|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | * | 
|  | * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Changes:	Pedro Roque	:	Retransmit queue handled by TCP. | 
|  | *				:	Fragmentation on mtu decrease | 
|  | *				:	Segment collapse on retransmit | 
|  | *				:	AF independence | 
|  | * | 
|  | *		Linus Torvalds	:	send_delayed_ack | 
|  | *		David S. Miller	:	Charge memory using the right skb | 
|  | *					during syn/ack processing. | 
|  | *		David S. Miller :	Output engine completely rewritten. | 
|  | *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr. | 
|  | *		Cacophonix Gaul :	draft-minshall-nagle-01 | 
|  | *		J Hadi Salim	:	ECN support | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <net/tcp.h> | 
|  |  | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/smp_lock.h> | 
|  |  | 
|  | /* People can turn this off for buggy TCP's found in printers etc. */ | 
|  | int sysctl_tcp_retrans_collapse = 1; | 
|  |  | 
|  | /* This limits the percentage of the congestion window which we | 
|  | * will allow a single TSO frame to consume.  Building TSO frames | 
|  | * which are too large can cause TCP streams to be bursty. | 
|  | */ | 
|  | int sysctl_tcp_tso_win_divisor = 8; | 
|  |  | 
|  | static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | sk->sk_send_head = skb->next; | 
|  | if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) | 
|  | sk->sk_send_head = NULL; | 
|  | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | tcp_packets_out_inc(sk, tp, skb); | 
|  | } | 
|  |  | 
|  | /* SND.NXT, if window was not shrunk. | 
|  | * If window has been shrunk, what should we make? It is not clear at all. | 
|  | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | 
|  | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | 
|  | * invalid. OK, let's make this for now: | 
|  | */ | 
|  | static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) | 
|  | { | 
|  | if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) | 
|  | return tp->snd_nxt; | 
|  | else | 
|  | return tp->snd_una+tp->snd_wnd; | 
|  | } | 
|  |  | 
|  | /* Calculate mss to advertise in SYN segment. | 
|  | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | 
|  | * | 
|  | * 1. It is independent of path mtu. | 
|  | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | 
|  | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | 
|  | *    attached devices, because some buggy hosts are confused by | 
|  | *    large MSS. | 
|  | * 4. We do not make 3, we advertise MSS, calculated from first | 
|  | *    hop device mtu, but allow to raise it to ip_rt_min_advmss. | 
|  | *    This may be overridden via information stored in routing table. | 
|  | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | 
|  | *    probably even Jumbo". | 
|  | */ | 
|  | static __u16 tcp_advertise_mss(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | int mss = tp->advmss; | 
|  |  | 
|  | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { | 
|  | mss = dst_metric(dst, RTAX_ADVMSS); | 
|  | tp->advmss = mss; | 
|  | } | 
|  |  | 
|  | return (__u16)mss; | 
|  | } | 
|  |  | 
|  | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | 
|  | * This is the first part of cwnd validation mechanism. */ | 
|  | static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst) | 
|  | { | 
|  | s32 delta = tcp_time_stamp - tp->lsndtime; | 
|  | u32 restart_cwnd = tcp_init_cwnd(tp, dst); | 
|  | u32 cwnd = tp->snd_cwnd; | 
|  |  | 
|  | if (tcp_is_vegas(tp)) | 
|  | tcp_vegas_enable(tp); | 
|  |  | 
|  | tp->snd_ssthresh = tcp_current_ssthresh(tp); | 
|  | restart_cwnd = min(restart_cwnd, cwnd); | 
|  |  | 
|  | while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd) | 
|  | cwnd >>= 1; | 
|  | tp->snd_cwnd = max(cwnd, restart_cwnd); | 
|  | tp->snd_cwnd_stamp = tcp_time_stamp; | 
|  | tp->snd_cwnd_used = 0; | 
|  | } | 
|  |  | 
|  | static inline void tcp_event_data_sent(struct tcp_sock *tp, | 
|  | struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | u32 now = tcp_time_stamp; | 
|  |  | 
|  | if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto) | 
|  | tcp_cwnd_restart(tp, __sk_dst_get(sk)); | 
|  |  | 
|  | tp->lsndtime = now; | 
|  |  | 
|  | /* If it is a reply for ato after last received | 
|  | * packet, enter pingpong mode. | 
|  | */ | 
|  | if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato) | 
|  | tp->ack.pingpong = 1; | 
|  | } | 
|  |  | 
|  | static __inline__ void tcp_event_ack_sent(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | tcp_dec_quickack_mode(tp); | 
|  | tcp_clear_xmit_timer(sk, TCP_TIME_DACK); | 
|  | } | 
|  |  | 
|  | /* Determine a window scaling and initial window to offer. | 
|  | * Based on the assumption that the given amount of space | 
|  | * will be offered. Store the results in the tp structure. | 
|  | * NOTE: for smooth operation initial space offering should | 
|  | * be a multiple of mss if possible. We assume here that mss >= 1. | 
|  | * This MUST be enforced by all callers. | 
|  | */ | 
|  | void tcp_select_initial_window(int __space, __u32 mss, | 
|  | __u32 *rcv_wnd, __u32 *window_clamp, | 
|  | int wscale_ok, __u8 *rcv_wscale) | 
|  | { | 
|  | unsigned int space = (__space < 0 ? 0 : __space); | 
|  |  | 
|  | /* If no clamp set the clamp to the max possible scaled window */ | 
|  | if (*window_clamp == 0) | 
|  | (*window_clamp) = (65535 << 14); | 
|  | space = min(*window_clamp, space); | 
|  |  | 
|  | /* Quantize space offering to a multiple of mss if possible. */ | 
|  | if (space > mss) | 
|  | space = (space / mss) * mss; | 
|  |  | 
|  | /* NOTE: offering an initial window larger than 32767 | 
|  | * will break some buggy TCP stacks. We try to be nice. | 
|  | * If we are not window scaling, then this truncates | 
|  | * our initial window offering to 32k. There should also | 
|  | * be a sysctl option to stop being nice. | 
|  | */ | 
|  | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); | 
|  | (*rcv_wscale) = 0; | 
|  | if (wscale_ok) { | 
|  | /* Set window scaling on max possible window | 
|  | * See RFC1323 for an explanation of the limit to 14 | 
|  | */ | 
|  | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); | 
|  | while (space > 65535 && (*rcv_wscale) < 14) { | 
|  | space >>= 1; | 
|  | (*rcv_wscale)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set initial window to value enough for senders, | 
|  | * following RFC1414. Senders, not following this RFC, | 
|  | * will be satisfied with 2. | 
|  | */ | 
|  | if (mss > (1<<*rcv_wscale)) { | 
|  | int init_cwnd = 4; | 
|  | if (mss > 1460*3) | 
|  | init_cwnd = 2; | 
|  | else if (mss > 1460) | 
|  | init_cwnd = 3; | 
|  | if (*rcv_wnd > init_cwnd*mss) | 
|  | *rcv_wnd = init_cwnd*mss; | 
|  | } | 
|  |  | 
|  | /* Set the clamp no higher than max representable value */ | 
|  | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); | 
|  | } | 
|  |  | 
|  | /* Chose a new window to advertise, update state in tcp_sock for the | 
|  | * socket, and return result with RFC1323 scaling applied.  The return | 
|  | * value can be stuffed directly into th->window for an outgoing | 
|  | * frame. | 
|  | */ | 
|  | static __inline__ u16 tcp_select_window(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 cur_win = tcp_receive_window(tp); | 
|  | u32 new_win = __tcp_select_window(sk); | 
