|  | /* | 
|  | * Generic hugetlb support. | 
|  | * (C) William Irwin, April 2004 | 
|  | */ | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #include <linux/hugetlb.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 
|  | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; | 
|  | unsigned long max_huge_pages; | 
|  | static struct list_head hugepage_freelists[MAX_NUMNODES]; | 
|  | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | 
|  | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | 
|  | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 
|  | unsigned long hugepages_treat_as_movable; | 
|  |  | 
|  | /* | 
|  | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 
|  | */ | 
|  | static DEFINE_SPINLOCK(hugetlb_lock); | 
|  |  | 
|  | static void clear_huge_page(struct page *page, unsigned long addr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | 
|  | cond_resched(); | 
|  | clear_user_highpage(page + i, addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void copy_huge_page(struct page *dst, struct page *src, | 
|  | unsigned long addr, struct vm_area_struct *vma) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | 
|  | cond_resched(); | 
|  | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_huge_page(struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  | list_add(&page->lru, &hugepage_freelists[nid]); | 
|  | free_huge_pages++; | 
|  | free_huge_pages_node[nid]++; | 
|  | } | 
|  |  | 
|  | static struct page *dequeue_huge_page(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | int nid; | 
|  | struct page *page = NULL; | 
|  | struct zonelist *zonelist = huge_zonelist(vma, address, | 
|  | htlb_alloc_mask); | 
|  | struct zone **z; | 
|  |  | 
|  | for (z = zonelist->zones; *z; z++) { | 
|  | nid = zone_to_nid(*z); | 
|  | if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) && | 
|  | !list_empty(&hugepage_freelists[nid])) { | 
|  | page = list_entry(hugepage_freelists[nid].next, | 
|  | struct page, lru); | 
|  | list_del(&page->lru); | 
|  | free_huge_pages--; | 
|  | free_huge_pages_node[nid]--; | 
|  | } | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void free_huge_page(struct page *page) | 
|  | { | 
|  | BUG_ON(page_count(page)); | 
|  |  | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | enqueue_huge_page(page); | 
|  | spin_unlock(&hugetlb_lock); | 
|  | } | 
|  |  | 
|  | static int alloc_fresh_huge_page(void) | 
|  | { | 
|  | static int prev_nid; | 
|  | struct page *page; | 
|  | int nid; | 
|  |  | 
|  | /* | 
|  | * Copy static prev_nid to local nid, work on that, then copy it | 
|  | * back to prev_nid afterwards: otherwise there's a window in which | 
|  | * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node. | 
|  | * But we don't need to use a spin_lock here: it really doesn't | 
|  | * matter if occasionally a racer chooses the same nid as we do. | 
|  | */ | 
|  | nid = next_node(prev_nid, node_online_map); | 
|  | if (nid == MAX_NUMNODES) | 
|  | nid = first_node(node_online_map); | 
|  | prev_nid = nid; | 
|  |  | 
|  | page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN, | 
|  | HUGETLB_PAGE_ORDER); | 
|  | if (page) { | 
|  | set_compound_page_dtor(page, free_huge_page); | 
|  | spin_lock(&hugetlb_lock); | 
|  | nr_huge_pages++; | 
|  | nr_huge_pages_node[page_to_nid(page)]++; | 
|  | spin_unlock(&hugetlb_lock); | 
|  | put_page(page); /* free it into the hugepage allocator */ | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | resv_huge_pages--; | 
|  | else if (free_huge_pages <= resv_huge_pages) | 
|  | goto fail; | 
|  |  | 
|  | page = dequeue_huge_page(vma, addr); | 
|  | if (!page) | 
|  | goto fail; | 
|  |  | 
|  | spin_unlock(&hugetlb_lock); | 
|  | set_page_refcounted(page); | 
|  | return page; | 
|  |  | 
|  | fail: | 
|  | if (vma->vm_flags & VM_MAYSHARE) | 
|  | resv_huge_pages++; | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int __init hugetlb_init(void) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | if (HPAGE_SHIFT == 0) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; ++i) | 
