_mode_timer_fn(unsigned long data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519{
Matthew Garrett31373d02010-04-06 14:25:14 +02001520 struct request_queue *q = (struct request_queue *)data;
1521 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1522 global_page_state(NR_UNSTABLE_NFS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523
Matthew Garrett31373d02010-04-06 14:25:14 +02001524 /*
1525 * We want to write everything out, not just down to the dirty
1526 * threshold
1527 */
Matthew Garrett31373d02010-04-06 14:25:14 +02001528 if (bdi_has_dirty_io(&q->backing_dev_info))
Curt Wohlgemuth0e175a12011-10-07 21:54:10 -06001529 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1530 WB_REASON_LAPTOP_TIMER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531}
1532
1533/*
1534 * We've spun up the disk and we're in laptop mode: schedule writeback
1535 * of all dirty data a few seconds from now. If the flush is already scheduled
1536 * then push it back - the user is still using the disk.
1537 */
Matthew Garrett31373d02010-04-06 14:25:14 +02001538void laptop_io_completion(struct backing_dev_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539{
Matthew Garrett31373d02010-04-06 14:25:14 +02001540 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541}
1542
1543/*
1544 * We're in laptop mode and we've just synced. The sync's writes will have
1545 * caused another writeback to be scheduled by laptop_io_completion.
1546 * Nothing needs to be written back anymore, so we unschedule the writeback.
1547 */
1548void laptop_sync_completion(void)
1549{
Matthew Garrett31373d02010-04-06 14:25:14 +02001550 struct backing_dev_info *bdi;
1551
1552 rcu_read_lock();
1553
1554 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1555 del_timer(&bdi->laptop_mode_wb_timer);
1556
1557 rcu_read_unlock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558}
Jens Axboec2c49862010-05-20 09:18:47 +02001559#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560
1561/*
1562 * If ratelimit_pages is too high then we can get into dirty-data overload
1563 * if a large number of processes all perform writes at the same time.
1564 * If it is too low then SMP machines will call the (expensive)
1565 * get_writeback_state too often.
1566 *
1567 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1568 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
Wu Fengguang9d823e82011-06-11 18:10:12 -06001569 * thresholds.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570 */
1571
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001572void writeback_set_ratelimit(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573{
Wu Fengguang9d823e82011-06-11 18:10:12 -06001574 unsigned long background_thresh;
1575 unsigned long dirty_thresh;
1576 global_dirty_limits(&background_thresh, &dirty_thresh);
1577 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 if (ratelimit_pages < 16)
1579 ratelimit_pages = 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580}
1581
Chandra Seetharaman26c21432006-06-27 02:54:10 -07001582static int __cpuinit
Srivatsa S. Bhate15e16b2012-09-28 20:27:49 +08001583ratelimit_handler(struct notifier_block *self, unsigned long action,
1584 void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585{
Srivatsa S. Bhate15e16b2012-09-28 20:27:49 +08001586
1587 switch (action & ~CPU_TASKS_FROZEN) {
1588 case CPU_ONLINE:
1589 case CPU_DEAD:
1590 writeback_set_ratelimit();
1591 return NOTIFY_OK;
1592 default:
1593 return NOTIFY_DONE;
1594 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595}
1596
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001597static struct notifier_block __cpuinitdata ratelimit_nb = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598 .notifier_call = ratelimit_handler,
1599 .next = NULL,
1600};
1601
1602/*
Linus Torvaldsdc6e29d2007-01-29 16:37:38 -08001603 * Called early on to tune the page writeback dirty limits.
1604 *
1605 * We used to scale dirty pages according to how total memory
1606 * related to pages that could be allocated for buffers (by
1607 * comparing nr_free_buffer_pages() to vm_total_pages.
1608 *
1609 * However, that was when we used "dirty_ratio" to scale with
1610 * all memory, and we don't do that any more. "dirty_ratio"
1611 * is now applied to total non-HIGHPAGE memory (by subtracting
1612 * totalhigh_pages from vm_total_pages), and as such we can't
1613 * get into the old insane situation any more where we had
1614 * large amounts of dirty pages compared to a small amount of
1615 * non-HIGHMEM memory.
