Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/i386/math-emu/wm_sqrt.S b/arch/i386/math-emu/wm_sqrt.S
new file mode 100644
index 0000000..d258f59
--- /dev/null
+++ b/arch/i386/math-emu/wm_sqrt.S
@@ -0,0 +1,470 @@
+	.file	"wm_sqrt.S"
+/*---------------------------------------------------------------------------+
+ |  wm_sqrt.S                                                                |
+ |                                                                           |
+ | Fixed point arithmetic square root evaluation.                            |
+ |                                                                           |
+ | Copyright (C) 1992,1993,1995,1997                                         |
+ |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
+ |                       Australia.  E-mail billm@suburbia.net               |
+ |                                                                           |
+ | Call from C as:                                                           |
+ |    int wm_sqrt(FPU_REG *n, unsigned int control_word)                     |
+ |                                                                           |
+ +---------------------------------------------------------------------------*/
+
+/*---------------------------------------------------------------------------+
+ |  wm_sqrt(FPU_REG *n, unsigned int control_word)                           |
+ |    returns the square root of n in n.                                     |
+ |                                                                           |
+ |  Use Newton's method to compute the square root of a number, which must   |
+ |  be in the range  [1.0 .. 4.0),  to 64 bits accuracy.                     |
+ |  Does not check the sign or tag of the argument.                          |
+ |  Sets the exponent, but not the sign or tag of the result.                |
+ |                                                                           |
+ |  The guess is kept in %esi:%edi                                           |
+ +---------------------------------------------------------------------------*/
+
+#include "exception.h"
+#include "fpu_emu.h"
+
+
+#ifndef NON_REENTRANT_FPU
+/*	Local storage on the stack: */
+#define FPU_accum_3	-4(%ebp)	/* ms word */
+#define FPU_accum_2	-8(%ebp)
+#define FPU_accum_1	-12(%ebp)
+#define FPU_accum_0	-16(%ebp)
+
+/*
+ * The de-normalised argument:
+ *                  sq_2                  sq_1              sq_0
+ *        b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0
+ *           ^ binary point here
+ */
+#define FPU_fsqrt_arg_2	-20(%ebp)	/* ms word */
+#define FPU_fsqrt_arg_1	-24(%ebp)
+#define FPU_fsqrt_arg_0	-28(%ebp)	/* ls word, at most the ms bit is set */
+
+#else
+/*	Local storage in a static area: */
+.data
+	.align 4,0
+FPU_accum_3:
+	.long	0		/* ms word */
+FPU_accum_2:
+	.long	0
+FPU_accum_1:
+	.long	0
+FPU_accum_0:
+	.long	0
+
+/* The de-normalised argument:
+                    sq_2                  sq_1              sq_0
+          b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0
+             ^ binary point here
+ */
+FPU_fsqrt_arg_2:
+	.long	0		/* ms word */
+FPU_fsqrt_arg_1:
+	.long	0
+FPU_fsqrt_arg_0:
+	.long	0		/* ls word, at most the ms bit is set */
+#endif /* NON_REENTRANT_FPU */ 
+
+
+.text
+ENTRY(wm_sqrt)
+	pushl	%ebp
+	movl	%esp,%ebp
+#ifndef NON_REENTRANT_FPU
+	subl	$28,%esp
+#endif /* NON_REENTRANT_FPU */
+	pushl	%esi
+	pushl	%edi
+	pushl	%ebx
+
+	movl	PARAM1,%esi
+
+	movl	SIGH(%esi),%eax
+	movl	SIGL(%esi),%ecx
+	xorl	%edx,%edx
+
+/* We use a rough linear estimate for the first guess.. */
+
+	cmpw	EXP_BIAS,EXP(%esi)
+	jnz	sqrt_arg_ge_2
+
+	shrl	$1,%eax			/* arg is in the range  [1.0 .. 2.0) */
+	rcrl	$1,%ecx
+	rcrl	$1,%edx
+
+sqrt_arg_ge_2:
+/* From here on, n is never accessed directly again until it is
+   replaced by the answer. */
+
+	movl	%eax,FPU_fsqrt_arg_2		/* ms word of n */
+	movl	%ecx,FPU_fsqrt_arg_1
+	movl	%edx,FPU_fsqrt_arg_0
+
+/* Make a linear first estimate */
+	shrl	$1,%eax
+	addl	$0x40000000,%eax
+	movl	$0xaaaaaaaa,%ecx
+	mull	%ecx
+	shll	%edx			/* max result was 7fff... */
+	testl	$0x80000000,%edx	/* but min was 3fff... */
+	jnz	sqrt_prelim_no_adjust
+
+	movl	$0x80000000,%edx	/* round up */
+
+sqrt_prelim_no_adjust:
+	movl	%edx,%esi	/* Our first guess */
+
+/* We have now computed (approx)   (2 + x) / 3, which forms the basis
+   for a few iterations of Newton's method */
+
+	movl	FPU_fsqrt_arg_2,%ecx	/* ms word */
+
+/*
+ * From our initial estimate, three iterations are enough to get us
+ * to 30 bits or so. This will then allow two iterations at better
+ * precision to complete the process.
