Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c
new file mode 100644
index 0000000..13feefd
--- /dev/null
+++ b/drivers/mtd/nand/nandsim.c
@@ -0,0 +1,1613 @@
+/*
+ * NAND flash simulator.
+ *
+ * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
+ *
+ * Copyright (C) 2004 Nokia Corporation 
+ *
+ * Note: NS means "NAND Simulator".
+ * Note: Input means input TO flash chip, output means output FROM chip.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2, or (at your option) any later
+ * version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
+ * Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
+ *
+ * $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $
+ */
+
+#include <linux/config.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/vmalloc.h>
+#include <linux/slab.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/delay.h>
+#ifdef CONFIG_NS_ABS_POS
+#include <asm/io.h>
+#endif
+
+
+/* Default simulator parameters values */
+#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
+    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
+    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
+    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
+#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
+#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
+#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
+#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
+#endif
+
+#ifndef CONFIG_NANDSIM_ACCESS_DELAY
+#define CONFIG_NANDSIM_ACCESS_DELAY 25
+#endif
+#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
+#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
+#endif
+#ifndef CONFIG_NANDSIM_ERASE_DELAY
+#define CONFIG_NANDSIM_ERASE_DELAY 2
+#endif
+#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
+#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
+#endif
+#ifndef CONFIG_NANDSIM_INPUT_CYCLE
+#define CONFIG_NANDSIM_INPUT_CYCLE  50
+#endif
+#ifndef CONFIG_NANDSIM_BUS_WIDTH
+#define CONFIG_NANDSIM_BUS_WIDTH  8
+#endif
+#ifndef CONFIG_NANDSIM_DO_DELAYS
+#define CONFIG_NANDSIM_DO_DELAYS  0
+#endif
+#ifndef CONFIG_NANDSIM_LOG
+#define CONFIG_NANDSIM_LOG        0
+#endif
+#ifndef CONFIG_NANDSIM_DBG
+#define CONFIG_NANDSIM_DBG        0
+#endif
+
+static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
+static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
+static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
+static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
+static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
+static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
+static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
+static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
+static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
+static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
+static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
+static uint log            = CONFIG_NANDSIM_LOG;
+static uint dbg            = CONFIG_NANDSIM_DBG;
+
+module_param(first_id_byte,  uint, 0400);
+module_param(second_id_byte, uint, 0400);
+module_param(third_id_byte,  uint, 0400);
+module_param(fourth_id_byte, uint, 0400);
+module_param(access_delay,   uint, 0400);
+module_param(programm_delay, uint, 0400);
+module_param(erase_delay,    uint, 0400);
+module_param(output_cycle,   uint, 0400);
+module_param(input_cycle,    uint, 0400);
+module_param(bus_width,      uint, 0400);
+module_param(do_delays,      uint, 0400);
+module_param(log,            uint, 0400);
+module_param(dbg,            uint, 0400);
+
+MODULE_PARM_DESC(first_id_byte,  "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
+MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
+MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
+MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
+MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
+MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
+MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
+MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
+MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
+MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
+MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
+MODULE_PARM_DESC(log,            "Perform logging if not zero");
+MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
+
+/* The largest possible page size */
+#define NS_LARGEST_PAGE_SIZE	2048
+	
+/* The prefix for simulator output */
+#define NS_OUTPUT_PREFIX "[nandsim]"
+
+/* Simulator's output macros (logging, debugging, warning, error) */
+#define NS_LOG(args...) \
+	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
+#define NS_DBG(args...) \
+	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
+#define NS_WARN(args...) \
+	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
+#define NS_ERR(args...) \
+	do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
+
+/* Busy-wait delay macros (microseconds, milliseconds) */
+#define NS_UDELAY(us) \
+        do { if (do_delays) udelay(us); } while(0)
+#define NS_MDELAY(us) \
+        do { if (do_delays) mdelay(us); } while(0)
+	
+/* Is the nandsim structure initialized ? */
+#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
+
+/* Good operation completion status */
+#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
+
+/* Operation failed completion status */
+#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) 
+
+/* Calculate the page offset in flash RAM image by (row, column) address */
+#define NS_RAW_OFFSET(ns) \
+	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
+	
+/* Calculate the OOB offset in flash RAM image by (row, column) address */
+#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
+
+/* After a command is input, the simulator goes to one of the following states */
+#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
+#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
+#define STATE_CMD_READSTART      0x00000003 /* read data second command (large page devices) */
+#define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
+#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
+#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
+#define STATE_CMD_STATUS       0x00000007 /* read status */
+#define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
+#define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
+#define STATE_CMD_READID       0x0000000A /* read ID */
+#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
+#define STATE_CMD_RESET        0x0000000C /* reset */
+#define STATE_CMD_MASK         0x0000000F /* command states mask */
+
+/* After an addres is input, the simulator goes to one of these states */
+#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
+#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
+#define STATE_ADDR_ZERO        0x00000030 /* one byte zero address was accepted */
+#define STATE_ADDR_MASK        0x00000030 /* address states mask */
+
+/* Durind data input/output the simulator is in these states */
+#define STATE_DATAIN           0x00000100 /* waiting for data input */
+#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
+
+#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
+#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
+#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
+#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
+#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
+
+/* Previous operation is done, ready to accept new requests */
+#define STATE_READY            0x00000000
+
+/* This state is used to mark that the next state isn't known yet */
+#define STATE_UNKNOWN          0x10000000
+
+/* Simulator's actions bit masks */
+#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
+#define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
+#define ACTION_SECERASE  0x00300000 /* erase sector */
+#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
+#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
+#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
+#define ACTION_MASK      0x00700000 /* action mask */
+
+#define NS_OPER_NUM      12 /* Number of operations supported by the simulator */
+#define NS_OPER_STATES   6  /* Maximum number of states in operation */
+
+#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
+#define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
+#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
+#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
+#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
+#define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
+#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
+#define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
+#define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
+
+/* Remove action bits ftom state */
+#define NS_STATE(x) ((x) & ~ACTION_MASK)
+	
+/* 
+ * Maximum previous states which need to be saved. Currently saving is
+ * only needed for page programm operation with preceeded read command
+ * (which is only valid for 512-byte pages).
