| #ifndef _ASM_POWERPC_PGTABLE_H | 
 | #define _ASM_POWERPC_PGTABLE_H | 
 | #ifdef __KERNEL__ | 
 |  | 
 | #ifndef CONFIG_PPC64 | 
 | #include <asm-ppc/pgtable.h> | 
 | #else | 
 |  | 
 | /* | 
 |  * This file contains the functions and defines necessary to modify and use | 
 |  * the ppc64 hashed page table. | 
 |  */ | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | #include <linux/config.h> | 
 | #include <linux/stddef.h> | 
 | #include <asm/processor.h>		/* For TASK_SIZE */ | 
 | #include <asm/mmu.h> | 
 | #include <asm/page.h> | 
 | #include <asm/tlbflush.h> | 
 | struct mm_struct; | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | #include <asm/pgtable-64k.h> | 
 | #else | 
 | #include <asm/pgtable-4k.h> | 
 | #endif | 
 |  | 
 | #define FIRST_USER_ADDRESS	0 | 
 |  | 
 | /* | 
 |  * Size of EA range mapped by our pagetables. | 
 |  */ | 
 | #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ | 
 |                 	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) | 
 | #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) | 
 |  | 
 | #if TASK_SIZE_USER64 > PGTABLE_RANGE | 
 | #error TASK_SIZE_USER64 exceeds pagetable range | 
 | #endif | 
 |  | 
 | #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) | 
 | #error TASK_SIZE_USER64 exceeds user VSID range | 
 | #endif | 
 |  | 
 | /* | 
 |  * Define the address range of the vmalloc VM area. | 
 |  */ | 
 | #define VMALLOC_START (0xD000000000000000ul) | 
 | #define VMALLOC_SIZE  (0x80000000000UL) | 
 | #define VMALLOC_END   (VMALLOC_START + VMALLOC_SIZE) | 
 |  | 
 | /* | 
 |  * Define the address range of the imalloc VM area. | 
 |  */ | 
 | #define PHBS_IO_BASE	VMALLOC_END | 
 | #define IMALLOC_BASE	(PHBS_IO_BASE + 0x80000000ul)	/* Reserve 2 gigs for PHBs */ | 
 | #define IMALLOC_END	(VMALLOC_START + PGTABLE_RANGE) | 
 |  | 
 | /* | 
 |  * Region IDs | 
 |  */ | 
 | #define REGION_SHIFT		60UL | 
 | #define REGION_MASK		(0xfUL << REGION_SHIFT) | 
 | #define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT) | 
 |  | 
 | #define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START)) | 
 | #define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET)) | 
 | #define USER_REGION_ID		(0UL) | 
 |  | 
 | /* | 
 |  * Common bits in a linux-style PTE.  These match the bits in the | 
 |  * (hardware-defined) PowerPC PTE as closely as possible. Additional | 
 |  * bits may be defined in pgtable-*.h | 
 |  */ | 
 | #define _PAGE_PRESENT	0x0001 /* software: pte contains a translation */ | 
 | #define _PAGE_USER	0x0002 /* matches one of the PP bits */ | 
 | #define _PAGE_FILE	0x0002 /* (!present only) software: pte holds file offset */ | 
 | #define _PAGE_EXEC	0x0004 /* No execute on POWER4 and newer (we invert) */ | 
 | #define _PAGE_GUARDED	0x0008 | 
 | #define _PAGE_COHERENT	0x0010 /* M: enforce memory coherence (SMP systems) */ | 
 | #define _PAGE_NO_CACHE	0x0020 /* I: cache inhibit */ | 
 | #define _PAGE_WRITETHRU	0x0040 /* W: cache write-through */ | 
 | #define _PAGE_DIRTY	0x0080 /* C: page changed */ | 
 | #define _PAGE_ACCESSED	0x0100 /* R: page referenced */ | 
 | #define _PAGE_RW	0x0200 /* software: user write access allowed */ | 
 | #define _PAGE_HASHPTE	0x0400 /* software: pte has an associated HPTE */ | 
 | #define _PAGE_BUSY	0x0800 /* software: PTE & hash are busy */  | 
 |  | 
 | #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) | 
 |  | 
 | #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY) | 
 |  | 
 | /* __pgprot defined in asm-powerpc/page.h */ | 
 | #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) | 
 |  | 
 | #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) | 
 | #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) | 
 | #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER) | 
 | #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | 
 | #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER) | 