|  |  | 
|  | /* Never shrink the offered window */ | 
|  | if(new_win < cur_win) { | 
|  | /* Danger Will Robinson! | 
|  | * Don't update rcv_wup/rcv_wnd here or else | 
|  | * we will not be able to advertise a zero | 
|  | * window in time.  --DaveM | 
|  | * | 
|  | * Relax Will Robinson. | 
|  | */ | 
|  | new_win = cur_win; | 
|  | } | 
|  | tp->rcv_wnd = new_win; | 
|  | tp->rcv_wup = tp->rcv_nxt; | 
|  |  | 
|  | /* Make sure we do not exceed the maximum possible | 
|  | * scaled window. | 
|  | */ | 
|  | if (!tp->rx_opt.rcv_wscale) | 
|  | new_win = min(new_win, MAX_TCP_WINDOW); | 
|  | else | 
|  | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | 
|  |  | 
|  | /* RFC1323 scaling applied */ | 
|  | new_win >>= tp->rx_opt.rcv_wscale; | 
|  |  | 
|  | /* If we advertise zero window, disable fast path. */ | 
|  | if (new_win == 0) | 
|  | tp->pred_flags = 0; | 
|  |  | 
|  | return new_win; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This routine actually transmits TCP packets queued in by | 
|  | * tcp_do_sendmsg().  This is used by both the initial | 
|  | * transmission and possible later retransmissions. | 
|  | * All SKB's seen here are completely headerless.  It is our | 
|  | * job to build the TCP header, and pass the packet down to | 
|  | * IP so it can do the same plus pass the packet off to the | 
|  | * device. | 
|  | * | 
|  | * We are working here with either a clone of the original | 
|  | * SKB, or a fresh unique copy made by the retransmit engine. | 
|  | */ | 
|  | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | if (skb != NULL) { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); | 
|  | int tcp_header_size = tp->tcp_header_len; | 
|  | struct tcphdr *th; | 
|  | int sysctl_flags; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(!tcp_skb_pcount(skb)); | 
|  |  | 
|  | #define SYSCTL_FLAG_TSTAMPS	0x1 | 
|  | #define SYSCTL_FLAG_WSCALE	0x2 | 
|  | #define SYSCTL_FLAG_SACK	0x4 | 
|  |  | 
|  | sysctl_flags = 0; | 
|  | if (tcb->flags & TCPCB_FLAG_SYN) { | 
|  | tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; | 
|  | if(sysctl_tcp_timestamps) { | 
|  | tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; | 
|  | sysctl_flags |= SYSCTL_FLAG_TSTAMPS; | 
|  | } | 
|  | if(sysctl_tcp_window_scaling) { | 
|  | tcp_header_size += TCPOLEN_WSCALE_ALIGNED; | 
|  | sysctl_flags |= SYSCTL_FLAG_WSCALE; | 
|  | } | 
|  | if(sysctl_tcp_sack) { | 
|  | sysctl_flags |= SYSCTL_FLAG_SACK; | 
|  | if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) | 
|  | tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; | 
|  | } | 
|  | } else if (tp->rx_opt.eff_sacks) { | 
|  | /* A SACK is 2 pad bytes, a 2 byte header, plus | 
|  | * 2 32-bit sequence numbers for each SACK block. | 
|  | */ | 
|  | tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + | 
|  | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the connection is idle and we are restarting, | 
|  | * then we don't want to do any Vegas calculations | 
|  | * until we get fresh RTT samples.  So when we | 
|  | * restart, we reset our Vegas state to a clean | 
|  | * slate. After we get acks for this flight of | 
|  | * packets, _then_ we can make Vegas calculations | 
|  | * again. | 
|  | */ | 
|  | if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0) | 
|  | tcp_vegas_enable(tp); | 
|  |  | 
|  | th = (struct tcphdr *) skb_push(skb, tcp_header_size); | 
|  | skb->h.th = th; | 
|  | skb_set_owner_w(skb, sk); | 
|  |  | 
|  | /* Build TCP header and checksum it. */ | 
|  | th->source		= inet->sport; | 
|  | th->dest		= inet->dport; | 
|  | th->seq			= htonl(tcb->seq); | 
|  | th->ack_seq		= htonl(tp->rcv_nxt); | 
|  | *(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags); | 
|  | if (tcb->flags & TCPCB_FLAG_SYN) { | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments | 
|  | * is never scaled. | 
|  | */ | 
|  | th->window	= htons(tp->rcv_wnd); | 
|  | } else { | 
|  | th->window	= htons(tcp_select_window(sk)); | 
|  | } | 
|  | th->check		= 0; | 
|  | th->urg_ptr		= 0; | 
|  |  | 
|  | if (tp->urg_mode && | 
|  | between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { | 
|  | th->urg_ptr		= htons(tp->snd_up-tcb->seq); | 
|  | th->urg			= 1; | 
|  | } | 
|  |  | 
|  | if (tcb->flags & TCPCB_FLAG_SYN) { | 
|  | tcp_syn_build_options((__u32 *)(th + 1), | 
|  | tcp_advertise_mss(sk), | 
|  | (sysctl_flags & SYSCTL_FLAG_TSTAMPS), | 
|  | (sysctl_flags & SYSCTL_FLAG_SACK), | 
|  | (sysctl_flags & SYSCTL_FLAG_WSCALE), | 
|  | tp->rx_opt.rcv_wscale, | 
|  | tcb->when, | 
|  | tp->rx_opt.ts_recent); | 
|  | } else { | 
|  | tcp_build_and_update_options((__u32 *)(th + 1), | 
|  | tp, tcb->when); | 
|  |  | 
|  | TCP_ECN_send(sk, tp, skb, tcp_header_size); | 
|  | } | 
|  | tp->af_specific->send_check(sk, th, skb->len, skb); | 
|  |  | 
|  | if (tcb->flags & TCPCB_FLAG_ACK) | 
|  | tcp_event_ack_sent(sk); | 
|  |  | 
|  | if (skb->len != tcp_header_size) | 
|  | tcp_event_data_sent(tp, skb, sk); | 
|  |  | 
|  | TCP_INC_STATS(TCP_MIB_OUTSEGS); | 
|  |  | 
|  | err = tp->af_specific->queue_xmit(skb, 0); | 
|  | if (err <= 0) | 
|  | return err; | 
|  |  | 
|  | tcp_enter_cwr(tp); | 
|  |  | 
|  | /* NET_XMIT_CN is special. It does not guarantee, | 
|  | * that this packet is lost. It tells that device | 
|  | * is about to start to drop packets or already | 
|  | * drops some packets of the same priority and | 
|  | * invokes us to send less aggressively. | 
|  | */ | 
|  | return err == NET_XMIT_CN ? 0 : err; | 
|  | } | 
|  | return -ENOBUFS; | 
|  | #undef SYSCTL_FLAG_TSTAMPS | 
|  | #undef SYSCTL_FLAG_WSCALE | 
|  | #undef SYSCTL_FLAG_SACK | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This routine just queue's the buffer | 
|  | * | 
|  | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | 
|  | * otherwise socket can stall. | 
|  | */ | 
|  | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Advance write_seq and place onto the write_queue. */ | 
|  | tp->write_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | skb_header_release(skb); | 
|  | __skb_queue_tail(&sk->sk_write_queue, skb); | 
|  | sk_charge_skb(sk, skb); | 
|  |  | 
|  | /* Queue it, remembering where we must start sending. */ | 
|  | if (sk->sk_send_head == NULL) | 
|  | sk->sk_send_head = skb; | 
|  | } | 
|  |  | 
|  | static inline void tcp_tso_set_push(struct sk_buff *skb) | 
|  | { | 
|  | /* Force push to be on for any TSO frames to workaround | 
|  | * problems with busted implementations like Mac OS-X that | 
|  | * hold off socket receive wakeups until push is seen. | 
|  | */ | 
|  | if (tcp_skb_pcount(skb) > 1) | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | } | 
|  |  | 
|  | /* Send _single_ skb sitting at the send head. This function requires | 
|  | * true push pending frames to setup probe timer etc. | 
|  | */ | 
|  | void tcp_push_one(struct sock *sk, unsigned cur_mss) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb = sk->sk_send_head; | 
|  |  | 
|  | if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) { | 
|  | /* Send it out now. */ | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | tcp_tso_set_push(skb); | 
|  | if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) { | 
|  | sk->sk_send_head = NULL; | 