1616 *
1617 * But we might still want to scale the dirty_ratio by how
1618 * much memory the box has..
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619 */
1620void __init page_writeback_init(void)
1621{
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001622 int shift;
1623
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001624 writeback_set_ratelimit();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625 register_cpu_notifier(&ratelimit_nb);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001626
1627 shift = calc_period_shift();
1628 prop_descriptor_init(&vm_completions, shift);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629}
1630
David Howells811d7362006-08-29 19:06:09 +01001631/**
Jan Karaf446daa2010-08-09 17:19:12 -07001632 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1633 * @mapping: address space structure to write
1634 * @start: starting page index
1635 * @end: ending page index (inclusive)
1636 *
1637 * This function scans the page range from @start to @end (inclusive) and tags
1638 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1639 * that write_cache_pages (or whoever calls this function) will then use
1640 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1641 * used to avoid livelocking of writeback by a process steadily creating new
1642 * dirty pages in the file (thus it is important for this function to be quick
1643 * so that it can tag pages faster than a dirtying process can create them).
1644 */
1645/*
1646 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1647 */
Jan Karaf446daa2010-08-09 17:19:12 -07001648void tag_pages_for_writeback(struct address_space *mapping,
1649 pgoff_t start, pgoff_t end)
1650{
Randy Dunlap3c111a02010-08-11 14:17:30 -07001651#define WRITEBACK_TAG_BATCH 4096
Jan Karaf446daa2010-08-09 17:19:12 -07001652 unsigned long tagged;
1653
1654 do {
1655 spin_lock_irq(&mapping->tree_lock);
1656 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1657 &start, end, WRITEBACK_TAG_BATCH,
1658 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1659 spin_unlock_irq(&mapping->tree_lock);
1660 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1661 cond_resched();
Jan Karad5ed3a42010-08-19 14:13:33 -07001662 /* We check 'start' to handle wrapping when end == ~0UL */
1663 } while (tagged >= WRITEBACK_TAG_BATCH && start);
Jan Karaf446daa2010-08-09 17:19:12 -07001664}
1665EXPORT_SYMBOL(tag_pages_for_writeback);
1666
1667/**
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001668 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
David Howells811d7362006-08-29 19:06:09 +01001669 * @mapping: address space structure to write
1670 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001671 * @writepage: function called for each page
1672 * @data: data passed to writepage function
David Howells811d7362006-08-29 19:06:09 +01001673 *
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001674 * If a page is already under I/O, write_cache_pages() skips it, even
David Howells811d7362006-08-29 19:06:09 +01001675 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1676 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1677 * and msync() need to guarantee that all the data which was dirty at the time
1678 * the call was made get new I/O started against them. If wbc->sync_mode is
1679 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1680 * existing IO to complete.
Jan Karaf446daa2010-08-09 17:19:12 -07001681 *
1682 * To avoid livelocks (when other process dirties new pages), we first tag
1683 * pages which should be written back with TOWRITE tag and only then start
1684 * writing them. For data-integrity sync we have to be careful so that we do
1685 * not miss some pages (e.g., because some other process has cleared TOWRITE
1686 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1687 * by the process clearing the DIRTY tag (and submitting the page for IO).