 | #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | 
 | #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_WRENABLE) | 
 | #define PAGE_KERNEL_CI	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ | 
 | 			       _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) | 
 | #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) | 
 |  | 
 | #define PAGE_AGP	__pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) | 
 | #define HAVE_PAGE_AGP | 
 |  | 
 | /* PTEIDX nibble */ | 
 | #define _PTEIDX_SECONDARY	0x8 | 
 | #define _PTEIDX_GROUP_IX	0x7 | 
 |  | 
 |  | 
 | /* | 
 |  * POWER4 and newer have per page execute protection, older chips can only | 
 |  * do this on a segment (256MB) basis. | 
 |  * | 
 |  * Also, write permissions imply read permissions. | 
 |  * This is the closest we can get.. | 
 |  * | 
 |  * Note due to the way vm flags are laid out, the bits are XWR | 
 |  */ | 
 | #define __P000	PAGE_NONE | 
 | #define __P001	PAGE_READONLY | 
 | #define __P010	PAGE_COPY | 
 | #define __P011	PAGE_COPY | 
 | #define __P100	PAGE_READONLY_X | 
 | #define __P101	PAGE_READONLY_X | 
 | #define __P110	PAGE_COPY_X | 
 | #define __P111	PAGE_COPY_X | 
 |  | 
 | #define __S000	PAGE_NONE | 
 | #define __S001	PAGE_READONLY | 
 | #define __S010	PAGE_SHARED | 
 | #define __S011	PAGE_SHARED | 
 | #define __S100	PAGE_READONLY_X | 
 | #define __S101	PAGE_READONLY_X | 
 | #define __S110	PAGE_SHARED_X | 
 | #define __S111	PAGE_SHARED_X | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | /* | 
 |  * ZERO_PAGE is a global shared page that is always zero: used | 
 |  * for zero-mapped memory areas etc.. | 
 |  */ | 
 | extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; | 
 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 |  | 
 | #define HAVE_ARCH_UNMAPPED_AREA | 
 | #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | 
 |  | 
 | #endif | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | /* | 
 |  * Conversion functions: convert a page and protection to a page entry, | 
 |  * and a page entry and page directory to the page they refer to. | 
 |  * | 
 |  * mk_pte takes a (struct page *) as input | 
 |  */ | 
 | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
 |  | 
 | static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 |  | 
 | 	pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); | 
 | 	return pte; | 
 | } | 
 |  | 
 | #define pte_modify(_pte, newprot) \ | 
 |   (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) | 
 |  | 
 | #define pte_none(pte)		((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) | 
 | #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT) | 
 |  | 
 | /* pte_clear moved to later in this file */ | 
 |  | 
 | #define pte_pfn(x)		((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) | 
 | #define pte_page(x)		pfn_to_page(pte_pfn(x)) | 
 |  | 
 | #define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval)) | 
 | #define pmd_none(pmd)		(!pmd_val(pmd)) | 
 | #define	pmd_bad(pmd)		(pmd_val(pmd) == 0) | 
 | #define	pmd_present(pmd)	(pmd_val(pmd) != 0) | 
 | #define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0) | 
 | #define pmd_page_kernel(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS) | 
 | #define pmd_page(pmd)		virt_to_page(pmd_page_kernel(pmd)) | 
 |  | 
 | #define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval)) | 
 | #define pud_none(pud)		(!pud_val(pud)) | 
 | #define pud_bad(pud)		((pud_val(pud)) == 0) | 
 | #define pud_present(pud)	(pud_val(pud) != 0) | 
 | #define pud_clear(pudp)		(pud_val(*(pudp)) = 0) | 
 | #define pud_page(pud)		(pud_val(pud) & ~PUD_MASKED_BITS) | 
 |  | 
 | #define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) | 
 |  | 
 | /*  | 
 |  * Find an entry in a page-table-directory.  We combine the address region  | 
 |  * (the high order N bits) and the pgd portion of the address. | 
 |  */ | 
 | /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ | 