+ */
+#define NS_MAX_PREVSTATES 1
+
+/* 
+ * The structure which describes all the internal simulator data.
+ */
+struct nandsim {
+	struct mtd_partition part;
+
+	uint busw;              /* flash chip bus width (8 or 16) */
+	u_char ids[4];          /* chip's ID bytes */
+	uint32_t options;       /* chip's characteristic bits */
+	uint32_t state;         /* current chip state */
+	uint32_t nxstate;       /* next expected state */
+	
+	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
+	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
+	uint16_t npstates;      /* number of previous states saved */
+	uint16_t stateidx;      /* current state index */
+
+	/* The simulated NAND flash image */
+	union flash_media {
+		u_char *byte;
+		uint16_t    *word;
+	} mem;
+
+	/* Internal buffer of page + OOB size bytes */
+	union internal_buffer {
+		u_char *byte;    /* for byte access */
+		uint16_t *word;  /* for 16-bit word access */
+	} buf;
+
+	/* NAND flash "geometry" */
+	struct nandsin_geometry {
+		uint32_t totsz;     /* total flash size, bytes */
+		uint32_t secsz;     /* flash sector (erase block) size, bytes */
+		uint pgsz;          /* NAND flash page size, bytes */
+		uint oobsz;         /* page OOB area size, bytes */
+		uint32_t totszoob;  /* total flash size including OOB, bytes */
+		uint pgszoob;       /* page size including OOB , bytes*/
+		uint secszoob;      /* sector size including OOB, bytes */
+		uint pgnum;         /* total number of pages */
+		uint pgsec;         /* number of pages per sector */
+		uint secshift;      /* bits number in sector size */
+		uint pgshift;       /* bits number in page size */
+		uint oobshift;      /* bits number in OOB size */
+		uint pgaddrbytes;   /* bytes per page address */
+		uint secaddrbytes;  /* bytes per sector address */
+		uint idbytes;       /* the number ID bytes that this chip outputs */
+	} geom;
+
+	/* NAND flash internal registers */
+	struct nandsim_regs {
+		unsigned command; /* the command register */
+		u_char   status;  /* the status register */
+		uint     row;     /* the page number */
+		uint     column;  /* the offset within page */
+		uint     count;   /* internal counter */
+		uint     num;     /* number of bytes which must be processed */
+		uint     off;     /* fixed page offset */
+	} regs;
+
+	/* NAND flash lines state */
+        struct ns_lines_status {
+                int ce;  /* chip Enable */
+                int cle; /* command Latch Enable */
+                int ale; /* address Latch Enable */
+                int wp;  /* write Protect */
+        } lines;
+};
+
+/*
+ * Operations array. To perform any operation the simulator must pass
+ * through the correspondent states chain.
+ */
+static struct nandsim_operations {
+	uint32_t reqopts;  /* options which are required to perform the operation */
+	uint32_t states[NS_OPER_STATES]; /* operation's states */
+} ops[NS_OPER_NUM] = {
+	/* Read page + OOB from the beginning */
+	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
+			STATE_DATAOUT, STATE_READY}},
+	/* Read page + OOB from the second half */
+	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
+			STATE_DATAOUT, STATE_READY}},
+	/* Read OOB */
+	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
+			STATE_DATAOUT, STATE_READY}},
+	/* Programm page starting from the beginning */
+	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
+			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Programm page starting from the beginning */
+	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
+			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Programm page starting from the second half */
+	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
+			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Programm OOB */
+	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
+			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Erase sector */
+	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
+	/* Read status */
+	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
+	/* Read multi-plane status */
+	{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
+	/* Read ID */
+	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
+	/* Large page devices read page */
+	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
+			       STATE_DATAOUT, STATE_READY}}
+};
+
+/* MTD structure for NAND controller */
+static struct mtd_info *nsmtd;
+
+static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
+
+/*
+ * Initialize the nandsim structure.
+ *
+ * RETURNS: 0 if success, -ERRNO if failure.