|  | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | tcp_packets_out_inc(sk, tp, skb); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (skb->len <= tp->mss_cache_std || | 
|  | !(sk->sk_route_caps & NETIF_F_TSO)) { | 
|  | /* Avoid the costly divide in the normal | 
|  | * non-TSO case. | 
|  | */ | 
|  | skb_shinfo(skb)->tso_segs = 1; | 
|  | skb_shinfo(skb)->tso_size = 0; | 
|  | } else { | 
|  | unsigned int factor; | 
|  |  | 
|  | factor = skb->len + (tp->mss_cache_std - 1); | 
|  | factor /= tp->mss_cache_std; | 
|  | skb_shinfo(skb)->tso_segs = factor; | 
|  | skb_shinfo(skb)->tso_size = tp->mss_cache_std; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Function to create two new TCP segments.  Shrinks the given segment | 
|  | * to the specified size and appends a new segment with the rest of the | 
|  | * packet to the list.  This won't be called frequently, I hope. | 
|  | * Remember, these are still headerless SKBs at this point. | 
|  | */ | 
|  | static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *buff; | 
|  | int nsize; | 
|  | u16 flags; | 
|  |  | 
|  | nsize = skb_headlen(skb) - len; | 
|  | if (nsize < 0) | 
|  | nsize = 0; | 
|  |  | 
|  | if (skb_cloned(skb) && | 
|  | skb_is_nonlinear(skb) && | 
|  | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Get a new skb... force flag on. */ | 
|  | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); | 
|  | if (buff == NULL) | 
|  | return -ENOMEM; /* We'll just try again later. */ | 
|  | sk_charge_skb(sk, buff); | 
|  |  | 
|  | /* Correct the sequence numbers. */ | 
|  | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | 
|  | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | 
|  |  | 
|  | /* PSH and FIN should only be set in the second packet. */ | 
|  | flags = TCP_SKB_CB(skb)->flags; | 
|  | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | 
|  | TCP_SKB_CB(buff)->flags = flags; | 
|  | TCP_SKB_CB(buff)->sacked = | 
|  | (TCP_SKB_CB(skb)->sacked & | 
|  | (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; | 
|  |  | 
|  | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { | 
|  | /* Copy and checksum data tail into the new buffer. */ | 
|  | buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), | 
|  | nsize, 0); | 
|  |  | 
|  | skb_trim(skb, len); | 
|  |  | 
|  | skb->csum = csum_block_sub(skb->csum, buff->csum, len); | 
|  | } else { | 
|  | skb->ip_summed = CHECKSUM_HW; | 
|  | skb_split(skb, buff, len); | 
|  | } | 
|  |  | 
|  | buff->ip_summed = skb->ip_summed; | 
|  |  | 
|  | /* Looks stupid, but our code really uses when of | 
|  | * skbs, which it never sent before. --ANK | 
|  | */ | 
|  | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | 
|  | tp->lost_out -= tcp_skb_pcount(skb); | 
|  | tp->left_out -= tcp_skb_pcount(skb); | 
|  | } | 
|  |  | 
|  | /* Fix up tso_factor for both original and new SKB.  */ | 
|  | tcp_set_skb_tso_segs(sk, skb); | 
|  | tcp_set_skb_tso_segs(sk, buff); | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | 
|  | tp->lost_out += tcp_skb_pcount(skb); | 
|  | tp->left_out += tcp_skb_pcount(skb); | 
|  | } | 
|  |  | 
|  | if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) { | 
|  | tp->lost_out += tcp_skb_pcount(buff); | 
|  | tp->left_out += tcp_skb_pcount(buff); | 
|  | } | 
|  |  | 
|  | /* Link BUFF into the send queue. */ | 
|  | __skb_append(skb, buff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c | 
|  | * eventually). The difference is that pulled data not copied, but | 
|  | * immediately discarded. | 
|  | */ | 
|  | static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) | 
|  | { | 
|  | int i, k, eat; | 
|  |  | 
|  | eat = len; | 
|  | k = 0; | 
|  | for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { | 
|  | if (skb_shinfo(skb)->frags[i].size <= eat) { | 
|  | put_page(skb_shinfo(skb)->frags[i].page); | 
|  | eat -= skb_shinfo(skb)->frags[i].size; | 
|  | } else { | 
|  | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  | if (eat) { | 
|  | skb_shinfo(skb)->frags[k].page_offset += eat; | 
|  | skb_shinfo(skb)->frags[k].size -= eat; | 
|  | eat = 0; | 
|  | } | 
|  | k++; | 
|  | } | 
|  | } | 
|  | skb_shinfo(skb)->nr_frags = k; | 
|  |  | 
|  | skb->tail = skb->data; | 
|  | skb->data_len -= len; | 
|  | skb->len = skb->data_len; | 
|  | return skb->tail; | 
|  | } | 
|  |  | 
|  | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | 
|  | { | 
|  | if (skb_cloned(skb) && | 
|  | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (len <= skb_headlen(skb)) { | 
|  | __skb_pull(skb, len); | 
|  | } else { | 
|  | if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | TCP_SKB_CB(skb)->seq += len; | 
|  | skb->ip_summed = CHECKSUM_HW; | 
|  |  | 
|  | skb->truesize	     -= len; | 
|  | sk->sk_wmem_queued   -= len; | 
|  | sk->sk_forward_alloc += len; | 
|  | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | 
|  |  | 
|  | /* Any change of skb->len requires recalculation of tso | 
|  | * factor and mss. | 
|  | */ | 
|  | if (tcp_skb_pcount(skb) > 1) | 
|  | tcp_set_skb_tso_segs(sk, skb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This function synchronize snd mss to current pmtu/exthdr set. | 
|  |  | 
|  | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | 
|  | for TCP options, but includes only bare TCP header. | 
|  |  | 
|  | tp->rx_opt.mss_clamp is mss negotiated at connection setup. | 
|  | It is minumum of user_mss and mss received with SYN. | 
|  | It also does not include TCP options. | 
|  |  | 
|  | tp->pmtu_cookie is last pmtu, seen by this function. | 
|  |  | 
|  | tp->mss_cache is current effective sending mss, including | 
|  | all tcp options except for SACKs. It is evaluated, | 
|  | taking into account current pmtu, but never exceeds | 
|  | tp->rx_opt.mss_clamp. | 
|  |  | 
|  | NOTE1. rfc1122 clearly states that advertised MSS | 
|  | DOES NOT include either tcp or ip options. | 
|  |  | 
|  | NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside | 
|  | this function.			--ANK (980731) | 
|  | */ | 
|  |  | 
|  | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int mss_now; | 
|  |  | 
|  | /* Calculate base mss without TCP options: | 
|  | It is MMS_S - sizeof(tcphdr) of rfc1122 | 
|  | */ | 
|  | mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); | 
|  |  | 
|  | /* Clamp it (mss_clamp does not include tcp options) */ | 
|  | if (mss_now > tp->rx_opt.mss_clamp) | 
|  | mss_now = tp->rx_opt.mss_clamp; | 
|  |  | 
|  | /* Now subtract optional transport overhead */ | 
|  | mss_now -= tp->ext_header_len; | 
|  |  | 
|  | /* Then reserve room for full set of TCP options and 8 bytes of data */ | 
|  | if (mss_now < 48) | 
|  | mss_now = 48; | 
|  |  | 
|  | /* Now subtract TCP options size, not including SACKs */ | 
|  | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); | 
|  |  | 
|  | /* Bound mss with half of window */ | 
|  | if (tp->max_window && mss_now > (tp->max_window>>1)) | 
|  | mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); | 
|  |  | 
|  | /* And store cached results */ | 
|  | tp->pmtu_cookie = pmtu; | 
|  | tp->mss_cache = tp->mss_cache_std = mss_now; | 
|  |  | 
|  | return mss_now; | 
|  | } | 
|  |  | 
|  | /* Compute the current effective MSS, taking SACKs and IP options, | 
|  | * and even PMTU discovery events into account. | 
|  | * | 
|  | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up | 