David Howells811d7362006-08-29 19:06:09 +01001688 */
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001689int write_cache_pages(struct address_space *mapping,
1690 struct writeback_control *wbc, writepage_t writepage,
1691 void *data)
David Howells811d7362006-08-29 19:06:09 +01001692{
David Howells811d7362006-08-29 19:06:09 +01001693 int ret = 0;
1694 int done = 0;
David Howells811d7362006-08-29 19:06:09 +01001695 struct pagevec pvec;
1696 int nr_pages;
Nick Piggin31a12662009-01-06 14:39:04 -08001697 pgoff_t uninitialized_var(writeback_index);
David Howells811d7362006-08-29 19:06:09 +01001698 pgoff_t index;
1699 pgoff_t end; /* Inclusive */
Nick Pigginbd19e012009-01-06 14:39:06 -08001700 pgoff_t done_index;
Nick Piggin31a12662009-01-06 14:39:04 -08001701 int cycled;
David Howells811d7362006-08-29 19:06:09 +01001702 int range_whole = 0;
Jan Karaf446daa2010-08-09 17:19:12 -07001703 int tag;
David Howells811d7362006-08-29 19:06:09 +01001704
David Howells811d7362006-08-29 19:06:09 +01001705 pagevec_init(&pvec, 0);
1706 if (wbc->range_cyclic) {
Nick Piggin31a12662009-01-06 14:39:04 -08001707 writeback_index = mapping->writeback_index; /* prev offset */
1708 index = writeback_index;
1709 if (index == 0)
1710 cycled = 1;
1711 else
1712 cycled = 0;
David Howells811d7362006-08-29 19:06:09 +01001713 end = -1;
1714 } else {
1715 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1716 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1717 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1718 range_whole = 1;
Nick Piggin31a12662009-01-06 14:39:04 -08001719 cycled = 1; /* ignore range_cyclic tests */
David Howells811d7362006-08-29 19:06:09 +01001720 }
Wu Fengguang6e6938b2010-06-06 10:38:15 -06001721 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
Jan Karaf446daa2010-08-09 17:19:12 -07001722 tag = PAGECACHE_TAG_TOWRITE;
1723 else
1724 tag = PAGECACHE_TAG_DIRTY;
David Howells811d7362006-08-29 19:06:09 +01001725retry:
Wu Fengguang6e6938b2010-06-06 10:38:15 -06001726 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
Jan Karaf446daa2010-08-09 17:19:12 -07001727 tag_pages_for_writeback(mapping, index, end);
Nick Pigginbd19e012009-01-06 14:39:06 -08001728 done_index = index;
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001729 while (!done && (index <= end)) {
1730 int i;
1731
Jan Karaf446daa2010-08-09 17:19:12 -07001732 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001733 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1734 if (nr_pages == 0)
1735 break;
David Howells811d7362006-08-29 19:06:09 +01001736
David Howells811d7362006-08-29 19:06:09 +01001737 for (i = 0; i < nr_pages; i++) {
1738 struct page *page = pvec.pages[i];
1739
Nick Piggind5482cd2009-01-06 14:39:11 -08001740 /*
1741 * At this point, the page may be truncated or
1742 * invalidated (changing page->mapping to NULL), or
1743 * even swizzled back from swapper_space to tmpfs file
1744 * mapping. However, page->index will not change
1745 * because we have a reference on the page.
1746 */
1747 if (page->index > end) {
1748 /*
1749 * can't be range_cyclic (1st pass) because
1750 * end == -1 in that case.
1751 */
1752 done = 1;
1753 break;
1754 }
1755
Jun'ichi Nomuracf15b072011-03-22 16:33:40 -07001756 done_index = page->index;
Nick Pigginbd19e012009-01-06 14:39:06 -08001757
David Howells811d7362006-08-29 19:06:09 +01001758 lock_page(page);
1759
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001760 /*
1761 * Page truncated or invalidated. We can freely skip it
1762 * then, even for data integrity operations: the page
1763 * has disappeared concurrently, so there could be no
1764 * real expectation of this data interity operation
1765 * even if there is now a new, dirty page at the same
1766 * pagecache address.