+ */
+static int
+init_nandsim(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+	struct nandsim   *ns   = (struct nandsim *)(chip->priv);
+	int i;
+
+	if (NS_IS_INITIALIZED(ns)) {
+		NS_ERR("init_nandsim: nandsim is already initialized\n");
+		return -EIO;
+	}
+
+	/* Force mtd to not do delays */
+	chip->chip_delay = 0;
+
+	/* Initialize the NAND flash parameters */
+	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
+	ns->geom.totsz    = mtd->size;
+	ns->geom.pgsz     = mtd->oobblock;
+	ns->geom.oobsz    = mtd->oobsize;
+	ns->geom.secsz    = mtd->erasesize;
+	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
+	ns->geom.pgnum    = ns->geom.totsz / ns->geom.pgsz;
+	ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
+	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
+	ns->geom.pgshift  = chip->page_shift;
+	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
+	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
+	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
+	ns->options = 0;
+
+	if (ns->geom.pgsz == 256) {
+		ns->options |= OPT_PAGE256;
+	}
+	else if (ns->geom.pgsz == 512) {
+		ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
+		if (ns->busw == 8)
+			ns->options |= OPT_PAGE512_8BIT;
+	} else if (ns->geom.pgsz == 2048) {
+		ns->options |= OPT_PAGE2048;
+	} else {
+		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
+		return -EIO;
+	}
+
+	if (ns->options & OPT_SMALLPAGE) {
+		if (ns->geom.totsz < (64 << 20)) {
+			ns->geom.pgaddrbytes  = 3;
+			ns->geom.secaddrbytes = 2;
+		} else {
+			ns->geom.pgaddrbytes  = 4;
+			ns->geom.secaddrbytes = 3;
+		}
+	} else {
+		if (ns->geom.totsz <= (128 << 20)) {
+			ns->geom.pgaddrbytes  = 5;
+			ns->geom.secaddrbytes = 2;
+		} else {
+			ns->geom.pgaddrbytes  = 5;
+			ns->geom.secaddrbytes = 3;
+		}
+	}
+	
+	/* Detect how many ID bytes the NAND chip outputs */
+        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+                if (second_id_byte != nand_flash_ids[i].id)
+                        continue;
+		if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
+			ns->options |= OPT_AUTOINCR;
+	}
+
+	if (ns->busw == 16)
+		NS_WARN("16-bit flashes support wasn't tested\n");
+
+	printk("flash size: %u MiB\n",          ns->geom.totsz >> 20);
+	printk("page size: %u bytes\n",         ns->geom.pgsz);
+	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
+	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
+	printk("pages number: %u\n",            ns->geom.pgnum);
+	printk("pages per sector: %u\n",        ns->geom.pgsec);
+	printk("bus width: %u\n",               ns->busw);
+	printk("bits in sector size: %u\n",     ns->geom.secshift);
+	printk("bits in page size: %u\n",       ns->geom.pgshift);
+	printk("bits in OOB size: %u\n",        ns->geom.oobshift);
+	printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
+	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
+	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
+	printk("options: %#x\n",                ns->options);
+
+	/* Map / allocate and initialize the flash image */
+#ifdef CONFIG_NS_ABS_POS
+	ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob);
+	if (!ns->mem.byte) {
+		NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n", 
+			(void *)CONFIG_NS_ABS_POS);
+		return -ENOMEM;
+	}
+#else
+	ns->mem.byte = vmalloc(ns->geom.totszoob);
+	if (!ns->mem.byte) {
+		NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
+			ns->geom.totszoob);
+		return -ENOMEM;
+	}
+	memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
+#endif
+
+	/* Allocate / initialize the internal buffer */
+	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
+	if (!ns->buf.byte) {
+		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
+			ns->geom.pgszoob);
+		goto error;
+	}
+	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
+
+	/* Fill the partition_info structure */
+	ns->part.name   = "NAND simulator partition";
+	ns->part.offset = 0;
+	ns->part.size   = ns->geom.totsz;
+
+	return 0;
+
+error:
+#ifdef CONFIG_NS_ABS_POS
+	iounmap(ns->mem.byte);
+#else
+	vfree(ns->mem.byte);
+#endif
+
+	return -ENOMEM;
+}
+
+/*
+ * Free the nandsim structure.
+ */
+static void
+free_nandsim(struct nandsim *ns)
+{
+	kfree(ns->buf.byte);
+
+#ifdef CONFIG_NS_ABS_POS
+	iounmap(ns->mem.byte);
+#else
+	vfree(ns->mem.byte);
+#endif
+
+	return;
+}
+
+/*
+ * Returns the string representation of 'state' state.
+ */
+static char *
+get_state_name(uint32_t state)
+{
+	switch (NS_STATE(state)) {
+		case STATE_CMD_READ0:
+			return "STATE_CMD_READ0";
+		case STATE_CMD_READ1:
+			return "STATE_CMD_READ1";
+		case STATE_CMD_PAGEPROG:
+			return "STATE_CMD_PAGEPROG";
+		case STATE_CMD_READOOB:
+			return "STATE_CMD_READOOB";
+		case STATE_CMD_READSTART:
+			return "STATE_CMD_READSTART";
+		case STATE_CMD_ERASE1:
+			return "STATE_CMD_ERASE1";
+		case STATE_CMD_STATUS:
+			return "STATE_CMD_STATUS";
+		case STATE_CMD_STATUS_M:
+			return "STATE_CMD_STATUS_M";
+		case STATE_CMD_SEQIN:
+			return "STATE_CMD_SEQIN";
+		case STATE_CMD_READID:
+			return "STATE_CMD_READID";
+		case STATE_CMD_ERASE2:
+			return "STATE_CMD_ERASE2";
+		case STATE_CMD_RESET:
+			return "STATE_CMD_RESET";
+		case STATE_ADDR_PAGE:
+			return "STATE_ADDR_PAGE";
+		case STATE_ADDR_SEC:
+			return "STATE_ADDR_SEC";
+		case STATE_ADDR_ZERO:
+			return "STATE_ADDR_ZERO";
+		case STATE_DATAIN:
+			return "STATE_DATAIN";
+		case STATE_DATAOUT:
+			return "STATE_DATAOUT";
+		case STATE_DATAOUT_ID:
+			return "STATE_DATAOUT_ID";
+		case STATE_DATAOUT_STATUS:
+			return "STATE_DATAOUT_STATUS";
+		case STATE_DATAOUT_STATUS_M:
+			return "STATE_DATAOUT_STATUS_M";
+		case STATE_READY:
+			return "STATE_READY";
+		case STATE_UNKNOWN:
+			return "STATE_UNKNOWN";
+	}
+
+	NS_ERR("get_state_name: unknown state, BUG\n");
+	return NULL;
+}
+
+/*
+ * Check if command is valid.