|  | * cannot be large. However, taking into account rare use of URG, this | 
|  | * is not a big flaw. | 
|  | */ | 
|  |  | 
|  | unsigned int tcp_current_mss(struct sock *sk, int large) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | unsigned int do_large, mss_now; | 
|  |  | 
|  | mss_now = tp->mss_cache_std; | 
|  | if (dst) { | 
|  | u32 mtu = dst_mtu(dst); | 
|  | if (mtu != tp->pmtu_cookie) | 
|  | mss_now = tcp_sync_mss(sk, mtu); | 
|  | } | 
|  |  | 
|  | do_large = (large && | 
|  | (sk->sk_route_caps & NETIF_F_TSO) && | 
|  | !tp->urg_mode); | 
|  |  | 
|  | if (do_large) { | 
|  | unsigned int large_mss, factor, limit; | 
|  |  | 
|  | large_mss = 65535 - tp->af_specific->net_header_len - | 
|  | tp->ext_header_len - tp->tcp_header_len; | 
|  |  | 
|  | if (tp->max_window && large_mss > (tp->max_window>>1)) | 
|  | large_mss = max((tp->max_window>>1), | 
|  | 68U - tp->tcp_header_len); | 
|  |  | 
|  | factor = large_mss / mss_now; | 
|  |  | 
|  | /* Always keep large mss multiple of real mss, but | 
|  | * do not exceed 1/tso_win_divisor of the congestion window | 
|  | * so we can keep the ACK clock ticking and minimize | 
|  | * bursting. | 
|  | */ | 
|  | limit = tp->snd_cwnd; | 
|  | if (sysctl_tcp_tso_win_divisor) | 
|  | limit /= sysctl_tcp_tso_win_divisor; | 
|  | limit = max(1U, limit); | 
|  | if (factor > limit) | 
|  | factor = limit; | 
|  |  | 
|  | tp->mss_cache = mss_now * factor; | 
|  |  | 
|  | mss_now = tp->mss_cache; | 
|  | } | 
|  |  | 
|  | if (tp->rx_opt.eff_sacks) | 
|  | mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + | 
|  | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | 
|  | return mss_now; | 
|  | } | 
|  |  | 
|  | /* This routine writes packets to the network.  It advances the | 
|  | * send_head.  This happens as incoming acks open up the remote | 
|  | * window for us. | 
|  | * | 
|  | * Returns 1, if no segments are in flight and we have queued segments, but | 
|  | * cannot send anything now because of SWS or another problem. | 
|  | */ | 
|  | int tcp_write_xmit(struct sock *sk, int nonagle) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned int mss_now; | 
|  |  | 
|  | /* If we are closed, the bytes will have to remain here. | 
|  | * In time closedown will finish, we empty the write queue and all | 
|  | * will be happy. | 
|  | */ | 
|  | if (sk->sk_state != TCP_CLOSE) { | 
|  | struct sk_buff *skb; | 
|  | int sent_pkts = 0; | 
|  |  | 
|  | /* Account for SACKS, we may need to fragment due to this. | 
|  | * It is just like the real MSS changing on us midstream. | 
|  | * We also handle things correctly when the user adds some | 
|  | * IP options mid-stream.  Silly to do, but cover it. | 
|  | */ | 
|  | mss_now = tcp_current_mss(sk, 1); | 
|  |  | 
|  | while ((skb = sk->sk_send_head) && | 
|  | tcp_snd_test(sk, skb, mss_now, | 
|  | tcp_skb_is_last(sk, skb) ? nonagle : | 
|  | TCP_NAGLE_PUSH)) { | 
|  | if (skb->len > mss_now) { | 
|  | if (tcp_fragment(sk, skb, mss_now)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | tcp_tso_set_push(skb); | 
|  | if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))) | 
|  | break; | 
|  |  | 
|  | /* Advance the send_head.  This one is sent out. | 
|  | * This call will increment packets_out. | 
|  | */ | 
|  | update_send_head(sk, tp, skb); | 
|  |  | 
|  | tcp_minshall_update(tp, mss_now, skb); | 
|  | sent_pkts = 1; | 
|  | } | 
|  |  | 
|  | if (sent_pkts) { | 
|  | tcp_cwnd_validate(sk, tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return !tp->packets_out && sk->sk_send_head; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This function returns the amount that we can raise the | 
|  | * usable window based on the following constraints | 
|  | * | 
|  | * 1. The window can never be shrunk once it is offered (RFC 793) | 
|  | * 2. We limit memory per socket | 
|  | * | 
|  | * RFC 1122: | 
|  | * "the suggested [SWS] avoidance algorithm for the receiver is to keep | 
|  | *  RECV.NEXT + RCV.WIN fixed until: | 
|  | *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | 
|  | * | 
|  | * i.e. don't raise the right edge of the window until you can raise | 
|  | * it at least MSS bytes. | 
|  | * | 
|  | * Unfortunately, the recommended algorithm breaks header prediction, | 
|  | * since header prediction assumes th->window stays fixed. | 
|  | * | 
|  | * Strictly speaking, keeping th->window fixed violates the receiver | 
|  | * side SWS prevention criteria. The problem is that under this rule | 
|  | * a stream of single byte packets will cause the right side of the | 
|  | * window to always advance by a single byte. | 
|  | * | 
|  | * Of course, if the sender implements sender side SWS prevention | 
|  | * then this will not be a problem. | 
|  | * | 
|  | * BSD seems to make the following compromise: | 
|  | * | 
|  | *	If the free space is less than the 1/4 of the maximum | 
|  | *	space available and the free space is less than 1/2 mss, | 
|  | *	then set the window to 0. | 
|  | *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | 
|  | *	Otherwise, just prevent the window from shrinking | 
|  | *	and from being larger than the largest representable value. | 
|  | * | 
|  | * This prevents incremental opening of the window in the regime | 
|  | * where TCP is limited by the speed of the reader side taking | 
|  | * data out of the TCP receive queue. It does nothing about | 
|  | * those cases where the window is constrained on the sender side | 
|  | * because the pipeline is full. | 
|  | * | 
|  | * BSD also seems to "accidentally" limit itself to windows that are a | 
|  | * multiple of MSS, at least until the free space gets quite small. | 
|  | * This would appear to be a side effect of the mbuf implementation. | 
|  | * Combining these two algorithms results in the observed behavior | 
|  | * of having a fixed window size at almost all times. | 
|  | * | 
|  | * Below we obtain similar behavior by forcing the offered window to | 
|  | * a multiple of the mss when it is feasible to do so. | 
|  | * | 
|  | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | 
|  | * Regular options like TIMESTAMP are taken into account. | 
|  | */ | 
|  | u32 __tcp_select_window(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | /* MSS for the peer's data.  Previous verions used mss_clamp | 
|  | * here.  I don't know if the value based on our guesses | 
|  | * of peer's MSS is better for the performance.  It's more correct | 
|  | * but may be worse for the performance because of rcv_mss | 
|  | * fluctuations.  --SAW  1998/11/1 | 
|  | */ | 
|  | int mss = tp->ack.rcv_mss; | 
|  | int free_space = tcp_space(sk); | 
|  | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); | 
|  | int window; | 
|  |  | 
|  | if (mss > full_space) | 
|  | mss = full_space; | 
|  |  | 
|  | if (free_space < full_space/2) { | 
|  | tp->ack.quick = 0; | 
|  |  | 
|  | if (tcp_memory_pressure) | 
|  | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); | 
|  |  | 
|  | if (free_space < mss) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (free_space > tp->rcv_ssthresh) | 
|  | free_space = tp->rcv_ssthresh; | 
|  |  | 
|  | /* Don't do rounding if we are using window scaling, since the | 
|  | * scaled window will not line up with the MSS boundary anyway. | 
|  | */ | 
