|  | /* | 
|  | *  linux/kernel/sys.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/times.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/dcookies.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/getcpu.h> | 
|  |  | 
|  | #include <linux/compat.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/kprobes.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/unistd.h> | 
|  |  | 
|  | #ifndef SET_UNALIGN_CTL | 
|  | # define SET_UNALIGN_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_UNALIGN_CTL | 
|  | # define GET_UNALIGN_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_FPEMU_CTL | 
|  | # define SET_FPEMU_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_FPEMU_CTL | 
|  | # define GET_FPEMU_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_FPEXC_CTL | 
|  | # define SET_FPEXC_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_FPEXC_CTL | 
|  | # define GET_FPEXC_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_ENDIAN | 
|  | # define GET_ENDIAN(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_ENDIAN | 
|  | # define SET_ENDIAN(a,b)	(-EINVAL) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * this is where the system-wide overflow UID and GID are defined, for | 
|  | * architectures that now have 32-bit UID/GID but didn't in the past | 
|  | */ | 
|  |  | 
|  | int overflowuid = DEFAULT_OVERFLOWUID; | 
|  | int overflowgid = DEFAULT_OVERFLOWGID; | 
|  |  | 
|  | #ifdef CONFIG_UID16 | 
|  | EXPORT_SYMBOL(overflowuid); | 
|  | EXPORT_SYMBOL(overflowgid); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * the same as above, but for filesystems which can only store a 16-bit | 
|  | * UID and GID. as such, this is needed on all architectures | 
|  | */ | 
|  |  | 
|  | int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; | 
|  | int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; | 
|  |  | 
|  | EXPORT_SYMBOL(fs_overflowuid); | 
|  | EXPORT_SYMBOL(fs_overflowgid); | 
|  |  | 
|  | /* | 
|  | * this indicates whether you can reboot with ctrl-alt-del: the default is yes | 
|  | */ | 
|  |  | 
|  | int C_A_D = 1; | 
|  | int cad_pid = 1; | 
|  |  | 
|  | /* | 
|  | *	Notifier list for kernel code which wants to be called | 
|  | *	at shutdown. This is used to stop any idling DMA operations | 
|  | *	and the like. | 
|  | */ | 
|  |  | 
|  | static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list); | 
|  |  | 
|  | /* | 
|  | *	Notifier chain core routines.  The exported routines below | 
|  | *	are layered on top of these, with appropriate locking added. | 
|  | */ | 
|  |  | 
|  | static int notifier_chain_register(struct notifier_block **nl, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | while ((*nl) != NULL) { | 
|  | if (n->priority > (*nl)->priority) | 
|  | break; | 
|  | nl = &((*nl)->next); | 
|  | } | 
|  | n->next = *nl; | 
|  | rcu_assign_pointer(*nl, n); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int notifier_chain_unregister(struct notifier_block **nl, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | while ((*nl) != NULL) { | 
|  | if ((*nl) == n) { | 
|  | rcu_assign_pointer(*nl, n->next); | 
|  | return 0; | 
|  | } | 
|  | nl = &((*nl)->next); | 
|  | } | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | static int __kprobes notifier_call_chain(struct notifier_block **nl, | 
|  | unsigned long val, void *v) | 
|  | { | 
|  | int ret = NOTIFY_DONE; | 
|  | struct notifier_block *nb, *next_nb; | 
|  |  | 
|  | nb = rcu_dereference(*nl); | 
|  | while (nb) { | 
|  | next_nb = rcu_dereference(nb->next); | 
|  | ret = nb->notifier_call(nb, val, v); | 
|  | if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK) | 
|  | break; | 
|  | nb = next_nb; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Atomic notifier chain routines.  Registration and unregistration | 
|  | *	use a mutex, and call_chain is synchronized by RCU (no locks). | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain | 
|  | *	@nh: Pointer to head of the atomic notifier chain | 
|  | *	@n: New entry in notifier chain | 
|  | * | 
|  | *	Adds a notifier to an atomic notifier chain. | 
|  | * | 
|  | *	Currently always returns zero. | 
|  | */ | 
|  |  | 
|  | int atomic_notifier_chain_register(struct atomic_notifier_head *nh, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&nh->lock, flags); | 
|  | ret = notifier_chain_register(&nh->head, n); | 
|  | spin_unlock_irqrestore(&nh->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(atomic_notifier_chain_register); | 
|  |  | 
|  | /** | 
|  | *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain | 
|  | *	@nh: Pointer to head of the atomic notifier chain | 
|  | *	@n: Entry to remove from notifier chain | 
|  | * | 
|  | *	Removes a notifier from an atomic notifier chain. | 
|  | * | 
|  | *	Returns zero on success or %-ENOENT on failure. | 
|  | */ | 
|  | int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&nh->lock, flags); | 
|  | ret = notifier_chain_unregister(&nh->head, n); | 
|  | spin_unlock_irqrestore(&nh->lock, flags); | 
|  | synchronize_rcu(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister); | 
|  |  | 
|  | /** | 
|  | *	atomic_notifier_call_chain - Call functions in an atomic notifier chain | 