|  | INIT_LIST_HEAD(&hugepage_freelists[i]); | 
|  |  | 
|  | for (i = 0; i < max_huge_pages; ++i) { | 
|  | if (!alloc_fresh_huge_page()) | 
|  | break; | 
|  | } | 
|  | max_huge_pages = free_huge_pages = nr_huge_pages = i; | 
|  | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | 
|  | return 0; | 
|  | } | 
|  | module_init(hugetlb_init); | 
|  |  | 
|  | static int __init hugetlb_setup(char *s) | 
|  | { | 
|  | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | 
|  | max_huge_pages = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepages=", hugetlb_setup); | 
|  |  | 
|  | static unsigned int cpuset_mems_nr(unsigned int *array) | 
|  | { | 
|  | int node; | 
|  | unsigned int nr = 0; | 
|  |  | 
|  | for_each_node_mask(node, cpuset_current_mems_allowed) | 
|  | nr += array[node]; | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | static void update_and_free_page(struct page *page) | 
|  | { | 
|  | int i; | 
|  | nr_huge_pages--; | 
|  | nr_huge_pages_node[page_to_nid(page)]--; | 
|  | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | 
|  | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 
|  | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 
|  | 1 << PG_private | 1<< PG_writeback); | 
|  | } | 
|  | set_compound_page_dtor(page, NULL); | 
|  | set_page_refcounted(page); | 
|  | __free_pages(page, HUGETLB_PAGE_ORDER); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | static void try_to_free_low(unsigned long count) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; ++i) { | 
|  | struct page *page, *next; | 
|  | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | 
|  | if (PageHighMem(page)) | 
|  | continue; | 
|  | list_del(&page->lru); | 
|  | update_and_free_page(page); | 
|  | free_huge_pages--; | 
|  | free_huge_pages_node[page_to_nid(page)]--; | 
|  | if (count >= nr_huge_pages) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void try_to_free_low(unsigned long count) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long set_max_huge_pages(unsigned long count) | 
|  | { | 
|  | while (count > nr_huge_pages) { | 
|  | if (!alloc_fresh_huge_page()) | 
|  | return nr_huge_pages; | 
|  | } | 
|  | if (count >= nr_huge_pages) | 
|  | return nr_huge_pages; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | count = max(count, resv_huge_pages); | 
|  | try_to_free_low(count); | 
|  | while (count < nr_huge_pages) { | 
|  | struct page *page = dequeue_huge_page(NULL, 0); | 
|  | if (!page) | 
|  | break; | 
|  | update_and_free_page(page); | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return nr_huge_pages; | 
|  | } | 
|  |  | 
|  | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
|  | struct file *file, void __user *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 
|  | max_huge_pages = set_max_huge_pages(max_huge_pages); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | 
|  | struct file *file, void __user *buffer, | 
|  | size_t *length, loff_t *ppos) | 
|  | { | 
|  | proc_dointvec(table, write, file, buffer, length, ppos); | 
|  | if (hugepages_treat_as_movable) | 
|  | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | 
|  | else | 
|  | htlb_alloc_mask = GFP_HIGHUSER; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | int hugetlb_report_meminfo(char *buf) | 
|  | { | 
|  | return sprintf(buf, | 
|  | "HugePages_Total: %5lu\n" | 
|  | "HugePages_Free:  %5lu\n" | 
|  | "HugePages_Rsvd:  %5lu\n" | 
|  | "Hugepagesize:    %5lu kB\n", | 
|  | nr_huge_pages, | 
|  | free_huge_pages, | 
|  | resv_huge_pages, | 
|  | HPAGE_SIZE/1024); | 
|  | } | 
|  |  | 
|  | int hugetlb_report_node_meminfo(int nid, char *buf) | 
|  | { | 
|  | return sprintf(buf, | 
|  | "Node %d HugePages_Total: %5u\n" | 
|  | "Node %d HugePages_Free:  %5u\n", | 
|  | nid, nr_huge_pages_node[nid], | 
|  | nid, free_huge_pages_node[nid]); | 
|  | } | 
|  |  | 
|  | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