+ *
+ * RETURNS: 1 if wrong command, 0 if right.
+ */
+static int
+check_command(int cmd)
+{
+	switch (cmd) {
+		
+	case NAND_CMD_READ0:
+	case NAND_CMD_READSTART:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_READOOB:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_READID:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_RESET:
+	case NAND_CMD_READ1:
+		return 0;
+		
+	case NAND_CMD_STATUS_MULTI:
+	default:
+		return 1;
+	}
+}
+
+/*
+ * Returns state after command is accepted by command number.
+ */
+static uint32_t
+get_state_by_command(unsigned command)
+{
+	switch (command) {
+		case NAND_CMD_READ0:
+			return STATE_CMD_READ0;
+		case NAND_CMD_READ1:
+			return STATE_CMD_READ1;
+		case NAND_CMD_PAGEPROG:
+			return STATE_CMD_PAGEPROG;
+		case NAND_CMD_READSTART:
+			return STATE_CMD_READSTART;
+		case NAND_CMD_READOOB:
+			return STATE_CMD_READOOB;
+		case NAND_CMD_ERASE1:
+			return STATE_CMD_ERASE1;
+		case NAND_CMD_STATUS:
+			return STATE_CMD_STATUS;
+		case NAND_CMD_STATUS_MULTI:
+			return STATE_CMD_STATUS_M;
+		case NAND_CMD_SEQIN:
+			return STATE_CMD_SEQIN;
+		case NAND_CMD_READID:
+			return STATE_CMD_READID;
+		case NAND_CMD_ERASE2:
+			return STATE_CMD_ERASE2;
+		case NAND_CMD_RESET:
+			return STATE_CMD_RESET;
+	}
+
+	NS_ERR("get_state_by_command: unknown command, BUG\n");
+	return 0;
+}
+
+/*
+ * Move an address byte to the correspondent internal register.
+ */
+static inline void
+accept_addr_byte(struct nandsim *ns, u_char bt)
+{
+	uint byte = (uint)bt;
+	
+	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
+		ns->regs.column |= (byte << 8 * ns->regs.count);
+	else {
+		ns->regs.row |= (byte << 8 * (ns->regs.count -
+						ns->geom.pgaddrbytes +
+						ns->geom.secaddrbytes));
+	}
+
+	return;
+}
+		
+/*
+ * Switch to STATE_READY state.
+ */
+static inline void 
+switch_to_ready_state(struct nandsim *ns, u_char status)
+{
+	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
+
+	ns->state       = STATE_READY;
+	ns->nxstate     = STATE_UNKNOWN;
+	ns->op          = NULL;
+	ns->npstates    = 0;
+	ns->stateidx    = 0;
+	ns->regs.num    = 0;
+	ns->regs.count  = 0;
+	ns->regs.off    = 0;
+	ns->regs.row    = 0;
+	ns->regs.column = 0;
+	ns->regs.status = status;
+}
+
+/*
+ * If the operation isn't known yet, try to find it in the global array
+ * of supported operations.
+ *
+ * Operation can be unknown because of the following.
+ *   1. New command was accepted and this is the firs call to find the
+ *      correspondent states chain. In this case ns->npstates = 0;
+ *   2. There is several operations which begin with the same command(s)
+ *      (for example program from the second half and read from the
+ *      second half operations both begin with the READ1 command). In this
+ *      case the ns->pstates[] array contains previous states.
+ * 
+ * Thus, the function tries to find operation containing the following
+ * states (if the 'flag' parameter is 0):
+ *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
+ *
+ * If (one and only one) matching operation is found, it is accepted (
+ * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
+ * zeroed).
+ * 
+ * If there are several maches, the current state is pushed to the
+ * ns->pstates.
+ *
+ * The operation can be unknown only while commands are input to the chip.
+ * As soon as address command is accepted, the operation must be known.
+ * In such situation the function is called with 'flag' != 0, and the
+ * operation is searched using the following pattern:
+ *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
+ * 
+ * It is supposed that this pattern must either match one operation on
+ * none. There can't be ambiguity in that case.
+ *
+ * If no matches found, the functions does the following:
+ *   1. if there are saved states present, try to ignore them and search
+ *      again only using the last command. If nothing was found, switch
+ *      to the STATE_READY state.
+ *   2. if there are no saved states, switch to the STATE_READY state.
+ *
+ * RETURNS: -2 - no matched operations found.
+ *          -1 - several matches.
+ *           0 - operation is found.
+ */
+static int
+find_operation(struct nandsim *ns, uint32_t flag)
+{
+	int opsfound = 0;
+	int i, j, idx = 0;
+	
+	for (i = 0; i < NS_OPER_NUM; i++) {
+
+		int found = 1;
+	
+		if (!(ns->options & ops[i].reqopts))
+			/* Ignore operations we can't perform */
+			continue;
+			
+		if (flag) {
+			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
+				continue;
+		} else {
+			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
+				continue;
+		}
+
+		for (j = 0; j < ns->npstates; j++) 
+			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
+				&& (ns->options & ops[idx].reqopts)) {
+				found = 0;
+				break;
+			}
+
+		if (found) {
+			idx = i;
+			opsfound += 1;
+		}
+	}
+
+	if (opsfound == 1) {
+		/* Exact match */
+		ns->op = &ops[idx].states[0];
+		if (flag) {
+			/* 
+			 * In this case the find_operation function was
+			 * called when address has just began input. But it isn't
+			 * yet fully input and the current state must
+			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
+			 * state must be the next state (ns->nxstate).