+ */
+
+/* Compute  (g + n/g)/2  at each iteration (g is the guess). */
+	shrl	%ecx		/* Doing this first will prevent a divide */
+				/* overflow later. */
+
+	movl	%ecx,%edx	/* msw of the arg / 2 */
+	divl	%esi		/* current estimate */
+	shrl	%esi		/* divide by 2 */
+	addl	%eax,%esi	/* the new estimate */
+
+	movl	%ecx,%edx
+	divl	%esi
+	shrl	%esi
+	addl	%eax,%esi
+
+	movl	%ecx,%edx
+	divl	%esi
+	shrl	%esi
+	addl	%eax,%esi
+
+/*
+ * Now that an estimate accurate to about 30 bits has been obtained (in %esi),
+ * we improve it to 60 bits or so.
+ *
+ * The strategy from now on is to compute new estimates from
+ *      guess := guess + (n - guess^2) / (2 * guess)
+ */
+
+/* First, find the square of the guess */
+	movl	%esi,%eax
+	mull	%esi
+/* guess^2 now in %edx:%eax */
+
+	movl	FPU_fsqrt_arg_1,%ecx
+	subl	%ecx,%eax
+	movl	FPU_fsqrt_arg_2,%ecx	/* ms word of normalized n */
+	sbbl	%ecx,%edx
+	jnc	sqrt_stage_2_positive
+
+/* Subtraction gives a negative result,
+   negate the result before division. */
+	notl	%edx
+	notl	%eax
+	addl	$1,%eax
+	adcl	$0,%edx
+
+	divl	%esi
+	movl	%eax,%ecx
+
+	movl	%edx,%eax
+	divl	%esi
+	jmp	sqrt_stage_2_finish
+
+sqrt_stage_2_positive:
+	divl	%esi
+	movl	%eax,%ecx
+
+	movl	%edx,%eax
+	divl	%esi
+
+	notl	%ecx
+	notl	%eax
+	addl	$1,%eax
+	adcl	$0,%ecx
+
+sqrt_stage_2_finish:
+	sarl	$1,%ecx		/* divide by 2 */
+	rcrl	$1,%eax
+
+	/* Form the new estimate in %esi:%edi */
+	movl	%eax,%edi
+	addl	%ecx,%esi
+
+	jnz	sqrt_stage_2_done	/* result should be [1..2) */
+
+#ifdef PARANOID
+/* It should be possible to get here only if the arg is ffff....ffff */
+	cmp	$0xffffffff,FPU_fsqrt_arg_1
+	jnz	sqrt_stage_2_error
+#endif /* PARANOID */
+
+/* The best rounded result. */
+	xorl	%eax,%eax
+	decl	%eax
+	movl	%eax,%edi
+	movl	%eax,%esi
+	movl	$0x7fffffff,%eax
+	jmp	sqrt_round_result
+
+#ifdef PARANOID
+sqrt_stage_2_error:
+	pushl	EX_INTERNAL|0x213
+	call	EXCEPTION
+#endif /* PARANOID */ 
+
+sqrt_stage_2_done:
+
+/* Now the square root has been computed to better than 60 bits. */
+
+/* Find the square of the guess. */
+	movl	%edi,%eax		/* ls word of guess */
+	mull	%edi
+	movl	%edx,FPU_accum_1
+
+	movl	%esi,%eax
+	mull	%esi
+	movl	%edx,FPU_accum_3
+	movl	%eax,FPU_accum_2
+
+	movl	%edi,%eax
+	mull	%esi
+	addl	%eax,FPU_accum_1
+	adcl	%edx,FPU_accum_2