|  | unsigned long hugetlb_total_pages(void) | 
|  | { | 
|  | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
|  | * handle_mm_fault() to try to instantiate regular-sized pages in the | 
|  | * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
|  | * this far. | 
|  | */ | 
|  | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct vm_operations_struct hugetlb_vm_ops = { | 
|  | .fault = hugetlb_vm_op_fault, | 
|  | }; | 
|  |  | 
|  | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
|  | int writable) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | if (writable) { | 
|  | entry = | 
|  | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | 
|  | } else { | 
|  | entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | entry = pte_mkhuge(entry); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | entry = pte_mkwrite(pte_mkdirty(*ptep)); | 
|  | if (ptep_set_access_flags(vma, address, ptep, entry, 1)) { | 
|  | update_mmu_cache(vma, address, entry); | 
|  | lazy_mmu_prot_update(entry); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | pte_t *src_pte, *dst_pte, entry; | 
|  | struct page *ptepage; | 
|  | unsigned long addr; | 
|  | int cow; | 
|  |  | 
|  | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
|  |  | 
|  | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 
|  | src_pte = huge_pte_offset(src, addr); | 
|  | if (!src_pte) | 
|  | continue; | 
|  | dst_pte = huge_pte_alloc(dst, addr); | 
|  | if (!dst_pte) | 
|  | goto nomem; | 
|  | spin_lock(&dst->page_table_lock); | 
|  | spin_lock(&src->page_table_lock); | 
|  | if (!pte_none(*src_pte)) { | 
|  | if (cow) | 
|  | ptep_set_wrprotect(src, addr, src_pte); | 
|  | entry = *src_pte; | 
|  | ptepage = pte_page(entry); | 
|  | get_page(ptepage); | 
|  | set_huge_pte_at(dst, addr, dst_pte, entry); | 
|  | } | 
|  | spin_unlock(&src->page_table_lock); | 
|  | spin_unlock(&dst->page_table_lock); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | struct page *page; | 
|  | struct page *tmp; | 
|  | /* | 
|  | * A page gathering list, protected by per file i_mmap_lock. The | 
|  | * lock is used to avoid list corruption from multiple unmapping | 
|  | * of the same page since we are using page->lru. | 
|  | */ | 
|  | LIST_HEAD(page_list); | 
|  |  | 
|  | WARN_ON(!is_vm_hugetlb_page(vma)); | 
|  | BUG_ON(start & ~HPAGE_MASK); | 
|  | BUG_ON(end & ~HPAGE_MASK); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | for (address = start; address < end; address += HPAGE_SIZE) { | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | if (!ptep) | 
|  | continue; | 
|  |  | 
|  | if (huge_pmd_unshare(mm, &address, ptep)) | 
|  | continue; | 
|  |  | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep); | 
|  | if (pte_none(pte)) | 
|  | continue; | 
|  |  | 
|  | page = pte_page(pte); | 
|  | if (pte_dirty(pte)) | 
|  | set_page_dirty(page); | 
|  | list_add(&page->lru, &page_list); | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | flush_tlb_range(vma, start, end); | 
|  | list_for_each_entry_safe(page, tmp, &page_list, lru) { | 
|  | list_del(&page->lru); | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | /* | 
|  | * It is undesirable to test vma->vm_file as it should be non-null | 
|  | * for valid hugetlb area. However, vm_file will be NULL in the error | 
|  | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | 
|  | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | 
|  | * to clean up. Since no pte has actually been setup, it is safe to | 
|  | * do nothing in this case. | 
|  | */ | 
|  | if (vma->vm_file) { | 
|  | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 
|  | __unmap_hugepage_range(vma, start, end); | 
|  | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, pte_t pte) | 
|  | { | 
|  | struct page *old_page, *new_page; | 
|  | int avoidcopy; | 
|  |  | 
|  | old_page = pte_page(pte); | 
|  |  | 
|  | /* If no-one else is actually using this page, avoid the copy | 
|  | * and just make the page writable */ | 
|  | avoidcopy = (page_count(old_page) == 1); | 