|  | window = tp->rcv_wnd; | 
|  | if (tp->rx_opt.rcv_wscale) { | 
|  | window = free_space; | 
|  |  | 
|  | /* Advertise enough space so that it won't get scaled away. | 
|  | * Import case: prevent zero window announcement if | 
|  | * 1<<rcv_wscale > mss. | 
|  | */ | 
|  | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) | 
|  | window = (((window >> tp->rx_opt.rcv_wscale) + 1) | 
|  | << tp->rx_opt.rcv_wscale); | 
|  | } else { | 
|  | /* Get the largest window that is a nice multiple of mss. | 
|  | * Window clamp already applied above. | 
|  | * If our current window offering is within 1 mss of the | 
|  | * free space we just keep it. This prevents the divide | 
|  | * and multiply from happening most of the time. | 
|  | * We also don't do any window rounding when the free space | 
|  | * is too small. | 
|  | */ | 
|  | if (window <= free_space - mss || window > free_space) | 
|  | window = (free_space/mss)*mss; | 
|  | } | 
|  |  | 
|  | return window; | 
|  | } | 
|  |  | 
|  | /* Attempt to collapse two adjacent SKB's during retransmission. */ | 
|  | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *next_skb = skb->next; | 
|  |  | 
|  | /* The first test we must make is that neither of these two | 
|  | * SKB's are still referenced by someone else. | 
|  | */ | 
|  | if (!skb_cloned(skb) && !skb_cloned(next_skb)) { | 
|  | int skb_size = skb->len, next_skb_size = next_skb->len; | 
|  | u16 flags = TCP_SKB_CB(skb)->flags; | 
|  |  | 
|  | /* Also punt if next skb has been SACK'd. */ | 
|  | if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | return; | 
|  |  | 
|  | /* Next skb is out of window. */ | 
|  | if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) | 
|  | return; | 
|  |  | 
|  | /* Punt if not enough space exists in the first SKB for | 
|  | * the data in the second, or the total combined payload | 
|  | * would exceed the MSS. | 
|  | */ | 
|  | if ((next_skb_size > skb_tailroom(skb)) || | 
|  | ((skb_size + next_skb_size) > mss_now)) | 
|  | return; | 
|  |  | 
|  | BUG_ON(tcp_skb_pcount(skb) != 1 || | 
|  | tcp_skb_pcount(next_skb) != 1); | 
|  |  | 
|  | /* Ok.  We will be able to collapse the packet. */ | 
|  | __skb_unlink(next_skb, next_skb->list); | 
|  |  | 
|  | memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); | 
|  |  | 
|  | if (next_skb->ip_summed == CHECKSUM_HW) | 
|  | skb->ip_summed = CHECKSUM_HW; | 
|  |  | 
|  | if (skb->ip_summed != CHECKSUM_HW) | 
|  | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); | 
|  |  | 
|  | /* Update sequence range on original skb. */ | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | 
|  |  | 
|  | /* Merge over control information. */ | 
|  | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ | 
|  | TCP_SKB_CB(skb)->flags = flags; | 
|  |  | 
|  | /* All done, get rid of second SKB and account for it so | 
|  | * packet counting does not break. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); | 
|  | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) | 
|  | tp->retrans_out -= tcp_skb_pcount(next_skb); | 
|  | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { | 
|  | tp->lost_out -= tcp_skb_pcount(next_skb); | 
|  | tp->left_out -= tcp_skb_pcount(next_skb); | 
|  | } | 
|  | /* Reno case is special. Sigh... */ | 
|  | if (!tp->rx_opt.sack_ok && tp->sacked_out) { | 
|  | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); | 
|  | tp->left_out -= tcp_skb_pcount(next_skb); | 
|  | } | 
|  |  | 
|  | /* Not quite right: it can be > snd.fack, but | 
|  | * it is better to underestimate fackets. | 
|  | */ | 
|  | tcp_dec_pcount_approx(&tp->fackets_out, next_skb); | 
|  | tcp_packets_out_dec(tp, next_skb); | 
|  | sk_stream_free_skb(sk, next_skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do a simple retransmit without using the backoff mechanisms in | 
|  | * tcp_timer. This is used for path mtu discovery. | 
|  | * The socket is already locked here. | 
|  | */ | 
|  | void tcp_simple_retransmit(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | unsigned int mss = tcp_current_mss(sk, 0); | 
|  | int lost = 0; | 
|  |  | 
|  | sk_stream_for_retrans_queue(skb, sk) { | 
|  | if (skb->len > mss && | 
|  | !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { | 
|  | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
|  | tp->retrans_out -= tcp_skb_pcount(skb); | 
|  | } | 
|  | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { | 
|  | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
|  | tp->lost_out += tcp_skb_pcount(skb); | 
|  | lost = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!lost) | 
|  | return; | 
|  |  | 
|  | tcp_sync_left_out(tp); | 
|  |  | 
|  | /* Don't muck with the congestion window here. | 
|  | * Reason is that we do not increase amount of _data_ | 
|  | * in network, but units changed and effective | 
|  | * cwnd/ssthresh really reduced now. | 
|  | */ | 
|  | if (tp->ca_state != TCP_CA_Loss) { | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | tp->snd_ssthresh = tcp_current_ssthresh(tp); | 
|  | tp->prior_ssthresh = 0; | 
|  | tp->undo_marker = 0; | 
|  | tcp_set_ca_state(tp, TCP_CA_Loss); | 
|  | } | 
|  | tcp_xmit_retransmit_queue(sk); | 
|  | } | 
|  |  | 
|  | /* This retransmits one SKB.  Policy decisions and retransmit queue | 
|  | * state updates are done by the caller.  Returns non-zero if an | 
|  | * error occurred which prevented the send. | 
|  | */ | 
|  | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned int cur_mss = tcp_current_mss(sk, 0); | 
|  | int err; | 
|  |  | 
|  | /* Do not sent more than we queued. 1/4 is reserved for possible | 
|  | * copying overhead: frgagmentation, tunneling, mangling etc. | 
|  | */ | 
|  | if (atomic_read(&sk->sk_wmem_alloc) > | 
|  | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | 
|  | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | 
|  | BUG(); | 
|  |  | 
|  | if (sk->sk_route_caps & NETIF_F_TSO) { | 
|  | sk->sk_route_caps &= ~NETIF_F_TSO; | 
|  | sock_set_flag(sk, SOCK_NO_LARGESEND); | 
|  | tp->mss_cache = tp->mss_cache_std; | 
|  | } | 
|  |  | 
|  | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* If receiver has shrunk his window, and skb is out of | 
|  | * new window, do not retransmit it. The exception is the | 
|  | * case, when window is shrunk to zero. In this case | 
|  | * our retransmit serves as a zero window probe. | 
|  | */ | 
|  | if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) | 
|  | && TCP_SKB_CB(skb)->seq != tp->snd_una) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (skb->len > cur_mss) { | 
|  | int old_factor = tcp_skb_pcount(skb); | 
|  | int new_factor; | 
|  |  | 
|  | if (tcp_fragment(sk, skb, cur_mss)) | 
|  | return -ENOMEM; /* We'll try again later. */ | 
|  |  | 
|  | /* New SKB created, account for it. */ | 
|  | new_factor = tcp_skb_pcount(skb); | 
|  | tp->packets_out -= old_factor - new_factor; | 
|  | tp->packets_out += tcp_skb_pcount(skb->next); | 
|  | } | 
|  |  | 
|  | /* Collapse two adjacent packets if worthwhile and we can. */ | 
|  | if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && | 
|  | (skb->len < (cur_mss >> 1)) && | 
|  | (skb->next != sk->sk_send_head) && | 
|  | (skb->next != (struct sk_buff *)&sk->sk_write_queue) && | 
|  | (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && | 
