| /* | 
 |  *  Kernel Probes (KProbes) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Copyright (C) IBM Corporation, 2002, 2004 | 
 |  * | 
 |  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel | 
 |  *		Probes initial implementation ( includes contributions from | 
 |  *		Rusty Russell). | 
 |  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes | 
 |  *		interface to access function arguments. | 
 |  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port | 
 |  *		for PPC64 | 
 |  */ | 
 |  | 
 | #include <linux/kprobes.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/module.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/kdebug.h> | 
 | #include <asm/sstep.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	int ret = 0; | 
 | 	kprobe_opcode_t insn = *p->addr; | 
 |  | 
 | 	if ((unsigned long)p->addr & 0x03) { | 
 | 		printk("Attempt to register kprobe at an unaligned address\n"); | 
 | 		ret = -EINVAL; | 
 | 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { | 
 | 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* insn must be on a special executable page on ppc64 */ | 
 | 	if (!ret) { | 
 | 		p->ainsn.insn = get_insn_slot(); | 
 | 		if (!p->ainsn.insn) | 
 | 			ret = -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (!ret) { | 
 | 		memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | 
 | 		p->opcode = *p->addr; | 
 | 		flush_icache_range((unsigned long)p->ainsn.insn, | 
 | 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = BREAKPOINT_INSTRUCTION; | 
 | 	flush_icache_range((unsigned long) p->addr, | 
 | 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t)); | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = p->opcode; | 
 | 	flush_icache_range((unsigned long) p->addr, | 
 | 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t)); | 
 | } | 
 |  | 
 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | { | 
 | 	mutex_lock(&kprobe_mutex); | 
 | 	free_insn_slot(p->ainsn.insn, 0); | 
 | 	mutex_unlock(&kprobe_mutex); | 
 | } | 
 |  | 
 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	regs->msr |= MSR_SE; | 
 |  | 
 | 	/* | 
 | 	 * On powerpc we should single step on the original | 
 | 	 * instruction even if the probed insn is a trap | 
 | 	 * variant as values in regs could play a part in | 
 | 	 * if the trap is taken or not | 
 | 	 */ | 
 | 	regs->nip = (unsigned long)p->ainsn.insn; | 
 | } | 
 |  | 
 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; | 
 | } | 
 |  | 
 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; | 
 | } | 
 |  | 
 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 				struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = p; | 
 | 	kcb->kprobe_saved_msr = regs->msr; | 
 | } | 
 |  | 
 | /* Called with kretprobe_lock held */ | 
 | void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri; | 
 |  | 
 | 	if ((ri = get_free_rp_inst(rp)) != NULL) { | 
 | 		ri->rp = rp; | 
 | 		ri->task = current; | 
 | 		ri->ret_addr = (kprobe_opcode_t *)regs->link; | 
 |  | 
 | 		/* Replace the return addr with trampoline addr */ | 
 | 		regs->link = (unsigned long)kretprobe_trampoline; | 
 | 		add_rp_inst(ri); | 
 | 	} else { | 
 | 		rp->nmissed++; | 
 | 	} | 
 | } | 
 |  | 
 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *p; | 
 | 	int ret = 0; | 
 | 	unsigned int *addr = (unsigned int *)regs->nip; | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	/* Check we're not actually recursing */ | 
 | 	if (kprobe_running()) { | 
 | 		p = get_kprobe(addr); | 
 | 		if (p) { | 
 | 			kprobe_opcode_t insn = *p->ainsn.insn; | 
 | 			if (kcb->kprobe_status == KPROBE_HIT_SS && | 
 | 					is_trap(insn)) { | 
 | 				regs->msr &= ~MSR_SE; | 
 | 				regs->msr |= kcb->kprobe_saved_msr; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			/* We have reentered the kprobe_handler(), since | 
 | 			 * another probe was hit while within the handler. | 
 | 			 * We here save the original kprobes variables and | 
 | 			 * just single step on the instruction of the new probe | 
 | 			 * without calling any user handlers. | 
 | 			 */ | 
 | 			save_previous_kprobe(kcb); | 
 | 			set_current_kprobe(p, regs, kcb); | 
 | 			kcb->kprobe_saved_msr = regs->msr; | 
 | 			kprobes_inc_nmissed_count(p); | 
 | 			prepare_singlestep(p, regs); | 
