|  | /* | 
|  | * mm/truncate.c - code for taking down pages from address_spaces | 
|  | * | 
|  | * Copyright (C) 2002, Linus Torvalds | 
|  | * | 
|  | * 10Sep2002	akpm@zip.com.au | 
|  | *		Initial version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/buffer_head.h>	/* grr. try_to_release_page, | 
|  | do_invalidatepage */ | 
|  |  | 
|  |  | 
|  | /** | 
|  | * do_invalidatepage - invalidate part of all of a page | 
|  | * @page: the page which is affected | 
|  | * @offset: the index of the truncation point | 
|  | * | 
|  | * do_invalidatepage() is called when all or part of the page has become | 
|  | * invalidated by a truncate operation. | 
|  | * | 
|  | * do_invalidatepage() does not have to release all buffers, but it must | 
|  | * ensure that no dirty buffer is left outside @offset and that no I/O | 
|  | * is underway against any of the blocks which are outside the truncation | 
|  | * point.  Because the caller is about to free (and possibly reuse) those | 
|  | * blocks on-disk. | 
|  | */ | 
|  | void do_invalidatepage(struct page *page, unsigned long offset) | 
|  | { | 
|  | void (*invalidatepage)(struct page *, unsigned long); | 
|  | invalidatepage = page->mapping->a_ops->invalidatepage; | 
|  | #ifdef CONFIG_BLOCK | 
|  | if (!invalidatepage) | 
|  | invalidatepage = block_invalidatepage; | 
|  | #endif | 
|  | if (invalidatepage) | 
|  | (*invalidatepage)(page, offset); | 
|  | } | 
|  |  | 
|  | static inline void truncate_partial_page(struct page *page, unsigned partial) | 
|  | { | 
|  | zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0); | 
|  | if (PagePrivate(page)) | 
|  | do_invalidatepage(page, partial); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This cancels just the dirty bit on the kernel page itself, it | 
|  | * does NOT actually remove dirty bits on any mmap's that may be | 
|  | * around. It also leaves the page tagged dirty, so any sync | 
|  | * activity will still find it on the dirty lists, and in particular, | 
|  | * clear_page_dirty_for_io() will still look at the dirty bits in | 
|  | * the VM. | 
|  | * | 
|  | * Doing this should *normally* only ever be done when a page | 
|  | * is truncated, and is not actually mapped anywhere at all. However, | 
|  | * fs/buffer.c does this when it notices that somebody has cleaned | 
|  | * out all the buffers on a page without actually doing it through | 
|  | * the VM. Can you say "ext3 is horribly ugly"? Tought you could. | 
|  | */ | 
|  | void cancel_dirty_page(struct page *page, unsigned int account_size) | 
|  | { | 
|  | if (TestClearPageDirty(page)) { | 
|  | struct address_space *mapping = page->mapping; | 
|  | if (mapping && mapping_cap_account_dirty(mapping)) { | 
|  | dec_zone_page_state(page, NR_FILE_DIRTY); | 
|  | if (account_size) | 
|  | task_io_account_cancelled_write(account_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(cancel_dirty_page); | 
|  |  | 
|  | /* | 
|  | * If truncate cannot remove the fs-private metadata from the page, the page | 
|  | * becomes anonymous.  It will be left on the LRU and may even be mapped into | 
|  | * user pagetables if we're racing with filemap_fault(). | 
|  | * | 
|  | * We need to bale out if page->mapping is no longer equal to the original | 
|  | * mapping.  This happens a) when the VM reclaimed the page while we waited on | 
|  | * its lock, b) when a concurrent invalidate_mapping_pages got there first and | 
|  | * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. | 
|  | */ | 
|  | static void | 
|  | truncate_complete_page(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | if (page->mapping != mapping) | 
|  | return; | 
|  |  | 
|  | cancel_dirty_page(page, PAGE_CACHE_SIZE); | 
|  |  | 
|  | if (PagePrivate(page)) | 
|  | do_invalidatepage(page, 0); | 
|  |  | 
|  | remove_from_page_cache(page); | 
|  | ClearPageUptodate(page); | 
|  | ClearPageMappedToDisk(page); | 
|  | page_cache_release(page);	/* pagecache ref */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for invalidate_mapping_pages().  That function can be called at | 
|  | * any time, and is not supposed to throw away dirty pages.  But pages can | 
|  | * be marked dirty at any time too, so use remove_mapping which safely | 
|  | * discards clean, unused pages. | 
|  | * | 
|  | * Returns non-zero if the page was successfully invalidated. | 
|  | */ | 
|  | static int | 
|  | invalidate_complete_page(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (page->mapping != mapping) | 
|  | return 0; | 
|  |  | 
|  | if (PagePrivate(page) && !try_to_release_page(page, 0)) | 
|  | return 0; | 
|  |  | 
|  | ret = remove_mapping(mapping, page); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * truncate_inode_pages - truncate range of pages specified by start and | 
|  | * end byte offsets | 
|  | * @mapping: mapping to truncate | 
|  | * @lstart: offset from which to truncate | 