+	adcl	$0,FPU_accum_3
+
+/*	movl	%esi,%eax */
+/*	mull	%edi */
+	addl	%eax,FPU_accum_1
+	adcl	%edx,FPU_accum_2
+	adcl	$0,FPU_accum_3
+
+/* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */
+
+	movl	FPU_fsqrt_arg_0,%eax		/* get normalized n */
+	subl	%eax,FPU_accum_1
+	movl	FPU_fsqrt_arg_1,%eax
+	sbbl	%eax,FPU_accum_2
+	movl	FPU_fsqrt_arg_2,%eax		/* ms word of normalized n */
+	sbbl	%eax,FPU_accum_3
+	jnc	sqrt_stage_3_positive
+
+/* Subtraction gives a negative result,
+   negate the result before division */
+	notl	FPU_accum_1
+	notl	FPU_accum_2
+	notl	FPU_accum_3
+	addl	$1,FPU_accum_1
+	adcl	$0,FPU_accum_2
+
+#ifdef PARANOID
+	adcl	$0,FPU_accum_3	/* This must be zero */
+	jz	sqrt_stage_3_no_error
+
+sqrt_stage_3_error:
+	pushl	EX_INTERNAL|0x207
+	call	EXCEPTION
+
+sqrt_stage_3_no_error:
+#endif /* PARANOID */
+
+	movl	FPU_accum_2,%edx
+	movl	FPU_accum_1,%eax
+	divl	%esi
+	movl	%eax,%ecx
+
+	movl	%edx,%eax
+	divl	%esi
+
+	sarl	$1,%ecx		/* divide by 2 */
+	rcrl	$1,%eax
+
+	/* prepare to round the result */
+
+	addl	%ecx,%edi
+	adcl	$0,%esi
+
+	jmp	sqrt_stage_3_finished
+
+sqrt_stage_3_positive:
+	movl	FPU_accum_2,%edx
+	movl	FPU_accum_1,%eax
+	divl	%esi
+	movl	%eax,%ecx
+
+	movl	%edx,%eax
+	divl	%esi
+
+	sarl	$1,%ecx		/* divide by 2 */
+	rcrl	$1,%eax
+
+	/* prepare to round the result */
+
+	notl	%eax		/* Negate the correction term */
+	notl	%ecx
+	addl	$1,%eax
+	adcl	$0,%ecx		/* carry here ==> correction == 0 */
+	adcl	$0xffffffff,%esi
+
+	addl	%ecx,%edi
+	adcl	$0,%esi
+
+sqrt_stage_3_finished:
+
+/*
+ * The result in %esi:%edi:%esi should be good to about 90 bits here,
+ * and the rounding information here does not have sufficient accuracy
+ * in a few rare cases.
+ */
+	cmpl	$0xffffffe0,%eax
+	ja	sqrt_near_exact_x
+
+	cmpl	$0x00000020,%eax
+	jb	sqrt_near_exact
+
+	cmpl	$0x7fffffe0,%eax
+	jb	sqrt_round_result
+
+	cmpl	$0x80000020,%eax
+	jb	sqrt_get_more_precision
+
+sqrt_round_result:
+/* Set up for rounding operations */
+	movl	%eax,%edx
+	movl	%esi,%eax
+	movl	%edi,%ebx
+	movl	PARAM1,%edi
+	movw	EXP_BIAS,EXP(%edi)	/* Result is in  [1.0 .. 2.0) */
+	jmp	fpu_reg_round
+
+
+sqrt_near_exact_x:
+/* First, the estimate must be rounded up. */
+	addl	$1,%edi
+	adcl	$0,%esi
+
+sqrt_near_exact:
+/*
+ * This is an easy case because x^1/2 is monotonic.