 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 			return 1; | 
 | 		} else { | 
 | 			if (*addr != BREAKPOINT_INSTRUCTION) { | 
 | 				/* If trap variant, then it belongs not to us */ | 
 | 				kprobe_opcode_t cur_insn = *addr; | 
 | 				if (is_trap(cur_insn)) | 
 | 		       			goto no_kprobe; | 
 | 				/* The breakpoint instruction was removed by | 
 | 				 * another cpu right after we hit, no further | 
 | 				 * handling of this interrupt is appropriate | 
 | 				 */ | 
 | 				ret = 1; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			p = __get_cpu_var(current_kprobe); | 
 | 			if (p->break_handler && p->break_handler(p, regs)) { | 
 | 				goto ss_probe; | 
 | 			} | 
 | 		} | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	p = get_kprobe(addr); | 
 | 	if (!p) { | 
 | 		if (*addr != BREAKPOINT_INSTRUCTION) { | 
 | 			/* | 
 | 			 * PowerPC has multiple variants of the "trap" | 
 | 			 * instruction. If the current instruction is a | 
 | 			 * trap variant, it could belong to someone else | 
 | 			 */ | 
 | 			kprobe_opcode_t cur_insn = *addr; | 
 | 			if (is_trap(cur_insn)) | 
 | 		       		goto no_kprobe; | 
 | 			/* | 
 | 			 * The breakpoint instruction was removed right | 
 | 			 * after we hit it.  Another cpu has removed | 
 | 			 * either a probepoint or a debugger breakpoint | 
 | 			 * at this address.  In either case, no further | 
 | 			 * handling of this interrupt is appropriate. | 
 | 			 */ | 
 | 			ret = 1; | 
 | 		} | 
 | 		/* Not one of ours: let kernel handle it */ | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 | 	set_current_kprobe(p, regs, kcb); | 
 | 	if (p->pre_handler && p->pre_handler(p, regs)) | 
 | 		/* handler has already set things up, so skip ss setup */ | 
 | 		return 1; | 
 |  | 
 | ss_probe: | 
 | 	prepare_singlestep(p, regs); | 
 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	return 1; | 
 |  | 
 | no_kprobe: | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Function return probe trampoline: | 
 |  * 	- init_kprobes() establishes a probepoint here | 
 |  * 	- When the probed function returns, this probe | 
 |  * 		causes the handlers to fire | 
 |  */ | 
 | void kretprobe_trampoline_holder(void) | 
 | { | 
 | 	asm volatile(".global kretprobe_trampoline\n" | 
 | 			"kretprobe_trampoline:\n" | 
 | 			"nop\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the probe at kretprobe trampoline is hit | 
 |  */ | 
 | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *node, *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	spin_lock_irqsave(&kretprobe_lock, flags); | 
 | 	head = kretprobe_inst_table_head(current); | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because an multiple functions in the call path | 
 | 	 * have a return probe installed on them, and/or more then one return | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always inserted at the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *       function, the first instance's ret_addr will point to the | 
 | 	 *       real return address, and all the rest will point to | 
 | 	 *       kretprobe_trampoline | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		if (ri->rp && ri->rp->handler) | 
 | 			ri->rp->handler(ri, regs); | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); | 
 | 	regs->nip = orig_ret_address; | 
 |  | 
 | 	reset_current_kprobe(); | 
 | 	spin_unlock_irqrestore(&kretprobe_lock, flags); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	/* | 
 | 	 * By returning a non-zero value, we are telling | 
 | 	 * kprobe_handler() that we don't want the post_handler | 
 | 	 * to run (and have re-enabled preemption) | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping.  p->addr is the address of the | 
 |  * instruction whose first byte has been replaced by the "breakpoint" | 
 |  * instruction.  To avoid the SMP problems that can occur when we | 
 |  * temporarily put back the original opcode to single-step, we | 
 |  * single-stepped a copy of the instruction.  The address of this | 
 |  * copy is p->ainsn.insn. | 
 |  */ | 
 | static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	int ret; | 
 | 	unsigned int insn = *p->ainsn.insn; | 
 |  | 
 | 	regs->nip = (unsigned long)p->addr; | 
 | 	ret = emulate_step(regs, insn); | 
 | 	if (ret == 0) | 