|  | if (avoidcopy) { | 
|  | set_huge_ptep_writable(vma, address, ptep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | page_cache_get(old_page); | 
|  | new_page = alloc_huge_page(vma, address); | 
|  |  | 
|  | if (!new_page) { | 
|  | page_cache_release(old_page); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | copy_huge_page(new_page, old_page, address, vma); | 
|  | spin_lock(&mm->page_table_lock); | 
|  |  | 
|  | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | 
|  | if (likely(pte_same(*ptep, pte))) { | 
|  | /* Break COW */ | 
|  | set_huge_pte_at(mm, address, ptep, | 
|  | make_huge_pte(vma, new_page, 1)); | 
|  | /* Make the old page be freed below */ | 
|  | new_page = old_page; | 
|  | } | 
|  | page_cache_release(new_page); | 
|  | page_cache_release(old_page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, int write_access) | 
|  | { | 
|  | int ret = VM_FAULT_SIGBUS; | 
|  | unsigned long idx; | 
|  | unsigned long size; | 
|  | struct page *page; | 
|  | struct address_space *mapping; | 
|  | pte_t new_pte; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | 
|  | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | 
|  |  | 
|  | /* | 
|  | * Use page lock to guard against racing truncation | 
|  | * before we get page_table_lock. | 
|  | */ | 
|  | retry: | 
|  | page = find_lock_page(mapping, idx); | 
|  | if (!page) { | 
|  | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 
|  | if (idx >= size) | 
|  | goto out; | 
|  | if (hugetlb_get_quota(mapping)) | 
|  | goto out; | 
|  | page = alloc_huge_page(vma, address); | 
|  | if (!page) { | 
|  | hugetlb_put_quota(mapping); | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  | clear_huge_page(page, address); | 
|  |  | 
|  | if (vma->vm_flags & VM_SHARED) { | 
|  | int err; | 
|  |  | 
|  | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
|  | if (err) { | 
|  | put_page(page); | 
|  | hugetlb_put_quota(mapping); | 
|  | if (err == -EEXIST) | 
|  | goto retry; | 
|  | goto out; | 
|  | } | 
|  | } else | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 
|  | if (idx >= size) | 
|  | goto backout; | 
|  |  | 
|  | ret = 0; | 
|  | if (!pte_none(*ptep)) | 
|  | goto backout; | 
|  |  | 
|  | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
|  | && (vma->vm_flags & VM_SHARED))); | 
|  | set_huge_pte_at(mm, address, ptep, new_pte); | 
|  |  | 
|  | if (write_access && !(vma->vm_flags & VM_SHARED)) { | 
|  | /* Optimization, do the COW without a second fault */ | 
|  | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | 
|  | } | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | unlock_page(page); | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | backout: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | hugetlb_put_quota(mapping); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, int write_access) | 
|  | { | 
|  | pte_t *ptep; | 
|  | pte_t entry; | 
|  | int ret; | 
|  | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 
|  |  | 
|  | ptep = huge_pte_alloc(mm, address); | 
|  | if (!ptep) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | /* | 
|  | * Serialize hugepage allocation and instantiation, so that we don't | 
|  | * get spurious allocation failures if two CPUs race to instantiate | 
|  | * the same page in the page cache. | 
|  | */ | 
|  | mutex_lock(&hugetlb_instantiation_mutex); | 
|  | entry = *ptep; | 
|  | if (pte_none(entry)) { | 
|  | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | 
|  | mutex_unlock(&hugetlb_instantiation_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | /* Check for a racing update before calling hugetlb_cow */ | 
|  | if (likely(pte_same(entry, *ptep))) | 
|  | if (write_access && !pte_write(entry)) | 
|  | ret = hugetlb_cow(mm, vma, address, ptep, entry); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | mutex_unlock(&hugetlb_instantiation_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct page **pages, struct vm_area_struct **vmas, | 