 | #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) | 
 |  | 
 | #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address)) | 
 |  | 
 | #define pmd_offset(pudp,addr) \ | 
 |   (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) | 
 |  | 
 | #define pte_offset_kernel(dir,addr) \ | 
 |   (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) | 
 |  | 
 | #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr)) | 
 | #define pte_offset_map_nested(dir,addr)	pte_offset_kernel((dir), (addr)) | 
 | #define pte_unmap(pte)			do { } while(0) | 
 | #define pte_unmap_nested(pte)		do { } while(0) | 
 |  | 
 | /* to find an entry in a kernel page-table-directory */ | 
 | /* This now only contains the vmalloc pages */ | 
 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | 
 |  | 
 | /* | 
 |  * The following only work if pte_present() is true. | 
 |  * Undefined behaviour if not.. | 
 |  */ | 
 | static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER;} | 
 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} | 
 | static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC;} | 
 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} | 
 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} | 
 | static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} | 
 |  | 
 | static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } | 
 | static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; } | 
 |  | 
 | static inline pte_t pte_rdprotect(pte_t pte) { | 
 | 	pte_val(pte) &= ~_PAGE_USER; return pte; } | 
 | static inline pte_t pte_exprotect(pte_t pte) { | 
 | 	pte_val(pte) &= ~_PAGE_EXEC; return pte; } | 
 | static inline pte_t pte_wrprotect(pte_t pte) { | 
 | 	pte_val(pte) &= ~(_PAGE_RW); return pte; } | 
 | static inline pte_t pte_mkclean(pte_t pte) { | 
 | 	pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } | 
 | static inline pte_t pte_mkold(pte_t pte) { | 
 | 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | 
 | static inline pte_t pte_mkread(pte_t pte) { | 
 | 	pte_val(pte) |= _PAGE_USER; return pte; } | 
 | static inline pte_t pte_mkexec(pte_t pte) { | 
 | 	pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } | 
 | static inline pte_t pte_mkwrite(pte_t pte) { | 
 | 	pte_val(pte) |= _PAGE_RW; return pte; } | 
 | static inline pte_t pte_mkdirty(pte_t pte) { | 
 | 	pte_val(pte) |= _PAGE_DIRTY; return pte; } | 
 | static inline pte_t pte_mkyoung(pte_t pte) { | 
 | 	pte_val(pte) |= _PAGE_ACCESSED; return pte; } | 
 | static inline pte_t pte_mkhuge(pte_t pte) { | 
 | 	return pte; } | 
 |  | 
 | /* Atomic PTE updates */ | 
 | static inline unsigned long pte_update(pte_t *p, unsigned long clr) | 
 | { | 
 | 	unsigned long old, tmp; | 
 |  | 
 | 	__asm__ __volatile__( | 
 | 	"1:	ldarx	%0,0,%3		# pte_update\n\ | 
 | 	andi.	%1,%0,%6\n\ | 
 | 	bne-	1b \n\ | 
 | 	andc	%1,%0,%4 \n\ | 
 | 	stdcx.	%1,0,%3 \n\ | 
 | 	bne-	1b" | 
 | 	: "=&r" (old), "=&r" (tmp), "=m" (*p) | 
 | 	: "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) | 
 | 	: "cc" ); | 
 | 	return old; | 
 | } | 
 |  | 
 | /* PTE updating functions, this function puts the PTE in the | 
 |  * batch, doesn't actually triggers the hash flush immediately, | 
 |  * you need to call flush_tlb_pending() to do that. | 
 |  * Pass -1 for "normal" size (4K or 64K) | 
 |  */ | 
 | extern void hpte_update(struct mm_struct *mm, unsigned long addr, | 
 | 			pte_t *ptep, unsigned long pte, int huge); | 
 |  | 
 | static inline int __ptep_test_and_clear_young(struct mm_struct *mm, | 
 | 					      unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	unsigned long old; | 
 |  | 
 |        	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) | 
 | 		return 0; | 
 | 	old = pte_update(ptep, _PAGE_ACCESSED); | 
 | 	if (old & _PAGE_HASHPTE) { | 
 | 		hpte_update(mm, addr, ptep, old, 0); | 
 | 		flush_tlb_pending(); | 
 | 	} | 
 | 	return (old & _PAGE_ACCESSED) != 0; | 
 | } | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
 | #define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \ | 
 | ({									   \ | 
 | 	int __r;							   \ | 
 | 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ | 
 | 	__r;								   \ | 
 | }) | 
 |  | 
 | /* | 
 |  * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the | 
 |  * moment we always flush but we need to fix hpte_update and test if the | 
 |  * optimisation is worth it. | 
 |  */ | 
 | static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, | 
 | 					      unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	unsigned long old; | 
 |  | 
 |        	if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) | 
 | 		return 0; | 
 | 	old = pte_update(ptep, _PAGE_DIRTY); | 
 | 	if (old & _PAGE_HASHPTE) | 
 | 		hpte_update(mm, addr, ptep, old, 0); | 
 | 	return (old & _PAGE_DIRTY) != 0; | 
 | } | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
 | #define ptep_test_and_clear_dirty(__vma, __addr, __ptep)		   \ | 
 | ({									   \ | 
 | 	int __r;							   \ | 
 | 	__r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ | 
 | 	__r;								   \ | 
 | }) | 
 |  | 
 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, | 
 | 				      pte_t *ptep) | 
 | { | 
 | 	unsigned long old; | 
 |  | 
 |        	if ((pte_val(*ptep) & _PAGE_RW) == 0) | 
 |        		return; | 
 | 	old = pte_update(ptep, _PAGE_RW); | 
 | 	if (old & _PAGE_HASHPTE) | 
 | 		hpte_update(mm, addr, ptep, old, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * We currently remove entries from the hashtable regardless of whether | 
 |  * the entry was young or dirty. The generic routines only flush if the | 
 |  * entry was young or dirty which is not good enough. | 
 |  * | 
 |  * We should be more intelligent about this but for the moment we override | 
 |  * these functions and force a tlb flush unconditionally | 
 |  */ | 
 | #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | 
 | #define ptep_clear_flush_young(__vma, __address, __ptep)		\ | 
 | ({									\ | 
 | 	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ | 
 | 						  __ptep);		\ | 
 | 	__young;							\ | 
 | }) | 
 |  | 
 | #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH | 
 | #define ptep_clear_flush_dirty(__vma, __address, __ptep)		\ | 
 | ({									\ | 
 | 	int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ | 
 | 						  __ptep); 		\ | 
 | 	flush_tlb_page(__vma, __address);				\ | 
 | 	__dirty;							\ | 
 | }) | 
 |  | 
 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, | 
 | 				       unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	unsigned long old = pte_update(ptep, ~0UL); | 
 |  | 
 | 	if (old & _PAGE_HASHPTE) | 
 | 		hpte_update(mm, addr, ptep, old, 0); | 
 | 	return __pte(old); | 
 | } | 
 |  | 
 | static inline void pte_clear(struct mm_struct *mm, unsigned long addr, | 
 | 			     pte_t * ptep) | 
 | { | 
 | 	unsigned long old = pte_update(ptep, ~0UL); | 
 |  | 
 | 	if (old & _PAGE_HASHPTE) | 
 | 		hpte_update(mm, addr, ptep, old, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * set_pte stores a linux PTE into the linux page table. | 
 |  */ | 
 | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | 
 | 			      pte_t *ptep, pte_t pte) | 
 | { | 
 | 	if (pte_present(*ptep)) { | 
 | 		pte_clear(mm, addr, ptep); | 
 | 		flush_tlb_pending(); | 
 | 	} | 
 | 	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 	if (mmu_virtual_psize != MMU_PAGE_64K) | 
 | 		pte = __pte(pte_val(pte) | _PAGE_COMBO); | 
 | #endif /* CONFIG_PPC_64K_PAGES */ | 
 |  | 
 | 	*ptep = pte; | 
 | } | 
 |  | 
 | /* Set the dirty and/or accessed bits atomically in a linux PTE, this | 
 |  * function doesn't need to flush the hash entry | 
 |  */ | 
 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
 | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) | 
 | { | 
 | 	unsigned long bits = pte_val(entry) & | 