 | 		regs->nip = (unsigned long)p->addr + 4; | 
 | } | 
 |  | 
 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	resume_execution(cur, regs); | 
 | 	regs->msr |= kcb->kprobe_saved_msr; | 
 |  | 
 | 	/*Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	/* | 
 | 	 * if somebody else is singlestepping across a probe point, msr | 
 | 	 * will have SE set, in which case, continue the remaining processing | 
 | 	 * of do_debug, as if this is not a probe hit. | 
 | 	 */ | 
 | 	if (regs->msr & MSR_SE) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	const struct exception_table_entry *entry; | 
 |  | 
 | 	switch(kcb->kprobe_status) { | 
 | 	case KPROBE_HIT_SS: | 
 | 	case KPROBE_REENTER: | 
 | 		/* | 
 | 		 * We are here because the instruction being single | 
 | 		 * stepped caused a page fault. We reset the current | 
 | 		 * kprobe and the nip points back to the probe address | 
 | 		 * and allow the page fault handler to continue as a | 
 | 		 * normal page fault. | 
 | 		 */ | 
 | 		regs->nip = (unsigned long)cur->addr; | 
 | 		regs->msr &= ~MSR_SE; | 
 | 		regs->msr |= kcb->kprobe_saved_msr; | 
 | 		if (kcb->kprobe_status == KPROBE_REENTER) | 
 | 			restore_previous_kprobe(kcb); | 
 | 		else | 
 | 			reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		break; | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 		/* | 
 | 		 * We increment the nmissed count for accounting, | 
 | 		 * we can also use npre/npostfault count for accouting | 
 | 		 * these specific fault cases. | 
 | 		 */ | 
 | 		kprobes_inc_nmissed_count(cur); | 
 |  | 
 | 		/* | 
 | 		 * We come here because instructions in the pre/post | 
 | 		 * handler caused the page_fault, this could happen | 
 | 		 * if handler tries to access user space by | 
 | 		 * copy_from_user(), get_user() etc. Let the | 
 | 		 * user-specified handler try to fix it first. | 
 | 		 */ | 
 | 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * In case the user-specified fault handler returned | 
 | 		 * zero, try to fix up. | 
 | 		 */ | 
 | 		if ((entry = search_exception_tables(regs->nip)) != NULL) { | 
 | 			regs->nip = entry->fixup; | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * fixup_exception() could not handle it, | 
 | 		 * Let do_page_fault() fix it. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper routine to for handling exceptions. | 
 |  */ | 
 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 				       unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = (struct die_args *)data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	if (args->regs && user_mode(args->regs)) | 
 | 		return ret; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_BPT: | 
 | 		if (kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_SSTEP: | 
 | 		if (post_kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_PAGE_FAULT: | 
 | 		/* kprobe_running() needs smp_processor_id() */ | 
 | 		preempt_disable(); | 
 | 		if (kprobe_running() && | 
 | 		    kprobe_fault_handler(args->regs, args->trapnr)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		preempt_enable(); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); | 
 |  | 
 | 	/* setup return addr to the jprobe handler routine */ | 
 | #ifdef CONFIG_PPC64 | 
 | 	regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); | 
 | 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); | 
 | #else | 
 | 	regs->nip = (unsigned long)jp->entry; | 
 | #endif | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | void __kprobes jprobe_return(void) | 
 | { | 
 | 	asm volatile("trap" ::: "memory"); | 
 | } | 
 |  | 
 | void __kprobes jprobe_return_end(void) | 
 | { | 
 | }; | 
 |  | 
 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	/* | 
 | 	 * FIXME - we should ideally be validating that we got here 'cos | 
 | 	 * of the "trap" in jprobe_return() above, before restoring the | 
 | 	 * saved regs... | 
 | 	 */ | 
 | 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); | 
 | 	preempt_enable_no_resched(); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static struct kprobe trampoline_p = { | 
 | 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline, | 
 | 	.pre_handler = trampoline_probe_handler | 
 | }; | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	return register_kprobe(&trampoline_p); | 
 | } |