1767 */
David Howells811d7362006-08-29 19:06:09 +01001768 if (unlikely(page->mapping != mapping)) {
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001769continue_unlock:
David Howells811d7362006-08-29 19:06:09 +01001770 unlock_page(page);
1771 continue;
1772 }
1773
Nick Piggin515f4a02009-01-06 14:39:10 -08001774 if (!PageDirty(page)) {
1775 /* someone wrote it for us */
1776 goto continue_unlock;
1777 }
David Howells811d7362006-08-29 19:06:09 +01001778
Nick Piggin515f4a02009-01-06 14:39:10 -08001779 if (PageWriteback(page)) {
1780 if (wbc->sync_mode != WB_SYNC_NONE)
1781 wait_on_page_writeback(page);
1782 else
1783 goto continue_unlock;
1784 }
1785
1786 BUG_ON(PageWriteback(page));
1787 if (!clear_page_dirty_for_io(page))
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001788 goto continue_unlock;
David Howells811d7362006-08-29 19:06:09 +01001789
Dave Chinner9e094382010-07-07 13:24:08 +10001790 trace_wbc_writepage(wbc, mapping->backing_dev_info);
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001791 ret = (*writepage)(page, wbc, data);
Nick Piggin00266772009-01-06 14:39:06 -08001792 if (unlikely(ret)) {
1793 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1794 unlock_page(page);
1795 ret = 0;
1796 } else {
1797 /*
1798 * done_index is set past this page,
1799 * so media errors will not choke
1800 * background writeout for the entire
1801 * file. This has consequences for
1802 * range_cyclic semantics (ie. it may
1803 * not be suitable for data integrity
1804 * writeout).
1805 */
Jun'ichi Nomuracf15b072011-03-22 16:33:40 -07001806 done_index = page->index + 1;
Nick Piggin00266772009-01-06 14:39:06 -08001807 done = 1;
1808 break;
1809 }
Dave Chinner0b564922010-06-09 10:37:18 +10001810 }
David Howells811d7362006-08-29 19:06:09 +01001811
Dave Chinner546a1922010-08-24 11:44:34 +10001812 /*
1813 * We stop writing back only if we are not doing
1814 * integrity sync. In case of integrity sync we have to
1815 * keep going until we have written all the pages
1816 * we tagged for writeback prior to entering this loop.
1817 */
1818 if (--wbc->nr_to_write <= 0 &&
1819 wbc->sync_mode == WB_SYNC_NONE) {
1820 done = 1;
1821 break;
Nick Piggin05fe4782009-01-06 14:39:08 -08001822 }
David Howells811d7362006-08-29 19:06:09 +01001823 }
1824 pagevec_release(&pvec);
1825 cond_resched();
1826 }
Nick Piggin3a4c6802009-02-12 04:34:23 +01001827 if (!cycled && !done) {
David Howells811d7362006-08-29 19:06:09 +01001828 /*
Nick Piggin31a12662009-01-06 14:39:04 -08001829 * range_cyclic:
David Howells811d7362006-08-29 19:06:09 +01001830 * We hit the last page and there is more work to be done: wrap
1831 * back to the start of the file
1832 */
Nick Piggin31a12662009-01-06 14:39:04 -08001833 cycled = 1;
David Howells811d7362006-08-29 19:06:09 +01001834 index = 0;
Nick Piggin31a12662009-01-06 14:39:04 -08001835 end = writeback_index - 1;
David Howells811d7362006-08-29 19:06:09 +01001836 goto retry;
1837 }
Dave Chinner0b564922010-06-09 10:37:18 +10001838 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1839 mapping->writeback_index = done_index;
Aneesh Kumar K.V06d6cf62008-07-11 19:27:31 -04001840
David Howells811d7362006-08-29 19:06:09 +01001841 return ret;
1842}
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001843EXPORT_SYMBOL(write_cache_pages);
1844
1845/*
1846 * Function used by generic_writepages to call the real writepage
1847 * function and set the mapping flags on error
1848 */
1849static int __writepage(struct page *page, struct writeback_control *wbc,
1850 void *data)
1851{
1852 struct address_space *mapping = data;
1853 int ret = mapping->a_ops->writepage(page, wbc);
1854 mapping_set_error(mapping, ret);
1855 return ret;
1856}
1857
1858/**
1859 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1860 * @mapping: address space structure to write
1861 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1862 *
1863 * This is a library function, which implements the writepages()
1864 * address_space_operation.