|  | unsigned long *position, int *length, int i) | 
|  | { | 
|  | unsigned long pfn_offset; | 
|  | unsigned long vaddr = *position; | 
|  | int remainder = *length; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | while (vaddr < vma->vm_end && remainder) { | 
|  | pte_t *pte; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Some archs (sparc64, sh*) have multiple pte_ts to | 
|  | * each hugepage.  We have to make * sure we get the | 
|  | * first, for the page indexing below to work. | 
|  | */ | 
|  | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | 
|  |  | 
|  | if (!pte || pte_none(*pte)) { | 
|  | int ret; | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | ret = hugetlb_fault(mm, vma, vaddr, 0); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (!(ret & VM_FAULT_MAJOR)) | 
|  | continue; | 
|  |  | 
|  | remainder = 0; | 
|  | if (!i) | 
|  | i = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; | 
|  | page = pte_page(*pte); | 
|  | same_page: | 
|  | if (pages) { | 
|  | get_page(page); | 
|  | pages[i] = page + pfn_offset; | 
|  | } | 
|  |  | 
|  | if (vmas) | 
|  | vmas[i] = vma; | 
|  |  | 
|  | vaddr += PAGE_SIZE; | 
|  | ++pfn_offset; | 
|  | --remainder; | 
|  | ++i; | 
|  | if (vaddr < vma->vm_end && remainder && | 
|  | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | 
|  | /* | 
|  | * We use pfn_offset to avoid touching the pageframes | 
|  | * of this compound page. | 
|  | */ | 
|  | goto same_page; | 
|  | } | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | *length = remainder; | 
|  | *position = vaddr; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | void hugetlb_change_protection(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned long end, pgprot_t newprot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long start = address; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  |  | 
|  | BUG_ON(address >= end); | 
|  | flush_cache_range(vma, address, end); | 
|  |  | 
|  | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | for (; address < end; address += HPAGE_SIZE) { | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | if (!ptep) | 
|  | continue; | 
|  | if (huge_pmd_unshare(mm, &address, ptep)) | 
|  | continue; | 
|  | if (!pte_none(*ptep)) { | 
|  | pte = huge_ptep_get_and_clear(mm, address, ptep); | 
|  | pte = pte_mkhuge(pte_modify(pte, newprot)); | 
|  | set_huge_pte_at(mm, address, ptep, pte); | 
|  | lazy_mmu_prot_update(pte); | 
|  | } | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 
|  |  | 
|  | flush_tlb_range(vma, start, end); | 
|  | } | 
|  |  | 
|  | struct file_region { | 
|  | struct list_head link; | 
|  | long from; | 
|  | long to; | 
|  | }; | 
|  |  | 
|  | static long region_add(struct list_head *head, long f, long t) | 
|  | { | 
|  | struct file_region *rg, *nrg, *trg; | 
|  |  | 
|  | /* Locate the region we are either in or before. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (f <= rg->to) | 
|  | break; | 
|  |  | 
|  | /* Round our left edge to the current segment if it encloses us. */ | 
|  | if (f > rg->from) | 
|  | f = rg->from; | 
|  |  | 
|  | /* Check for and consume any regions we now overlap with. */ | 
|  | nrg = rg; | 
|  | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | if (rg->from > t) | 
|  | break; | 
|  |  | 
|  | /* If this area reaches higher then extend our area to | 
|  | * include it completely.  If this is not the first area | 
|  | * which we intend to reuse, free it. */ | 
|  | if (rg->to > t) | 
|  | t = rg->to; | 
|  | if (rg != nrg) { | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  | } | 
|  | nrg->from = f; | 
|  | nrg->to = t; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long region_chg(struct list_head *head, long f, long t) | 
|  | { | 
|  | struct file_region *rg, *nrg; | 
|  | long chg = 0; | 
|  |  | 
|  | /* Locate the region we are before or in. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (f <= rg->to) | 
|  | break; | 
|  |  | 