+ * We need just find the square of our estimate, compare it
+ * with the argument, and deduce whether our estimate is
+ * above, below, or exact. We use the fact that the estimate
+ * is known to be accurate to about 90 bits.
+ */
+	movl	%edi,%eax		/* ls word of guess */
+	mull	%edi
+	movl	%edx,%ebx		/* 2nd ls word of square */
+	movl	%eax,%ecx		/* ls word of square */
+
+	movl	%edi,%eax
+	mull	%esi
+	addl	%eax,%ebx
+	addl	%eax,%ebx
+
+#ifdef PARANOID
+	cmp	$0xffffffb0,%ebx
+	jb	sqrt_near_exact_ok
+
+	cmp	$0x00000050,%ebx
+	ja	sqrt_near_exact_ok
+
+	pushl	EX_INTERNAL|0x214
+	call	EXCEPTION
+
+sqrt_near_exact_ok:
+#endif /* PARANOID */ 
+
+	or	%ebx,%ebx
+	js	sqrt_near_exact_small
+
+	jnz	sqrt_near_exact_large
+
+	or	%ebx,%edx
+	jnz	sqrt_near_exact_large
+
+/* Our estimate is exactly the right answer */
+	xorl	%eax,%eax
+	jmp	sqrt_round_result
+
+sqrt_near_exact_small:
+/* Our estimate is too small */
+	movl	$0x000000ff,%eax
+	jmp	sqrt_round_result
+	
+sqrt_near_exact_large:
+/* Our estimate is too large, we need to decrement it */
+	subl	$1,%edi
+	sbbl	$0,%esi
+	movl	$0xffffff00,%eax
+	jmp	sqrt_round_result
+
+
+sqrt_get_more_precision:
+/* This case is almost the same as the above, except we start
+   with an extra bit of precision in the estimate. */
+	stc			/* The extra bit. */
+	rcll	$1,%edi		/* Shift the estimate left one bit */
+	rcll	$1,%esi
+
+	movl	%edi,%eax		/* ls word of guess */
+	mull	%edi
+	movl	%edx,%ebx		/* 2nd ls word of square */
+	movl	%eax,%ecx		/* ls word of square */
+
+	movl	%edi,%eax
+	mull	%esi
+	addl	%eax,%ebx
+	addl	%eax,%ebx
+
+/* Put our estimate back to its original value */
+	stc			/* The ms bit. */
+	rcrl	$1,%esi		/* Shift the estimate left one bit */
+	rcrl	$1,%edi
+
+#ifdef PARANOID
+	cmp	$0xffffff60,%ebx
+	jb	sqrt_more_prec_ok
+
+	cmp	$0x000000a0,%ebx
+	ja	sqrt_more_prec_ok
+
+	pushl	EX_INTERNAL|0x215
+	call	EXCEPTION
+
+sqrt_more_prec_ok:
+#endif /* PARANOID */ 
+
+	or	%ebx,%ebx
+	js	sqrt_more_prec_small
+
+	jnz	sqrt_more_prec_large
+
+	or	%ebx,%ecx
+	jnz	sqrt_more_prec_large
+
+/* Our estimate is exactly the right answer */
+	movl	$0x80000000,%eax
+	jmp	sqrt_round_result
+
+sqrt_more_prec_small:
+/* Our estimate is too small */
+	movl	$0x800000ff,%eax
+	jmp	sqrt_round_result
+	
+sqrt_more_prec_large:
+/* Our estimate is too large */
+	movl	$0x7fffff00,%eax
+	jmp	sqrt_round_result