1865 */
1866int generic_writepages(struct address_space *mapping,
1867 struct writeback_control *wbc)
1868{
Shaohua Li9b6096a2011-03-17 10:47:06 +01001869 struct blk_plug plug;
1870 int ret;
1871
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001872 /* deal with chardevs and other special file */
1873 if (!mapping->a_ops->writepage)
1874 return 0;
1875
Shaohua Li9b6096a2011-03-17 10:47:06 +01001876 blk_start_plug(&plug);
1877 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1878 blk_finish_plug(&plug);
1879 return ret;
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001880}
David Howells811d7362006-08-29 19:06:09 +01001881
1882EXPORT_SYMBOL(generic_writepages);
1883
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1885{
Andrew Morton22905f72005-11-16 15:07:01 -08001886 int ret;
1887
Linus Torvalds1da177e2005-04-16 15:20:36 -07001888 if (wbc->nr_to_write <= 0)
1889 return 0;
1890 if (mapping->a_ops->writepages)
Peter Zijlstrad08b3852006-09-25 23:30:57 -07001891 ret = mapping->a_ops->writepages(mapping, wbc);
Andrew Morton22905f72005-11-16 15:07:01 -08001892 else
1893 ret = generic_writepages(mapping, wbc);
Andrew Morton22905f72005-11-16 15:07:01 -08001894 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895}
1896
1897/**
1898 * write_one_page - write out a single page and optionally wait on I/O
Martin Waitz67be2dd2005-05-01 08:59:26 -07001899 * @page: the page to write
1900 * @wait: if true, wait on writeout
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 *
1902 * The page must be locked by the caller and will be unlocked upon return.
1903 *
1904 * write_one_page() returns a negative error code if I/O failed.
1905 */
1906int write_one_page(struct page *page, int wait)
1907{
1908 struct address_space *mapping = page->mapping;
1909 int ret = 0;
1910 struct writeback_control wbc = {
1911 .sync_mode = WB_SYNC_ALL,
1912 .nr_to_write = 1,
1913 };
1914
1915 BUG_ON(!PageLocked(page));
1916
1917 if (wait)
1918 wait_on_page_writeback(page);
1919
1920 if (clear_page_dirty_for_io(page)) {
1921 page_cache_get(page);
1922 ret = mapping->a_ops->writepage(page, &wbc);
1923 if (ret == 0 && wait) {
1924 wait_on_page_writeback(page);
1925 if (PageError(page))
1926 ret = -EIO;
1927 }
1928 page_cache_release(page);
1929 } else {
1930 unlock_page(page);
1931 }
1932 return ret;
1933}
1934EXPORT_SYMBOL(write_one_page);
1935
1936/*
Ken Chen76719322007-02-10 01:43:15 -08001937 * For address_spaces which do not use buffers nor write back.
1938 */
1939int __set_page_dirty_no_writeback(struct page *page)
1940{
1941 if (!PageDirty(page))
Bob Liuc3f0da62011-01-13 15:45:49 -08001942 return !TestSetPageDirty(page);
Ken Chen76719322007-02-10 01:43:15 -08001943 return 0;
1944}
1945
1946/*
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001947 * Helper function for set_page_dirty family.
1948 * NOTE: This relies on being atomic wrt interrupts.
1949 */
1950void account_page_dirtied(struct page *page, struct address_space *mapping)
1951{
1952 if (mapping_cap_account_dirty(mapping)) {
1953 __inc_zone_page_state(page, NR_FILE_DIRTY);
Michael Rubinea941f02010-10-26 14:21:35 -07001954 __inc_zone_page_state(page, NR_DIRTIED);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001955 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
Wu Fengguangc8e28ce2011-01-23 10:07:47 -06001956 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001957 task_io_account_write(PAGE_CACHE_SIZE);
Wu Fengguangd3bc1fe2011-04-14 07:52:37 -06001958 current->nr_dirtied++;
1959 this_cpu_inc(bdp_ratelimits);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001960 }
1961}
Michael Rubin679ceac2010-08-20 02:31:26 -07001962EXPORT_SYMBOL(account_page_dirtied);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001963
1964/*
Michael Rubinf629d1c2010-10-26 14:21:33 -07001965 * Helper function for set_page_writeback family.
1966 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1967 * wrt interrupts.