|  | /* If we are below the current region then a new region is required. | 
|  | * Subtle, allocate a new region at the position but make it zero | 
|  | * size such that we can guarentee to record the reservation. */ | 
|  | if (&rg->link == head || t < rg->from) { | 
|  | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
|  | if (nrg == 0) | 
|  | return -ENOMEM; | 
|  | nrg->from = f; | 
|  | nrg->to   = f; | 
|  | INIT_LIST_HEAD(&nrg->link); | 
|  | list_add(&nrg->link, rg->link.prev); | 
|  |  | 
|  | return t - f; | 
|  | } | 
|  |  | 
|  | /* Round our left edge to the current segment if it encloses us. */ | 
|  | if (f > rg->from) | 
|  | f = rg->from; | 
|  | chg = t - f; | 
|  |  | 
|  | /* Check for and consume any regions we now overlap with. */ | 
|  | list_for_each_entry(rg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | if (rg->from > t) | 
|  | return chg; | 
|  |  | 
|  | /* We overlap with this area, if it extends futher than | 
|  | * us then we must extend ourselves.  Account for its | 
|  | * existing reservation. */ | 
|  | if (rg->to > t) { | 
|  | chg += rg->to - t; | 
|  | t = rg->to; | 
|  | } | 
|  | chg -= rg->to - rg->from; | 
|  | } | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | static long region_truncate(struct list_head *head, long end) | 
|  | { | 
|  | struct file_region *rg, *trg; | 
|  | long chg = 0; | 
|  |  | 
|  | /* Locate the region we are either in or before. */ | 
|  | list_for_each_entry(rg, head, link) | 
|  | if (end <= rg->to) | 
|  | break; | 
|  | if (&rg->link == head) | 
|  | return 0; | 
|  |  | 
|  | /* If we are in the middle of a region then adjust it. */ | 
|  | if (end > rg->from) { | 
|  | chg = rg->to - end; | 
|  | rg->to = end; | 
|  | rg = list_entry(rg->link.next, typeof(*rg), link); | 
|  | } | 
|  |  | 
|  | /* Drop any remaining regions. */ | 
|  | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
|  | if (&rg->link == head) | 
|  | break; | 
|  | chg += rg->to - rg->from; | 
|  | list_del(&rg->link); | 
|  | kfree(rg); | 
|  | } | 
|  | return chg; | 
|  | } | 
|  |  | 
|  | static int hugetlb_acct_memory(long delta) | 
|  | { | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | spin_lock(&hugetlb_lock); | 
|  | if ((delta + resv_huge_pages) <= free_huge_pages) { | 
|  | resv_huge_pages += delta; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&hugetlb_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | 
|  | { | 
|  | long ret, chg; | 
|  |  | 
|  | chg = region_chg(&inode->i_mapping->private_list, from, to); | 
|  | if (chg < 0) | 
|  | return chg; | 
|  | /* | 
|  | * When cpuset is configured, it breaks the strict hugetlb page | 
|  | * reservation as the accounting is done on a global variable. Such | 
|  | * reservation is completely rubbish in the presence of cpuset because | 
|  | * the reservation is not checked against page availability for the | 
|  | * current cpuset. Application can still potentially OOM'ed by kernel | 
|  | * with lack of free htlb page in cpuset that the task is in. | 
|  | * Attempt to enforce strict accounting with cpuset is almost | 
|  | * impossible (or too ugly) because cpuset is too fluid that | 
|  | * task or memory node can be dynamically moved between cpusets. | 
|  | * | 
|  | * The change of semantics for shared hugetlb mapping with cpuset is | 
|  | * undesirable. However, in order to preserve some of the semantics, | 
|  | * we fall back to check against current free page availability as | 
|  | * a best attempt and hopefully to minimize the impact of changing | 
|  | * semantics that cpuset has. | 
|  | */ | 
|  | if (chg > cpuset_mems_nr(free_huge_pages_node)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = hugetlb_acct_memory(chg); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | region_add(&inode->i_mapping->private_list, from, to); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 
|  | { | 
|  | long chg = region_truncate(&inode->i_mapping->private_list, offset); | 
|  | hugetlb_acct_memory(freed - chg); | 
|  | } |