|  | * @lend: offset to which to truncate | 
|  | * | 
|  | * Truncate the page cache, removing the pages that are between | 
|  | * specified offsets (and zeroing out partial page | 
|  | * (if lstart is not page aligned)). | 
|  | * | 
|  | * Truncate takes two passes - the first pass is nonblocking.  It will not | 
|  | * block on page locks and it will not block on writeback.  The second pass | 
|  | * will wait.  This is to prevent as much IO as possible in the affected region. | 
|  | * The first pass will remove most pages, so the search cost of the second pass | 
|  | * is low. | 
|  | * | 
|  | * When looking at page->index outside the page lock we need to be careful to | 
|  | * copy it into a local to avoid races (it could change at any time). | 
|  | * | 
|  | * We pass down the cache-hot hint to the page freeing code.  Even if the | 
|  | * mapping is large, it is probably the case that the final pages are the most | 
|  | * recently touched, and freeing happens in ascending file offset order. | 
|  | */ | 
|  | void truncate_inode_pages_range(struct address_space *mapping, | 
|  | loff_t lstart, loff_t lend) | 
|  | { | 
|  | const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; | 
|  | pgoff_t end; | 
|  | const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); | 
|  | struct pagevec pvec; | 
|  | pgoff_t next; | 
|  | int i; | 
|  |  | 
|  | if (mapping->nrpages == 0) | 
|  | return; | 
|  |  | 
|  | BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); | 
|  | end = (lend >> PAGE_CACHE_SHIFT); | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | next = start; | 
|  | while (next <= end && | 
|  | pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | pgoff_t page_index = page->index; | 
|  |  | 
|  | if (page_index > end) { | 
|  | next = page_index; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (page_index > next) | 
|  | next = page_index; | 
|  | next++; | 
|  | if (TestSetPageLocked(page)) | 
|  | continue; | 
|  | if (PageWriteback(page)) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  | if (page_mapped(page)) { | 
|  | unmap_mapping_range(mapping, | 
|  | (loff_t)page_index<<PAGE_CACHE_SHIFT, | 
|  | PAGE_CACHE_SIZE, 0); | 
|  | } | 
|  | truncate_complete_page(mapping, page); | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (partial) { | 
|  | struct page *page = find_lock_page(mapping, start - 1); | 
|  | if (page) { | 
|  | wait_on_page_writeback(page); | 
|  | truncate_partial_page(page, partial); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | next = start; | 
|  | for ( ; ; ) { | 
|  | cond_resched(); | 
|  | if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
|  | if (next == start) | 
|  | break; | 
|  | next = start; | 
|  | continue; | 
|  | } | 
|  | if (pvec.pages[0]->index > end) { | 
|  | pagevec_release(&pvec); | 
|  | break; | 
|  | } | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | if (page->index > end) | 
|  | break; | 
|  | lock_page(page); | 
|  | wait_on_page_writeback(page); | 
|  | if (page_mapped(page)) { | 
|  | unmap_mapping_range(mapping, | 
|  | (loff_t)page->index<<PAGE_CACHE_SHIFT, | 
|  | PAGE_CACHE_SIZE, 0); | 
|  | } | 
|  | if (page->index > next) | 
|  | next = page->index; | 
|  | next++; | 
|  | truncate_complete_page(mapping, page); | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(truncate_inode_pages_range); | 
|  |  | 
|  | /** | 
|  | * truncate_inode_pages - truncate *all* the pages from an offset | 
|  | * @mapping: mapping to truncate | 
|  | * @lstart: offset from which to truncate | 
|  | * | 
|  | * Called under (and serialised by) inode->i_mutex. | 
|  | */ | 
|  | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) | 
|  | { | 
|  | truncate_inode_pages_range(mapping, lstart, (loff_t)-1); | 
|  | } | 
|  | EXPORT_SYMBOL(truncate_inode_pages); | 
|  |  | 
|  | unsigned long __invalidate_mapping_pages(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end, bool be_atomic) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | pgoff_t next = start; | 
|  | unsigned long ret = 0; | 
|  | int i; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | while (next <= end && | 
|  | pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | pgoff_t index; | 
|  | int lock_failed; | 
|  |  | 
|  | lock_failed = TestSetPageLocked(page); | 
|  |  | 
|  | /* | 
|  | * We really shouldn't be looking at the ->index of an | 
|  | * unlocked page.  But we're not allowed to lock these | 
|  | * pages.  So we rely upon nobody altering the ->index | 
|  | * of this (pinned-by-us) page. | 
|  | */ | 
|  | index = page->index; | 
|  | if (index > next) | 
|  | next = index; | 
|  | next++; | 
|  | if (lock_failed) | 
|  | continue; | 
|  |  | 
|  | if (PageDirty(page) || PageWriteback(page)) | 
|  | goto unlock; | 
|  | if (page_mapped(page)) | 
|  | goto unlock; | 
|  | ret += invalidate_complete_page(mapping, page); | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | if (next > end) | 