1968 */
1969void account_page_writeback(struct page *page)
1970{
1971 inc_zone_page_state(page, NR_WRITEBACK);
1972}
1973EXPORT_SYMBOL(account_page_writeback);
1974
1975/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976 * For address_spaces which do not use buffers. Just tag the page as dirty in
1977 * its radix tree.
1978 *
1979 * This is also used when a single buffer is being dirtied: we want to set the
1980 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1981 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1982 *
Johannes Weiner15870702015-01-08 14:32:18 -08001983 * The caller must ensure this doesn't race with truncation. Most will simply
1984 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
1985 * the pte lock held, which also locks out truncat
Linus Torvalds1da177e2005-04-16 15:20:36 -07001986 */
1987int __set_page_dirty_nobuffers(struct page *page)
1988{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 if (!TestSetPageDirty(page)) {
1990 struct address_space *mapping = page_mapping(page);
KOSAKI Motohiro4d4bed82014-02-06 12:04:24 -08001991 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001992
Andrew Morton8c085402006-12-10 02:19:24 -08001993 if (!mapping)
1994 return 1;
1995
KOSAKI Motohiro4d4bed82014-02-06 12:04:24 -08001996 spin_lock_irqsave(&mapping->tree_lock, flags);
Johannes Weiner15870702015-01-08 14:32:18 -08001997 BUG_ON(page_mapping(page) != mapping);
1998 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1999 account_page_dirtied(page, mapping);
2000 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2001 PAGECACHE_TAG_DIRTY);
KOSAKI Motohiro4d4bed82014-02-06 12:04:24 -08002002 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Andrew Morton8c085402006-12-10 02:19:24 -08002003 if (mapping->host) {
2004 /* !PageAnon && !swapper_space */
2005 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002007 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002008 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002009 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002010}
2011EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2012
2013/*
Wu Fengguang2f800fb2011-08-08 15:22:00 -06002014 * Call this whenever redirtying a page, to de-account the dirty counters
2015 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2016 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2017 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2018 * control.
2019 */
2020void account_page_redirty(struct page *page)
2021{
2022 struct address_space *mapping = page->mapping;
2023 if (mapping && mapping_cap_account_dirty(mapping)) {
2024 current->nr_dirtied--;
2025 dec_zone_page_state(page, NR_DIRTIED);
2026 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2027 }
2028}
2029EXPORT_SYMBOL(account_page_redirty);
2030
2031/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002032 * When a writepage implementation decides that it doesn't want to write this
2033 * page for some reason, it should redirty the locked page via
2034 * redirty_page_for_writepage() and it should then unlock the page and return 0
2035 */
2036int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2037{
2038 wbc->pages_skipped++;
Wu Fengguang2f800fb2011-08-08 15:22:00 -06002039 account_page_redirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040 return __set_page_dirty_nobuffers(page);
2041}
2042EXPORT_SYMBOL(redirty_page_for_writepage);
2043
2044/*
Wu Fengguang6746aff2009-09-16 11:50:14 +02002045 * Dirty a page.
2046 *
2047 * For pages with a mapping this should be done under the page lock
2048 * for the benefit of asynchronous memory errors who prefer a consistent
2049 * dirty state. This rule can be broken in some special cases,
2050 * but should be better not to.
2051 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 * If the mapping doesn't provide a set_page_dirty a_op, then
2053 * just fall through and assume that it wants buffer_heads.
2054 */
Nick Piggin1cf6e7d2009-02-18 14:48:18 -08002055int set_page_dirty(struct page *page)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002056{
2057 struct address_space *mapping = page_mapping(page);
2058
2059 if (likely(mapping)) {
2060 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
Minchan Kim278df9f2011-03-22 16:32:54 -07002061 /*
2062 * readahead/lru_deactivate_page could remain
2063 * PG_readahead/PG_reclaim due to race with end_page_writeback
2064 * About readahead, if the page is written, the flags would be
2065 * reset. So no problem.
2066 * About lru_deactivate_page, if the page is redirty, the flag
2067 * will be reset. So no problem. but if the page is used by readahead
2068 * it will confuse readahead and make it restart the size rampup
2069 * process. But it's a trivial problem.