|  | (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && | 
|  | (sysctl_tcp_retrans_collapse != 0)) | 
|  | tcp_retrans_try_collapse(sk, skb, cur_mss); | 
|  |  | 
|  | if(tp->af_specific->rebuild_header(sk)) | 
|  | return -EHOSTUNREACH; /* Routing failure or similar. */ | 
|  |  | 
|  | /* Some Solaris stacks overoptimize and ignore the FIN on a | 
|  | * retransmit when old data is attached.  So strip it off | 
|  | * since it is cheap to do so and saves bytes on the network. | 
|  | */ | 
|  | if(skb->len > 0 && | 
|  | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | 
|  | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { | 
|  | if (!pskb_trim(skb, 0)) { | 
|  | TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; | 
|  | skb_shinfo(skb)->tso_segs = 1; | 
|  | skb_shinfo(skb)->tso_size = 0; | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | skb->csum = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make a copy, if the first transmission SKB clone we made | 
|  | * is still in somebody's hands, else make a clone. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | tcp_tso_set_push(skb); | 
|  |  | 
|  | err = tcp_transmit_skb(sk, (skb_cloned(skb) ? | 
|  | pskb_copy(skb, GFP_ATOMIC): | 
|  | skb_clone(skb, GFP_ATOMIC))); | 
|  |  | 
|  | if (err == 0) { | 
|  | /* Update global TCP statistics. */ | 
|  | TCP_INC_STATS(TCP_MIB_RETRANSSEGS); | 
|  |  | 
|  | tp->total_retrans++; | 
|  |  | 
|  | #if FASTRETRANS_DEBUG > 0 | 
|  | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | 
|  | if (net_ratelimit()) | 
|  | printk(KERN_DEBUG "retrans_out leaked.\n"); | 
|  | } | 
|  | #endif | 
|  | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | 
|  | tp->retrans_out += tcp_skb_pcount(skb); | 
|  |  | 
|  | /* Save stamp of the first retransmit. */ | 
|  | if (!tp->retrans_stamp) | 
|  | tp->retrans_stamp = TCP_SKB_CB(skb)->when; | 
|  |  | 
|  | tp->undo_retrans++; | 
|  |  | 
|  | /* snd_nxt is stored to detect loss of retransmitted segment, | 
|  | * see tcp_input.c tcp_sacktag_write_queue(). | 
|  | */ | 
|  | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* This gets called after a retransmit timeout, and the initially | 
|  | * retransmitted data is acknowledged.  It tries to continue | 
|  | * resending the rest of the retransmit queue, until either | 
|  | * we've sent it all or the congestion window limit is reached. | 
|  | * If doing SACK, the first ACK which comes back for a timeout | 
|  | * based retransmit packet might feed us FACK information again. | 
|  | * If so, we use it to avoid unnecessarily retransmissions. | 
|  | */ | 
|  | void tcp_xmit_retransmit_queue(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | int packet_cnt = tp->lost_out; | 
|  |  | 
|  | /* First pass: retransmit lost packets. */ | 
|  | if (packet_cnt) { | 
|  | sk_stream_for_retrans_queue(skb, sk) { | 
|  | __u8 sacked = TCP_SKB_CB(skb)->sacked; | 
|  |  | 
|  | /* Assume this retransmit will generate | 
|  | * only one packet for congestion window | 
|  | * calculation purposes.  This works because | 
|  | * tcp_retransmit_skb() will chop up the | 
|  | * packet to be MSS sized and all the | 
|  | * packet counting works out. | 
|  | */ | 
|  | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | 
|  | return; | 
|  |  | 
|  | if (sacked&TCPCB_LOST) { | 
|  | if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { | 
|  | if (tcp_retransmit_skb(sk, skb)) | 
|  | return; | 
|  | if (tp->ca_state != TCP_CA_Loss) | 
|  | NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); | 
|  | else | 
|  | NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); | 
|  |  | 
|  | if (skb == | 
|  | skb_peek(&sk->sk_write_queue)) | 
|  | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | 
|  | } | 
|  |  | 
|  | packet_cnt -= tcp_skb_pcount(skb); | 
|  | if (packet_cnt <= 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OK, demanded retransmission is finished. */ | 
|  |  | 
|  | /* Forward retransmissions are possible only during Recovery. */ | 
|  | if (tp->ca_state != TCP_CA_Recovery) | 
|  | return; | 
|  |  | 
|  | /* No forward retransmissions in Reno are possible. */ | 
|  | if (!tp->rx_opt.sack_ok) | 
|  | return; | 
|  |  | 
|  | /* Yeah, we have to make difficult choice between forward transmission | 
|  | * and retransmission... Both ways have their merits... | 
|  | * | 
|  | * For now we do not retransmit anything, while we have some new | 
|  | * segments to send. | 
|  | */ | 
|  |  | 
|  | if (tcp_may_send_now(sk, tp)) | 
|  | return; | 
|  |  | 
|  | packet_cnt = 0; | 
|  |  | 
|  | sk_stream_for_retrans_queue(skb, sk) { | 
|  | /* Similar to the retransmit loop above we | 
|  | * can pretend that the retransmitted SKB | 
|  | * we send out here will be composed of one | 
|  | * real MSS sized packet because tcp_retransmit_skb() | 
|  | * will fragment it if necessary. | 
|  | */ | 
|  | if (++packet_cnt > tp->fackets_out) | 
|  | break; | 
|  |  | 
|  | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | 
|  | break; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) | 
|  | continue; | 
|  |  | 
|  | /* Ok, retransmit it. */ | 
|  | if (tcp_retransmit_skb(sk, skb)) | 
|  | break; | 
|  |  | 
|  | if (skb == skb_peek(&sk->sk_write_queue)) | 
|  | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | 
|  |  | 
|  | NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Send a fin.  The caller locks the socket for us.  This cannot be | 
|  | * allowed to fail queueing a FIN frame under any circumstances. | 
|  | */ | 
|  | void tcp_send_fin(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); | 
|  | int mss_now; | 
|  |  | 
|  | /* Optimization, tack on the FIN if we have a queue of | 
|  | * unsent frames.  But be careful about outgoing SACKS | 
|  | * and IP options. | 
|  | */ | 
|  | mss_now = tcp_current_mss(sk, 1); | 
|  |  | 
|  | if (sk->sk_send_head != NULL) { | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; | 
|  | TCP_SKB_CB(skb)->end_seq++; | 
|  | tp->write_seq++; | 
|  | } else { | 
|  | /* Socket is locked, keep trying until memory is available. */ | 
|  | for (;;) { | 
|  | skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL); | 
|  | if (skb) | 
|  | break; | 
|  | yield(); | 
|  | } | 
|  |  | 
|  | /* Reserve space for headers and prepare control bits. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | skb->csum = 0; | 
|  | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); | 
|  | TCP_SKB_CB(skb)->sacked = 0; | 
|  | skb_shinfo(skb)->tso_segs = 1; | 
|  | skb_shinfo(skb)->tso_size = 0; | 
|  |  | 
|  | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | 
|  | TCP_SKB_CB(skb)->seq = tp->write_seq; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | 
|  | tcp_queue_skb(sk, skb); | 
|  | } | 
|  | __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); | 
|  | } | 
|  |  | 
|  | /* We get here when a process closes a file descriptor (either due to | 
|  | * an explicit close() or as a byproduct of exit()'ing) and there | 
|  | * was unread data in the receive queue.  This behavior is recommended | 
|  | * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM | 
|  | */ | 
|  | void tcp_send_active_reset(struct sock *sk, int priority) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* NOTE: No TCP options attached and we never retransmit this. */ | 