+			 */
+			ns->stateidx = ns->npstates - 1;
+		} else {
+			ns->stateidx = ns->npstates;
+		}
+		ns->npstates = 0;
+		ns->state = ns->op[ns->stateidx];
+		ns->nxstate = ns->op[ns->stateidx + 1];
+		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
+				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
+		return 0;
+	}
+	
+	if (opsfound == 0) {
+		/* Nothing was found. Try to ignore previous commands (if any) and search again */
+		if (ns->npstates != 0) {
+			NS_DBG("find_operation: no operation found, try again with state %s\n",
+					get_state_name(ns->state));
+			ns->npstates = 0;
+			return find_operation(ns, 0);
+
+		}
+		NS_DBG("find_operation: no operations found\n");
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return -2;
+	}
+	
+	if (flag) {
+		/* This shouldn't happen */
+		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
+		return -2;
+	}
+	
+	NS_DBG("find_operation: there is still ambiguity\n");
+
+	ns->pstates[ns->npstates++] = ns->state;
+
+	return -1;
+}
+
+/*
+ * If state has any action bit, perform this action.
+ *
+ * RETURNS: 0 if success, -1 if error.
+ */
+static int
+do_state_action(struct nandsim *ns, uint32_t action)
+{
+	int i, num;
+	int busdiv = ns->busw == 8 ? 1 : 2;
+
+	action &= ACTION_MASK;
+	
+	/* Check that page address input is correct */
+	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
+		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
+		return -1;
+	}
+
+	switch (action) {
+
+	case ACTION_CPY:
+		/*
+		 * Copy page data to the internal buffer.
+		 */
+
+		/* Column shouldn't be very large */
+		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
+			NS_ERR("do_state_action: column number is too large\n");
+			break;
+		}
+		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+		memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
+
+		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
+			num, NS_RAW_OFFSET(ns) + ns->regs.off);
+		
+		if (ns->regs.off == 0)
+			NS_LOG("read page %d\n", ns->regs.row);
+		else if (ns->regs.off < ns->geom.pgsz)
+			NS_LOG("read page %d (second half)\n", ns->regs.row);
+		else
+			NS_LOG("read OOB of page %d\n", ns->regs.row);
+		
+		NS_UDELAY(access_delay);
+		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
+
+		break;
+
+	case ACTION_SECERASE:
+		/*
+		 * Erase sector.
+		 */
+		
+		if (ns->lines.wp) {
+			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
+			return -1;
+		}
+		
+		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
+			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
+			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
+			return -1;
+		}
+		
+		ns->regs.row = (ns->regs.row <<
+				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
+		ns->regs.column = 0;
+		
+		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
+				ns->regs.row, NS_RAW_OFFSET(ns));
+		NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
+
+		memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
+		
+		NS_MDELAY(erase_delay);
+		
+		break;
+
+	case ACTION_PRGPAGE:
+		/*
+		 * Programm page - move internal buffer data to the page.
+		 */
+
+		if (ns->lines.wp) {
+			NS_WARN("do_state_action: device is write-protected, programm\n");
+			return -1;
+		}
+
+		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+		if (num != ns->regs.count) {
+			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
+					ns->regs.count, num);
+			return -1;
+		}
+
+		for (i = 0; i < num; i++)
+			ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
+
+		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
+			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
+		NS_LOG("programm page %d\n", ns->regs.row);
+		
+		NS_UDELAY(programm_delay);
+		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
+		
+		break;
+	
+	case ACTION_ZEROOFF:
+		NS_DBG("do_state_action: set internal offset to 0\n");
+		ns->regs.off = 0;
+		break;
+
+	case ACTION_HALFOFF:
+		if (!(ns->options & OPT_PAGE512_8BIT)) {
+			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
+				"byte page size 8x chips\n");
+			return -1;
+		}
+		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
+		ns->regs.off = ns->geom.pgsz/2;
+		break;
+
+	case ACTION_OOBOFF:
+		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
+		ns->regs.off = ns->geom.pgsz;
+		break;
+		
+	default:
+		NS_DBG("do_state_action: BUG! unknown action\n");
+	}
+
+	return 0;
+}
+
+/*
+ * Switch simulator's state.
+ */
+static void
+switch_state(struct nandsim *ns)
+{
+	if (ns->op) {
+		/*
+		 * The current operation have already been identified.
+		 * Just follow the states chain.
+		 */
+		
+		ns->stateidx += 1;
+		ns->state = ns->nxstate;
+		ns->nxstate = ns->op[ns->stateidx + 1];
+
+		NS_DBG("switch_state: operation is known, switch to the next state, "
+			"state: %s, nxstate: %s\n",
+			get_state_name(ns->state), get_state_name(ns->nxstate));
+
+		/* See, whether we need to do some action */
+		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+		
+	} else {
+		/*
+		 * We don't yet know which operation we perform.
+		 * Try to identify it.
+		 */
+
+		/*  
+		 *  The only event causing the switch_state function to
+		 *  be called with yet unknown operation is new command.