2070 */
2071 ClearPageReclaim(page);
David Howells93614012006-09-30 20:45:40 +02002072#ifdef CONFIG_BLOCK
2073 if (!spd)
2074 spd = __set_page_dirty_buffers;
2075#endif
2076 return (*spd)(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002078 if (!PageDirty(page)) {
2079 if (!TestSetPageDirty(page))
2080 return 1;
2081 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082 return 0;
2083}
2084EXPORT_SYMBOL(set_page_dirty);
2085
2086/*
2087 * set_page_dirty() is racy if the caller has no reference against
2088 * page->mapping->host, and if the page is unlocked. This is because another
2089 * CPU could truncate the page off the mapping and then free the mapping.
2090 *
2091 * Usually, the page _is_ locked, or the caller is a user-space process which
2092 * holds a reference on the inode by having an open file.
2093 *
2094 * In other cases, the page should be locked before running set_page_dirty().
2095 */
2096int set_page_dirty_lock(struct page *page)
2097{
2098 int ret;
2099
Jens Axboe7eaceac2011-03-10 08:52:07 +01002100 lock_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101 ret = set_page_dirty(page);
2102 unlock_page(page);
2103 return ret;
2104}
2105EXPORT_SYMBOL(set_page_dirty_lock);
2106
2107/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 * Clear a page's dirty flag, while caring for dirty memory accounting.
2109 * Returns true if the page was previously dirty.
2110 *
2111 * This is for preparing to put the page under writeout. We leave the page
2112 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2113 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2114 * implementation will run either set_page_writeback() or set_page_dirty(),
2115 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2116 * back into sync.
2117 *
2118 * This incoherency between the page's dirty flag and radix-tree tag is
2119 * unfortunate, but it only exists while the page is locked.
2120 */
2121int clear_page_dirty_for_io(struct page *page)
2122{
2123 struct address_space *mapping = page_mapping(page);
2124
Nick Piggin79352892007-07-19 01:47:22 -07002125 BUG_ON(!PageLocked(page));
2126
Linus Torvalds7658cc22006-12-29 10:00:58 -08002127 if (mapping && mapping_cap_account_dirty(mapping)) {
2128 /*
2129 * Yes, Virginia, this is indeed insane.
2130 *
2131 * We use this sequence to make sure that
2132 * (a) we account for dirty stats properly
2133 * (b) we tell the low-level filesystem to
2134 * mark the whole page dirty if it was
2135 * dirty in a pagetable. Only to then
2136 * (c) clean the page again and return 1 to
2137 * cause the writeback.
2138 *
2139 * This way we avoid all nasty races with the
2140 * dirty bit in multiple places and clearing
2141 * them concurrently from different threads.
2142 *
2143 * Note! Normally the "set_page_dirty(page)"
2144 * has no effect on the actual dirty bit - since
2145 * that will already usually be set. But we
2146 * need the side effects, and it can help us
2147 * avoid races.
2148 *
2149 * We basically use the page "master dirty bit"
2150 * as a serialization point for all the different
2151 * threads doing their things.
Linus Torvalds7658cc22006-12-29 10:00:58 -08002152 */
2153 if (page_mkclean(page))
2154 set_page_dirty(page);
Nick Piggin79352892007-07-19 01:47:22 -07002155 /*
2156 * We carefully synchronise fault handlers against
2157 * installing a dirty pte and marking the page dirty
Johannes Weiner15870702015-01-08 14:32:18 -08002158 * at this point. We do this by having them hold the
2159 * page lock while dirtying the page, and pages are
2160 * always locked coming in here, so we get the desired
2161 * exclusion.