|  | skb = alloc_skb(MAX_TCP_HEADER, priority); | 
|  | if (!skb) { | 
|  | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Reserve space for headers and prepare control bits. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | skb->csum = 0; | 
|  | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); | 
|  | TCP_SKB_CB(skb)->sacked = 0; | 
|  | skb_shinfo(skb)->tso_segs = 1; | 
|  | skb_shinfo(skb)->tso_size = 0; | 
|  |  | 
|  | /* Send it off. */ | 
|  | TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | if (tcp_transmit_skb(sk, skb)) | 
|  | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | 
|  | } | 
|  |  | 
|  | /* WARNING: This routine must only be called when we have already sent | 
|  | * a SYN packet that crossed the incoming SYN that caused this routine | 
|  | * to get called. If this assumption fails then the initial rcv_wnd | 
|  | * and rcv_wscale values will not be correct. | 
|  | */ | 
|  | int tcp_send_synack(struct sock *sk) | 
|  | { | 
|  | struct sk_buff* skb; | 
|  |  | 
|  | skb = skb_peek(&sk->sk_write_queue); | 
|  | if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { | 
|  | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { | 
|  | if (skb_cloned(skb)) { | 
|  | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | 
|  | if (nskb == NULL) | 
|  | return -ENOMEM; | 
|  | __skb_unlink(skb, &sk->sk_write_queue); | 
|  | skb_header_release(nskb); | 
|  | __skb_queue_head(&sk->sk_write_queue, nskb); | 
|  | sk_stream_free_skb(sk, skb); | 
|  | sk_charge_skb(sk, nskb); | 
|  | skb = nskb; | 
|  | } | 
|  |  | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; | 
|  | TCP_ECN_send_synack(tcp_sk(sk), skb); | 
|  | } | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare a SYN-ACK. | 
|  | */ | 
|  | struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, | 
|  | struct request_sock *req) | 
|  | { | 
|  | struct inet_request_sock *ireq = inet_rsk(req); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcphdr *th; | 
|  | int tcp_header_size; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); | 
|  | if (skb == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* Reserve space for headers. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  |  | 
|  | skb->dst = dst_clone(dst); | 
|  |  | 
|  | tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + | 
|  | (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + | 
|  | (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + | 
|  | /* SACK_PERM is in the place of NOP NOP of TS */ | 
|  | ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); | 
|  | skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); | 
|  |  | 
|  | memset(th, 0, sizeof(struct tcphdr)); | 
|  | th->syn = 1; | 
|  | th->ack = 1; | 
|  | if (dst->dev->features&NETIF_F_TSO) | 
|  | ireq->ecn_ok = 0; | 
|  | TCP_ECN_make_synack(req, th); | 
|  | th->source = inet_sk(sk)->sport; | 
|  | th->dest = ireq->rmt_port; | 
|  | TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | 
|  | TCP_SKB_CB(skb)->sacked = 0; | 
|  | skb_shinfo(skb)->tso_segs = 1; | 
|  | skb_shinfo(skb)->tso_size = 0; | 
|  | th->seq = htonl(TCP_SKB_CB(skb)->seq); | 
|  | th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); | 
|  | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ | 
|  | __u8 rcv_wscale; | 
|  | /* Set this up on the first call only */ | 
|  | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); | 
|  | /* tcp_full_space because it is guaranteed to be the first packet */ | 
|  | tcp_select_initial_window(tcp_full_space(sk), | 
|  | dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | 
|  | &req->rcv_wnd, | 
|  | &req->window_clamp, | 
|  | ireq->wscale_ok, | 
|  | &rcv_wscale); | 
|  | ireq->rcv_wscale = rcv_wscale; | 
|  | } | 
|  |  | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | 
|  | th->window = htons(req->rcv_wnd); | 
|  |  | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, | 
|  | ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, | 
|  | TCP_SKB_CB(skb)->when, | 
|  | req->ts_recent); | 
|  |  | 
|  | skb->csum = 0; | 
|  | th->doff = (tcp_header_size >> 2); | 
|  | TCP_INC_STATS(TCP_MIB_OUTSEGS); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do all connect socket setups that can be done AF independent. | 
|  | */ | 
|  | static inline void tcp_connect_init(struct sock *sk) | 
|  | { | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | __u8 rcv_wscale; | 
|  |  | 
|  | /* We'll fix this up when we get a response from the other end. | 
|  | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | 
|  | */ | 
|  | tp->tcp_header_len = sizeof(struct tcphdr) + | 
|  | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); | 
|  |  | 
|  | /* If user gave his TCP_MAXSEG, record it to clamp */ | 
|  | if (tp->rx_opt.user_mss) | 
|  | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | 
|  | tp->max_window = 0; | 
|  | tcp_sync_mss(sk, dst_mtu(dst)); | 
|  |  | 
|  | if (!tp->window_clamp) | 
|  | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | 
|  | tp->advmss = dst_metric(dst, RTAX_ADVMSS); | 
|  | tcp_initialize_rcv_mss(sk); | 
|  | tcp_ca_init(tp); | 
|  |  | 
|  | tcp_select_initial_window(tcp_full_space(sk), | 
|  | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | 
|  | &tp->rcv_wnd, | 
|  | &tp->window_clamp, | 
|  | sysctl_tcp_window_scaling, | 
|  | &rcv_wscale); | 
|  |  | 
|  | tp->rx_opt.rcv_wscale = rcv_wscale; | 
|  | tp->rcv_ssthresh = tp->rcv_wnd; | 
|  |  | 
|  | sk->sk_err = 0; | 
|  | sock_reset_flag(sk, SOCK_DONE); | 
|  | tp->snd_wnd = 0; | 
|  | tcp_init_wl(tp, tp->write_seq, 0); | 
|  | tp->snd_una = tp->write_seq; | 
|  | tp->snd_sml = tp->write_seq; | 
|  | tp->rcv_nxt = 0; | 
|  | tp->rcv_wup = 0; | 
|  | tp->copied_seq = 0; | 
|  |  | 
|  | tp->rto = TCP_TIMEOUT_INIT; | 
|  | tp->retransmits = 0; | 
|  | tcp_clear_retrans(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build a SYN and send it off. | 
|  | */ | 
|  | int tcp_connect(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *buff; | 
|  |  | 
|  | tcp_connect_init(sk); | 
|  |  | 
|  | buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation); | 
|  | if (unlikely(buff == NULL)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | /* Reserve space for headers. */ | 
|  | skb_reserve(buff, MAX_TCP_HEADER); | 
|  |  | 
|  | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; | 
|  | TCP_ECN_send_syn(sk, tp, buff); | 
|  | TCP_SKB_CB(buff)->sacked = 0; | 
|  | skb_shinfo(buff)->tso_segs = 1; | 
|  | skb_shinfo(buff)->tso_size = 0; | 
|  | buff->csum = 0; | 
|  | TCP_SKB_CB(buff)->seq = tp->write_seq++; | 
|  | TCP_SKB_CB(buff)->end_seq = tp->write_seq; | 
|  | tp->snd_nxt = tp->write_seq; | 
|  | tp->pushed_seq = tp->write_seq; | 
|  | tcp_ca_init(tp); | 
|  |  | 
|  | /* Send it off. */ | 
|  | TCP_SKB_CB(buff)->when = tcp_time_stamp; | 
|  | tp->retrans_stamp = TCP_SKB_CB(buff)->when; | 
|  | skb_header_release(buff); | 
|  | __skb_queue_tail(&sk->sk_write_queue, buff); | 
|  | sk_charge_skb(sk, buff); | 
|  | tp->packets_out += tcp_skb_pcount(buff); | 
|  | tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); | 
|  | TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); | 
|  |  | 
|  | /* Timer for repeating the SYN until an answer. */ | 