 | 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); | 
 | 	unsigned long old, tmp; | 
 |  | 
 | 	__asm__ __volatile__( | 
 | 	"1:	ldarx	%0,0,%4\n\ | 
 | 		andi.	%1,%0,%6\n\ | 
 | 		bne-	1b \n\ | 
 | 		or	%0,%3,%0\n\ | 
 | 		stdcx.	%0,0,%4\n\ | 
 | 		bne-	1b" | 
 | 	:"=&r" (old), "=&r" (tmp), "=m" (*ptep) | 
 | 	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) | 
 | 	:"cc"); | 
 | } | 
 | #define  ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | 
 | 	do {								   \ | 
 | 		__ptep_set_access_flags(__ptep, __entry, __dirty);	   \ | 
 | 		flush_tlb_page_nohash(__vma, __address);	       	   \ | 
 | 	} while(0) | 
 |  | 
 | /* | 
 |  * Macro to mark a page protection value as "uncacheable". | 
 |  */ | 
 | #define pgprot_noncached(prot)	(__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) | 
 |  | 
 | struct file; | 
 | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
 | 				     unsigned long size, pgprot_t vma_prot); | 
 | #define __HAVE_PHYS_MEM_ACCESS_PROT | 
 |  | 
 | #define __HAVE_ARCH_PTE_SAME | 
 | #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) | 
 |  | 
 | #define pte_ERROR(e) \ | 
 | 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) | 
 | #define pmd_ERROR(e) \ | 
 | 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) | 
 | #define pgd_ERROR(e) \ | 
 | 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) | 
 |  | 
 | extern pgd_t swapper_pg_dir[]; | 
 |  | 
 | extern void paging_init(void); | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \ | 
 | 	free_pgd_range(tlb, addr, end, floor, ceiling) | 
 | #endif | 
 |  | 
 | /* | 
 |  * This gets called at the end of handling a page fault, when | 
 |  * the kernel has put a new PTE into the page table for the process. | 
 |  * We use it to put a corresponding HPTE into the hash table | 
 |  * ahead of time, instead of waiting for the inevitable extra | 
 |  * hash-table miss exception. | 
 |  */ | 
 | struct vm_area_struct; | 
 | extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); | 
 |  | 
 | /* Encode and de-code a swap entry */ | 
 | #define __swp_type(entry)	(((entry).val >> 1) & 0x3f) | 
 | #define __swp_offset(entry)	((entry).val >> 8) | 
 | #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) | 
 | #define __pte_to_swp_entry(pte)	((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) | 
 | #define __swp_entry_to_pte(x)	((pte_t) { (x).val << PTE_RPN_SHIFT }) | 
 | #define pte_to_pgoff(pte)	(pte_val(pte) >> PTE_RPN_SHIFT) | 
 | #define pgoff_to_pte(off)	((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) | 
 | #define PTE_FILE_MAX_BITS	(BITS_PER_LONG - PTE_RPN_SHIFT) | 
 |  | 
 | /* | 
 |  * kern_addr_valid is intended to indicate whether an address is a valid | 
 |  * kernel address.  Most 32-bit archs define it as always true (like this) | 
 |  * but most 64-bit archs actually perform a test.  What should we do here? | 
 |  * The only use is in fs/ncpfs/dir.c | 
 |  */ | 
 | #define kern_addr_valid(addr)	(1) | 
 |  | 
 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\ | 
 | 		remap_pfn_range(vma, vaddr, pfn, size, prot) | 
 |  | 
 | void pgtable_cache_init(void); | 
 |  | 
 | /* | 
 |  * find_linux_pte returns the address of a linux pte for a given  | 
 |  * effective address and directory.  If not found, it returns zero. | 
 |  */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	pmd_t *pm; | 
 | 	pte_t *pt = NULL; | 
 |  | 
 | 	pg = pgdir + pgd_index(ea); | 
 | 	if (!pgd_none(*pg)) { | 
 | 		pu = pud_offset(pg, ea); | 
 | 		if (!pud_none(*pu)) { | 
 | 			pm = pmd_offset(pu, ea); | 
 | 			if (pmd_present(*pm)) | 
 | 				pt = pte_offset_kernel(pm, ea); | 
 | 		} | 
 | 	} | 
 | 	return pt; | 
 | } | 
 |  | 
 | #include <asm-generic/pgtable.h> | 
 |  | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | #endif /* CONFIG_PPC64 */ | 
 | #endif /* __KERNEL__ */ | 
 | #endif /* _ASM_POWERPC_PGTABLE_H */ |