Nick Piggin79352892007-07-19 01:47:22 -07002162 */
Linus Torvalds7658cc22006-12-29 10:00:58 -08002163 if (TestClearPageDirty(page)) {
Andrew Morton8c085402006-12-10 02:19:24 -08002164 dec_zone_page_state(page, NR_FILE_DIRTY);
Peter Zijlstrac9e51e42007-10-16 23:25:47 -07002165 dec_bdi_stat(mapping->backing_dev_info,
2166 BDI_RECLAIMABLE);
Linus Torvalds7658cc22006-12-29 10:00:58 -08002167 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168 }
Linus Torvalds7658cc22006-12-29 10:00:58 -08002169 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002170 }
Linus Torvalds7658cc22006-12-29 10:00:58 -08002171 return TestClearPageDirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172}
Hans Reiser58bb01a2005-11-18 01:10:53 -08002173EXPORT_SYMBOL(clear_page_dirty_for_io);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174
2175int test_clear_page_writeback(struct page *page)
2176{
2177 struct address_space *mapping = page_mapping(page);
2178 int ret;
2179
2180 if (mapping) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002181 struct backing_dev_info *bdi = mapping->backing_dev_info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 unsigned long flags;
2183
Nick Piggin19fd6232008-07-25 19:45:32 -07002184 spin_lock_irqsave(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002185 ret = TestClearPageWriteback(page);
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002186 if (ret) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187 radix_tree_tag_clear(&mapping->page_tree,
2188 page_index(page),
2189 PAGECACHE_TAG_WRITEBACK);
Miklos Szeredie4ad08f2008-04-30 00:54:37 -07002190 if (bdi_cap_account_writeback(bdi)) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002191 __dec_bdi_stat(bdi, BDI_WRITEBACK);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07002192 __bdi_writeout_inc(bdi);
2193 }
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002194 }
Nick Piggin19fd6232008-07-25 19:45:32 -07002195 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196 } else {
2197 ret = TestClearPageWriteback(page);
2198 }
Wu Fengguang99b12e32011-07-25 17:12:37 -07002199 if (ret) {
Andrew Mortond688abf2007-07-19 01:49:17 -07002200 dec_zone_page_state(page, NR_WRITEBACK);
Wu Fengguang99b12e32011-07-25 17:12:37 -07002201 inc_zone_page_state(page, NR_WRITTEN);
2202 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203 return ret;
2204}
2205
2206int test_set_page_writeback(struct page *page)
2207{
2208 struct address_space *mapping = page_mapping(page);
2209 int ret;
2210
2211 if (mapping) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002212 struct backing_dev_info *bdi = mapping->backing_dev_info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 unsigned long flags;
2214
Nick Piggin19fd6232008-07-25 19:45:32 -07002215 spin_lock_irqsave(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 ret = TestSetPageWriteback(page);
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002217 if (!ret) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218 radix_tree_tag_set(&mapping->page_tree,
2219 page_index(page),
2220 PAGECACHE_TAG_WRITEBACK);
Miklos Szeredie4ad08f2008-04-30 00:54:37 -07002221 if (bdi_cap_account_writeback(bdi))
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002222 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2223 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002224 if (!PageDirty(page))
2225 radix_tree_tag_clear(&mapping->page_tree,
2226 page_index(page),
2227 PAGECACHE_TAG_DIRTY);
Jan Karaf446daa2010-08-09 17:19:12 -07002228 radix_tree_tag_clear(&mapping->page_tree,
2229 page_index(page),
2230 PAGECACHE_TAG_TOWRITE);
Nick Piggin19fd6232008-07-25 19:45:32 -07002231 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232 } else {
2233 ret = TestSetPageWriteback(page);
2234 }
Andrew Mortond688abf2007-07-19 01:49:17 -07002235 if (!ret)
Michael Rubinf629d1c2010-10-26 14:21:33 -07002236 account_page_writeback(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002237 return ret;
2238
2239}
2240EXPORT_SYMBOL(test_set_page_writeback);
2241
2242/*
Nick Piggin00128182007-10-16 01:24:40 -07002243 * Return true if any of the pages in the mapping are marked with the
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244 * passed tag.
2245 */
2246int mapping_tagged(struct address_space *mapping, int tag)
2247{
Konstantin Khlebnikov72c47832011-07-25 17:12:31 -07002248 return radix_tree_tagged(&mapping->page_tree, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249}
2250EXPORT_SYMBOL(mapping_tagged);