|  | break; | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | if (likely(!be_atomic)) | 
|  | cond_resched(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode | 
|  | * @mapping: the address_space which holds the pages to invalidate | 
|  | * @start: the offset 'from' which to invalidate | 
|  | * @end: the offset 'to' which to invalidate (inclusive) | 
|  | * | 
|  | * This function only removes the unlocked pages, if you want to | 
|  | * remove all the pages of one inode, you must call truncate_inode_pages. | 
|  | * | 
|  | * invalidate_mapping_pages() will not block on IO activity. It will not | 
|  | * invalidate pages which are dirty, locked, under writeback or mapped into | 
|  | * pagetables. | 
|  | */ | 
|  | unsigned long invalidate_mapping_pages(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | return __invalidate_mapping_pages(mapping, start, end, false); | 
|  | } | 
|  | EXPORT_SYMBOL(invalidate_mapping_pages); | 
|  |  | 
|  | /* | 
|  | * This is like invalidate_complete_page(), except it ignores the page's | 
|  | * refcount.  We do this because invalidate_inode_pages2() needs stronger | 
|  | * invalidation guarantees, and cannot afford to leave pages behind because | 
|  | * shrink_page_list() has a temp ref on them, or because they're transiently | 
|  | * sitting in the lru_cache_add() pagevecs. | 
|  | */ | 
|  | static int | 
|  | invalidate_complete_page2(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | if (page->mapping != mapping) | 
|  | return 0; | 
|  |  | 
|  | if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) | 
|  | return 0; | 
|  |  | 
|  | write_lock_irq(&mapping->tree_lock); | 
|  | if (PageDirty(page)) | 
|  | goto failed; | 
|  |  | 
|  | BUG_ON(PagePrivate(page)); | 
|  | __remove_from_page_cache(page); | 
|  | write_unlock_irq(&mapping->tree_lock); | 
|  | ClearPageUptodate(page); | 
|  | page_cache_release(page);	/* pagecache ref */ | 
|  | return 1; | 
|  | failed: | 
|  | write_unlock_irq(&mapping->tree_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_launder_page(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | if (!PageDirty(page)) | 
|  | return 0; | 
|  | if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) | 
|  | return 0; | 
|  | return mapping->a_ops->launder_page(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * invalidate_inode_pages2_range - remove range of pages from an address_space | 
|  | * @mapping: the address_space | 
|  | * @start: the page offset 'from' which to invalidate | 
|  | * @end: the page offset 'to' which to invalidate (inclusive) | 
|  | * | 
|  | * Any pages which are found to be mapped into pagetables are unmapped prior to | 
|  | * invalidation. | 
|  | * | 
|  | * Returns -EIO if any pages could not be invalidated. | 
|  | */ | 
|  | int invalidate_inode_pages2_range(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | pgoff_t next; | 
|  | int i; | 
|  | int ret = 0; | 
|  | int did_range_unmap = 0; | 
|  | int wrapped = 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | next = start; | 
|  | while (next <= end && !wrapped && | 
|  | pagevec_lookup(&pvec, mapping, next, | 
|  | min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | pgoff_t page_index; | 
|  |  | 
|  | lock_page(page); | 
|  | if (page->mapping != mapping) { | 
|  | unlock_page(page); | 
|  | continue; | 
|  | } | 
|  | page_index = page->index; | 
|  | next = page_index + 1; | 
|  | if (next == 0) | 
|  | wrapped = 1; | 
|  | if (page_index > end) { | 
|  | unlock_page(page); | 
|  | break; | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  | if (page_mapped(page)) { | 
|  | if (!did_range_unmap) { | 
|  | /* | 
|  | * Zap the rest of the file in one hit. | 
|  | */ | 
|  | unmap_mapping_range(mapping, | 
|  | (loff_t)page_index<<PAGE_CACHE_SHIFT, | 
|  | (loff_t)(end - page_index + 1) | 
|  | << PAGE_CACHE_SHIFT, | 
|  | 0); | 
|  | did_range_unmap = 1; | 
|  | } else { | 
|  | /* | 
|  | * Just zap this page | 
|  | */ | 
|  | unmap_mapping_range(mapping, | 
|  | (loff_t)page_index<<PAGE_CACHE_SHIFT, | 
|  | PAGE_CACHE_SIZE, 0); | 
|  | } | 
|  | } | 
|  | BUG_ON(page_mapped(page)); | 
|  | ret = do_launder_page(mapping, page); | 
|  | if (ret == 0 && !invalidate_complete_page2(mapping, page)) | 
|  | ret = -EIO; | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); | 
|  |  | 
|  | /** | 
|  | * invalidate_inode_pages2 - remove all pages from an address_space | 
|  | * @mapping: the address_space | 
|  | * | 
|  | * Any pages which are found to be mapped into pagetables are unmapped prior to | 
|  | * invalidation. | 
|  | * | 
|  | * Returns -EIO if any pages could not be invalidated. | 
|  | */ | 
|  | int invalidate_inode_pages2(struct address_space *mapping) | 
|  | { | 
|  | return invalidate_inode_pages2_range(mapping, 0, -1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); |