|  | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Send out a delayed ack, the caller does the policy checking | 
|  | * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check() | 
|  | * for details. | 
|  | */ | 
|  | void tcp_send_delayed_ack(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int ato = tp->ack.ato; | 
|  | unsigned long timeout; | 
|  |  | 
|  | if (ato > TCP_DELACK_MIN) { | 
|  | int max_ato = HZ/2; | 
|  |  | 
|  | if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED)) | 
|  | max_ato = TCP_DELACK_MAX; | 
|  |  | 
|  | /* Slow path, intersegment interval is "high". */ | 
|  |  | 
|  | /* If some rtt estimate is known, use it to bound delayed ack. | 
|  | * Do not use tp->rto here, use results of rtt measurements | 
|  | * directly. | 
|  | */ | 
|  | if (tp->srtt) { | 
|  | int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); | 
|  |  | 
|  | if (rtt < max_ato) | 
|  | max_ato = rtt; | 
|  | } | 
|  |  | 
|  | ato = min(ato, max_ato); | 
|  | } | 
|  |  | 
|  | /* Stay within the limit we were given */ | 
|  | timeout = jiffies + ato; | 
|  |  | 
|  | /* Use new timeout only if there wasn't a older one earlier. */ | 
|  | if (tp->ack.pending&TCP_ACK_TIMER) { | 
|  | /* If delack timer was blocked or is about to expire, | 
|  | * send ACK now. | 
|  | */ | 
|  | if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) { | 
|  | tcp_send_ack(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!time_before(timeout, tp->ack.timeout)) | 
|  | timeout = tp->ack.timeout; | 
|  | } | 
|  | tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER; | 
|  | tp->ack.timeout = timeout; | 
|  | sk_reset_timer(sk, &tp->delack_timer, timeout); | 
|  | } | 
|  |  | 
|  | /* This routine sends an ack and also updates the window. */ | 
|  | void tcp_send_ack(struct sock *sk) | 
|  | { | 
|  | /* If we have been reset, we may not send again. */ | 
|  | if (sk->sk_state != TCP_CLOSE) { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *buff; | 
|  |  | 
|  | /* We are not putting this on the write queue, so | 
|  | * tcp_transmit_skb() will set the ownership to this | 
|  | * sock. | 
|  | */ | 
|  | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
|  | if (buff == NULL) { | 
|  | tcp_schedule_ack(tp); | 
|  | tp->ack.ato = TCP_ATO_MIN; | 
|  | tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Reserve space for headers and prepare control bits. */ | 
|  | skb_reserve(buff, MAX_TCP_HEADER); | 
|  | buff->csum = 0; | 
|  | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; | 
|  | TCP_SKB_CB(buff)->sacked = 0; | 
|  | skb_shinfo(buff)->tso_segs = 1; | 
|  | skb_shinfo(buff)->tso_size = 0; | 
|  |  | 
|  | /* Send it off, this clears delayed acks for us. */ | 
|  | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); | 
|  | TCP_SKB_CB(buff)->when = tcp_time_stamp; | 
|  | tcp_transmit_skb(sk, buff); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This routine sends a packet with an out of date sequence | 
|  | * number. It assumes the other end will try to ack it. | 
|  | * | 
|  | * Question: what should we make while urgent mode? | 
|  | * 4.4BSD forces sending single byte of data. We cannot send | 
|  | * out of window data, because we have SND.NXT==SND.MAX... | 
|  | * | 
|  | * Current solution: to send TWO zero-length segments in urgent mode: | 
|  | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | 
|  | * out-of-date with SND.UNA-1 to probe window. | 
|  | */ | 
|  | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* We don't queue it, tcp_transmit_skb() sets ownership. */ | 
|  | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
|  | if (skb == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* Reserve space for headers and set control bits. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | skb->csum = 0; | 
|  | TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; | 
|  | TCP_SKB_CB(skb)->sacked = urgent; | 
|  | skb_shinfo(skb)->tso_segs = 1; | 
|  | skb_shinfo(skb)->tso_size = 0; | 
|  |  | 
|  | /* Use a previous sequence.  This should cause the other | 
|  | * end to send an ack.  Don't queue or clone SKB, just | 
|  | * send it. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | return tcp_transmit_skb(sk, skb); | 
|  | } | 
|  |  | 
|  | int tcp_write_wakeup(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_state != TCP_CLOSE) { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if ((skb = sk->sk_send_head) != NULL && | 
|  | before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { | 
|  | int err; | 
|  | unsigned int mss = tcp_current_mss(sk, 0); | 
|  | unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; | 
|  |  | 
|  | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | 
|  | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | 
|  |  | 
|  | /* We are probing the opening of a window | 
|  | * but the window size is != 0 | 
|  | * must have been a result SWS avoidance ( sender ) | 
|  | */ | 
|  | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | 
|  | skb->len > mss) { | 
|  | seg_size = min(seg_size, mss); | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | if (tcp_fragment(sk, skb, seg_size)) | 
|  | return -1; | 
|  | /* SWS override triggered forced fragmentation. | 
|  | * Disable TSO, the connection is too sick. */ | 
|  | if (sk->sk_route_caps & NETIF_F_TSO) { | 
|  | sock_set_flag(sk, SOCK_NO_LARGESEND); | 
|  | sk->sk_route_caps &= ~NETIF_F_TSO; | 
|  | tp->mss_cache = tp->mss_cache_std; | 
|  | } | 
|  | } else if (!tcp_skb_pcount(skb)) | 
|  | tcp_set_skb_tso_segs(sk, skb); | 
|  |  | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | tcp_tso_set_push(skb); | 
|  | err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | 
|  | if (!err) { | 
|  | update_send_head(sk, tp, skb); | 
|  | } | 
|  | return err; | 
|  | } else { | 
|  | if (tp->urg_mode && | 
|  | between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) | 
|  | tcp_xmit_probe_skb(sk, TCPCB_URG); | 
|  | return tcp_xmit_probe_skb(sk, 0); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* A window probe timeout has occurred.  If window is not closed send | 
|  | * a partial packet else a zero probe. | 
|  | */ | 
|  | void tcp_send_probe0(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int err; | 
|  |  | 
|  | err = tcp_write_wakeup(sk); | 
|  |  | 
|  | if (tp->packets_out || !sk->sk_send_head) { | 
|  | /* Cancel probe timer, if it is not required. */ | 
|  | tp->probes_out = 0; | 
|  | tp->backoff = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (err <= 0) { | 
|  | if (tp->backoff < sysctl_tcp_retries2) | 
|  | tp->backoff++; | 
|  | tp->probes_out++; | 
|  | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | 
|  | min(tp->rto << tp->backoff, TCP_RTO_MAX)); | 
|  | } else { | 
|  | /* If packet was not sent due to local congestion, | 
|  | * do not backoff and do not remember probes_out. | 
|  | * Let local senders to fight for local resources. | 
|  | * | 
|  | * Use accumulated backoff yet. | 
|  | */ | 
|  | if (!tp->probes_out) | 
|  | tp->probes_out=1; | 
|  | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | 
|  | min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL)); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(tcp_connect); | 
|  | EXPORT_SYMBOL(tcp_make_synack); | 
|  | EXPORT_SYMBOL(tcp_simple_retransmit); | 
|  | EXPORT_SYMBOL(tcp_sync_mss); |