+		 */
+		ns->state = get_state_by_command(ns->regs.command);
+
+		NS_DBG("switch_state: operation is unknown, try to find it\n");
+
+		if (find_operation(ns, 0) != 0)
+			return;
+
+		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+	}
+
+	/* For 16x devices column means the page offset in words */
+	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
+		NS_DBG("switch_state: double the column number for 16x device\n");
+		ns->regs.column <<= 1;
+	}
+
+	if (NS_STATE(ns->nxstate) == STATE_READY) {
+		/*
+		 * The current state is the last. Return to STATE_READY
+		 */
+
+		u_char status = NS_STATUS_OK(ns);
+		
+		/* In case of data states, see if all bytes were input/output */
+		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
+			&& ns->regs.count != ns->regs.num) {
+			NS_WARN("switch_state: not all bytes were processed, %d left\n",
+					ns->regs.num - ns->regs.count);
+			status = NS_STATUS_FAILED(ns);
+		}
+				
+		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
+
+		switch_to_ready_state(ns, status);
+
+		return;
+	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
+		/* 
+		 * If the next state is data input/output, switch to it now
+		 */
+		
+		ns->state      = ns->nxstate;
+		ns->nxstate    = ns->op[++ns->stateidx + 1];
+		ns->regs.num   = ns->regs.count = 0;
+
+		NS_DBG("switch_state: the next state is data I/O, switch, "
+			"state: %s, nxstate: %s\n",
+			get_state_name(ns->state), get_state_name(ns->nxstate));
+
+		/*
+		 * Set the internal register to the count of bytes which
+		 * are expected to be input or output
+		 */
+		switch (NS_STATE(ns->state)) {
+			case STATE_DATAIN:
+			case STATE_DATAOUT:
+				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+				break;
+				
+			case STATE_DATAOUT_ID:
+				ns->regs.num = ns->geom.idbytes;
+				break;
+				
+			case STATE_DATAOUT_STATUS:
+			case STATE_DATAOUT_STATUS_M:
+				ns->regs.count = ns->regs.num = 0;
+				break;
+				
+			default:
+				NS_ERR("switch_state: BUG! unknown data state\n");
+		}
+
+	} else if (ns->nxstate & STATE_ADDR_MASK) {
+		/*
+		 * If the next state is address input, set the internal
+		 * register to the number of expected address bytes
+		 */
+
+		ns->regs.count = 0;
+		
+		switch (NS_STATE(ns->nxstate)) {
+			case STATE_ADDR_PAGE:
+				ns->regs.num = ns->geom.pgaddrbytes;
+		
+				break;
+			case STATE_ADDR_SEC:
+				ns->regs.num = ns->geom.secaddrbytes;
+				break;
+	
+			case STATE_ADDR_ZERO:
+				ns->regs.num = 1;
+				break;
+
+			default:
+				NS_ERR("switch_state: BUG! unknown address state\n");
+		}
+	} else {
+		/* 
+		 * Just reset internal counters.
+		 */
+
+		ns->regs.num = 0;
+		ns->regs.count = 0;
+	}
+}
+
+static void
+ns_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+	struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+	switch (cmd) {
+
+	/* set CLE line high */
+	case NAND_CTL_SETCLE:
+		NS_DBG("ns_hwcontrol: start command latch cycles\n");
+		ns->lines.cle  = 1;
+		break;
+
+	/* set CLE line low */
+	case NAND_CTL_CLRCLE:
+		NS_DBG("ns_hwcontrol: stop command latch cycles\n");
+		ns->lines.cle  = 0;
+		break;
+
+	/* set ALE line high */
+	case NAND_CTL_SETALE:
+		NS_DBG("ns_hwcontrol: start address latch cycles\n");
+		ns->lines.ale   = 1;
+		break;
+
+	/* set ALE line low */
+	case NAND_CTL_CLRALE:
+		NS_DBG("ns_hwcontrol: stop address latch cycles\n");
+		ns->lines.ale  = 0;
+		break;
+
+	/* set WP line high */
+	case NAND_CTL_SETWP:
+		NS_DBG("ns_hwcontrol: enable write protection\n");
+		ns->lines.wp = 1;
+		break;
+
+	/* set WP line low */
+	case NAND_CTL_CLRWP:
+		NS_DBG("ns_hwcontrol: disable write protection\n");
+		ns->lines.wp = 0;
+		break;
+
+	/* set CE line low */
+	case NAND_CTL_SETNCE:
+		NS_DBG("ns_hwcontrol: enable chip\n");
+		ns->lines.ce = 1;
+		break;
+
+	/* set CE line high */
+	case NAND_CTL_CLRNCE:
+		NS_DBG("ns_hwcontrol: disable chip\n");
+		ns->lines.ce = 0;
+		break;
+
+	default:
+		NS_ERR("hwcontrol: unknown command\n");
+        }
+
+	return;
+}
+
+static u_char
+ns_nand_read_byte(struct mtd_info *mtd)
+{
+        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+	u_char outb = 0x00;
+
+	/* Sanity and correctness checks */
+	if (!ns->lines.ce) {
+		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
+		return outb;
+	}
+	if (ns->lines.ale || ns->lines.cle) {
+		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
+		return outb;
+	}
+	if (!(ns->state & STATE_DATAOUT_MASK)) {
+		NS_WARN("read_byte: unexpected data output cycle, state is %s "
+			"return %#x\n", get_state_name(ns->state), (uint)outb);
+		return outb;
+	}
+
+	/* Status register may be read as many times as it is wanted */
+	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
+		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
+		return ns->regs.status;
+	}
+
+	/* Check if there is any data in the internal buffer which may be read */
+	if (ns->regs.count == ns->regs.num) {
+		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
+		return outb;
+	}
+
+	switch (NS_STATE(ns->state)) {
+		case STATE_DATAOUT:
+			if (ns->busw == 8) {
+				outb = ns->buf.byte[ns->regs.count];
+				ns->regs.count += 1;
+			} else {
+				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
+				ns->regs.count += 2;
+			}
+			break;
+		case STATE_DATAOUT_ID:
+			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
+			outb = ns->ids[ns->regs.count];
+			ns->regs.count += 1;
+			break;
+		default:
+			BUG();
+	}
+	
+	if (ns->regs.count == ns->regs.num) {
+		NS_DBG("read_byte: all bytes were read\n");
+
+		/*
+		 * The OPT_AUTOINCR allows to read next conseqitive pages without
+		 * new read operation cycle.
+		 */
+		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
+			ns->regs.count = 0;
+			if (ns->regs.row + 1 < ns->geom.pgnum)
+				ns->regs.row += 1;
+			NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
+			do_state_action(ns, ACTION_CPY);
+		}
+		else if (NS_STATE(ns->nxstate) == STATE_READY)
+			switch_state(ns);
+		
+	}
+	
+	return outb;
+}
+
+static void
+ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+	
+	/* Sanity and correctness checks */
+	if (!ns->lines.ce) {
+		NS_ERR("write_byte: chip is disabled, ignore write\n");
+		return;
+	}
+	if (ns->lines.ale && ns->lines.cle) {
+		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
+		return;
+	}
+			
+	if (ns->lines.cle == 1) {
+		/*
+		 * The byte written is a command.
+		 */
+
+		if (byte == NAND_CMD_RESET) {
+			NS_LOG("reset chip\n");
+			switch_to_ready_state(ns, NS_STATUS_OK(ns));
+			return;
+		}
+
+		/* 
+		 * Chip might still be in STATE_DATAOUT
+		 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
+		 * STATE_DATAOUT_STATUS_M state. If so, switch state.
+		 */
+		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
+			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
+			|| ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
+			switch_state(ns);
+
+		/* Check if chip is expecting command */
+		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
+			/*
+			 * We are in situation when something else (not command)
+			 * was expected but command was input. In this case ignore
+			 * previous command(s)/state(s) and accept the last one.
+			 */
+			NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
+				"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		}
+		
+		/* Check that the command byte is correct */
+		if (check_command(byte)) {
+			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
+			return;
+		}
+		
+		NS_DBG("command byte corresponding to %s state accepted\n",
+			get_state_name(get_state_by_command(byte)));
+		ns->regs.command = byte;
+		switch_state(ns);
+
+	} else if (ns->lines.ale == 1) {
+		/*
+		 * The byte written is an address.
+		 */
+
+		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
+
+			NS_DBG("write_byte: operation isn't known yet, identify it\n");
+
+			if (find_operation(ns, 1) < 0)
+				return;
+			
+			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+				return;
+			}
+				
+			ns->regs.count = 0;
+			switch (NS_STATE(ns->nxstate)) {
+				case STATE_ADDR_PAGE:
+					ns->regs.num = ns->geom.pgaddrbytes;
+					break;
+				case STATE_ADDR_SEC:
+					ns->regs.num = ns->geom.secaddrbytes;
+					break;
+				case STATE_ADDR_ZERO:
+					ns->regs.num = 1;
+					break;
+				default:
+					BUG();
+			}
+		}
+
+		/* Check that chip is expecting address */
+		if (!(ns->nxstate & STATE_ADDR_MASK)) {
+			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
+				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+		
+		/* Check if this is expected byte */
+		if (ns->regs.count == ns->regs.num) {
+			NS_ERR("write_byte: no more address bytes expected\n");
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+
+		accept_addr_byte(ns, byte);
+
+		ns->regs.count += 1;
+
+		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
+				(uint)byte, ns->regs.count, ns->regs.num);
+
+		if (ns->regs.count == ns->regs.num) {
+			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
+			switch_state(ns);
+		}
+		
+	} else {
+		/*
+		 * The byte written is an input data.
+		 */
+		
+		/* Check that chip is expecting data input */
+		if (!(ns->state & STATE_DATAIN_MASK)) {
+			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
+				"switch to %s\n", (uint)byte,
+				get_state_name(ns->state), get_state_name(STATE_READY));
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+
+		/* Check if this is expected byte */
+		if (ns->regs.count == ns->regs.num) {
+			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
+					ns->regs.num);
+			return;
+		}
+
+		if (ns->busw == 8) {
+			ns->buf.byte[ns->regs.count] = byte;
+			ns->regs.count += 1;
+		} else {
+			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
+			ns->regs.count += 2;
+		}
+	}
+
+	return;
+}
+
+static int
+ns_device_ready(struct mtd_info *mtd)
+{
+	NS_DBG("device_ready\n");
+	return 1;
+}
+
+static uint16_t
+ns_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+
+	NS_DBG("read_word\n");
+	
+	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
+}
+
+static void
+ns_nand_write_word(struct mtd_info *mtd, uint16_t word)
+{
+	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+	
+	NS_DBG("write_word\n");
+	
+	chip->write_byte(mtd, word & 0xFF);
+	chip->write_byte(mtd, word >> 8);
+}
+
+static void 
+ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+	/* Check that chip is expecting data input */
+	if (!(ns->state & STATE_DATAIN_MASK)) {
+		NS_ERR("write_buf: data input isn't expected, state is %s, "
+			"switch to STATE_READY\n", get_state_name(ns->state));
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return;
+	}
+
+	/* Check if these are expected bytes */
+	if (ns->regs.count + len > ns->regs.num) {
+		NS_ERR("write_buf: too many input bytes\n");
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return;
+	}
+
+	memcpy(ns->buf.byte + ns->regs.count, buf, len);
+	ns->regs.count += len;
+	
+	if (ns->regs.count == ns->regs.num) {
+		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
+	}
+}
+
+static void 
+ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+	/* Sanity and correctness checks */
+	if (!ns->lines.ce) {
+		NS_ERR("read_buf: chip is disabled\n");
+		return;
+	}
+	if (ns->lines.ale || ns->lines.cle) {
+		NS_ERR("read_buf: ALE or CLE pin is high\n");
+		return;
+	}
+	if (!(ns->state & STATE_DATAOUT_MASK)) {
+		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
+			get_state_name(ns->state));
+		return;
+	}
+
+	if (NS_STATE(ns->state) != STATE_DATAOUT) {
+		int i;
+
+		for (i = 0; i < len; i++)
+			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
+
+		return;
+	}
+
+	/* Check if these are expected bytes */
+	if (ns->regs.count + len > ns->regs.num) {
+		NS_ERR("read_buf: too many bytes to read\n");
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return;
+	}
+
+	memcpy(buf, ns->buf.byte + ns->regs.count, len);
+	ns->regs.count += len;
+	
+	if (ns->regs.count == ns->regs.num) {
+		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
+			ns->regs.count = 0;
+			if (ns->regs.row + 1 < ns->geom.pgnum)
+				ns->regs.row += 1;
+			NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
+			do_state_action(ns, ACTION_CPY);
+		}
+		else if (NS_STATE(ns->nxstate) == STATE_READY)
+			switch_state(ns);
+	}
+	
+	return;
+}
+
+static int 
+ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
+
+	if (!memcmp(buf, &ns_verify_buf[0], len)) {
+		NS_DBG("verify_buf: the buffer is OK\n");
+		return 0;
+	} else {
+		NS_DBG("verify_buf: the buffer is wrong\n");
+		return -EFAULT;
+	}
+}
+
+/*
+ * Having only NAND chip IDs we call nand_scan which detects NAND flash
+ * parameters and then calls scan_bbt in order to scan/find/build the
+ * NAND flash bad block table. But since at that moment the NAND flash
+ * image isn't allocated in the simulator, errors arise. To avoid this
+ * we redefine the scan_bbt callback and initialize the nandsim structure
+ * before the flash media scanning.
+ */
+int ns_scan_bbt(struct mtd_info *mtd)
+{ 
+	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+	struct nandsim   *ns   = (struct nandsim *)(chip->priv);
+	int retval;
+
+	if (!NS_IS_INITIALIZED(ns))
+		if ((retval = init_nandsim(mtd)) != 0) {
+			NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
+			return retval;
+		}
+	if ((retval = nand_default_bbt(mtd)) != 0) {
+		free_nandsim(ns);
+		return retval;
+	}
+
+	return 0;
+}
+
+/*
+ * Module initialization function
+ */
+int __init ns_init_module(void)
+{
+	struct nand_chip *chip;
+	struct nandsim *nand;
+	int retval = -ENOMEM;
+
+	if (bus_width != 8 && bus_width != 16) {
+		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
+		return -EINVAL;
+	}
+	
+	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
+	nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
+				+ sizeof(struct nandsim), GFP_KERNEL);
+	if (!nsmtd) {
+		NS_ERR("unable to allocate core structures.\n");
+		return -ENOMEM;
+	}
+	memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
+			sizeof(struct nandsim));
+	chip        = (struct nand_chip *)(nsmtd + 1);
+        nsmtd->priv = (void *)chip;
+	nand        = (struct nandsim *)(chip + 1);
+	chip->priv  = (void *)nand;	
+
+	/*
+	 * Register simulator's callbacks.
+	 */
+	chip->hwcontrol  = ns_hwcontrol;
+	chip->read_byte  = ns_nand_read_byte;
+	chip->dev_ready  = ns_device_ready;
+	chip->scan_bbt   = ns_scan_bbt;
+	chip->write_byte = ns_nand_write_byte;
+	chip->write_buf  = ns_nand_write_buf;
+	chip->read_buf   = ns_nand_read_buf;
+	chip->verify_buf = ns_nand_verify_buf;
+	chip->write_word = ns_nand_write_word;
+	chip->read_word  = ns_nand_read_word;
+	chip->eccmode    = NAND_ECC_SOFT;
+
+	/* 
+	 * Perform minimum nandsim structure initialization to handle
+	 * the initial ID read command correctly 
+	 */
+	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
+		nand->geom.idbytes = 4;
+	else
+		nand->geom.idbytes = 2;
+	nand->regs.status = NS_STATUS_OK(nand);
+	nand->nxstate = STATE_UNKNOWN;
+	nand->options |= OPT_PAGE256; /* temporary value */
+	nand->ids[0] = first_id_byte;
+	nand->ids[1] = second_id_byte;
+	nand->ids[2] = third_id_byte;
+	nand->ids[3] = fourth_id_byte;
+	if (bus_width == 16) {
+		nand->busw = 16;
+		chip->options |= NAND_BUSWIDTH_16;
+	}
+
+	if ((retval = nand_scan(nsmtd, 1)) != 0) {
+		NS_ERR("can't register NAND Simulator\n");
+		if (retval > 0)
+			retval = -ENXIO;
+		goto error;
+	}
+
+	/* Register NAND as one big partition */
+	add_mtd_partitions(nsmtd, &nand->part, 1);
+
+        return 0;
+
+error:
+	kfree(nsmtd);
+
+	return retval;
+}
+
+module_init(ns_init_module);
+
+/*
+ * Module clean-up function
+ */
+static void __exit ns_cleanup_module(void)
+{
+	struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
+
+	free_nandsim(ns);    /* Free nandsim private resources */
+	nand_release(nsmtd); /* Unregisterd drived */
+	kfree(nsmtd);        /* Free other structures */
+}
+
+module_exit(ns_cleanup_module);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Artem B. Bityuckiy");
+MODULE_DESCRIPTION ("The NAND flash simulator");
+