|  | *	@nh: Pointer to head of the atomic notifier chain | 
|  | *	@val: Value passed unmodified to notifier function | 
|  | *	@v: Pointer passed unmodified to notifier function | 
|  | * | 
|  | *	Calls each function in a notifier chain in turn.  The functions | 
|  | *	run in an atomic context, so they must not block. | 
|  | *	This routine uses RCU to synchronize with changes to the chain. | 
|  | * | 
|  | *	If the return value of the notifier can be and'ed | 
|  | *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain | 
|  | *	will return immediately, with the return value of | 
|  | *	the notifier function which halted execution. | 
|  | *	Otherwise the return value is the return value | 
|  | *	of the last notifier function called. | 
|  | */ | 
|  |  | 
|  | int atomic_notifier_call_chain(struct atomic_notifier_head *nh, | 
|  | unsigned long val, void *v) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = notifier_call_chain(&nh->head, val, v); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(atomic_notifier_call_chain); | 
|  |  | 
|  | /* | 
|  | *	Blocking notifier chain routines.  All access to the chain is | 
|  | *	synchronized by an rwsem. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain | 
|  | *	@nh: Pointer to head of the blocking notifier chain | 
|  | *	@n: New entry in notifier chain | 
|  | * | 
|  | *	Adds a notifier to a blocking notifier chain. | 
|  | *	Must be called in process context. | 
|  | * | 
|  | *	Currently always returns zero. | 
|  | */ | 
|  |  | 
|  | int blocking_notifier_chain_register(struct blocking_notifier_head *nh, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * This code gets used during boot-up, when task switching is | 
|  | * not yet working and interrupts must remain disabled.  At | 
|  | * such times we must not call down_write(). | 
|  | */ | 
|  | if (unlikely(system_state == SYSTEM_BOOTING)) | 
|  | return notifier_chain_register(&nh->head, n); | 
|  |  | 
|  | down_write(&nh->rwsem); | 
|  | ret = notifier_chain_register(&nh->head, n); | 
|  | up_write(&nh->rwsem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(blocking_notifier_chain_register); | 
|  |  | 
|  | /** | 
|  | *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain | 
|  | *	@nh: Pointer to head of the blocking notifier chain | 
|  | *	@n: Entry to remove from notifier chain | 
|  | * | 
|  | *	Removes a notifier from a blocking notifier chain. | 
|  | *	Must be called from process context. | 
|  | * | 
|  | *	Returns zero on success or %-ENOENT on failure. | 
|  | */ | 
|  | int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * This code gets used during boot-up, when task switching is | 
|  | * not yet working and interrupts must remain disabled.  At | 
|  | * such times we must not call down_write(). | 
|  | */ | 
|  | if (unlikely(system_state == SYSTEM_BOOTING)) | 
|  | return notifier_chain_unregister(&nh->head, n); | 
|  |  | 
|  | down_write(&nh->rwsem); | 
|  | ret = notifier_chain_unregister(&nh->head, n); | 
|  | up_write(&nh->rwsem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister); | 
|  |  | 
|  | /** | 
|  | *	blocking_notifier_call_chain - Call functions in a blocking notifier chain | 
|  | *	@nh: Pointer to head of the blocking notifier chain | 
|  | *	@val: Value passed unmodified to notifier function | 
|  | *	@v: Pointer passed unmodified to notifier function | 
|  | * | 
|  | *	Calls each function in a notifier chain in turn.  The functions | 
|  | *	run in a process context, so they are allowed to block. | 
|  | * | 
|  | *	If the return value of the notifier can be and'ed | 
|  | *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain | 
|  | *	will return immediately, with the return value of | 
|  | *	the notifier function which halted execution. | 
|  | *	Otherwise the return value is the return value | 
|  | *	of the last notifier function called. | 
|  | */ | 
|  |  | 
|  | int blocking_notifier_call_chain(struct blocking_notifier_head *nh, | 
|  | unsigned long val, void *v) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | down_read(&nh->rwsem); | 
|  | ret = notifier_call_chain(&nh->head, val, v); | 
|  | up_read(&nh->rwsem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(blocking_notifier_call_chain); | 
|  |  | 
|  | /* | 
|  | *	Raw notifier chain routines.  There is no protection; | 
|  | *	the caller must provide it.  Use at your own risk! | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	raw_notifier_chain_register - Add notifier to a raw notifier chain | 
|  | *	@nh: Pointer to head of the raw notifier chain | 
|  | *	@n: New entry in notifier chain | 
|  | * | 
|  | *	Adds a notifier to a raw notifier chain. | 
|  | *	All locking must be provided by the caller. | 
|  | * | 
|  | *	Currently always returns zero. | 
|  | */ | 
|  |  | 
|  | int raw_notifier_chain_register(struct raw_notifier_head *nh, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | return notifier_chain_register(&nh->head, n); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(raw_notifier_chain_register); | 
|  |  | 
|  | /** | 
|  | *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain | 
|  | *	@nh: Pointer to head of the raw notifier chain | 
|  | *	@n: Entry to remove from notifier chain | 
|  | * | 
|  | *	Removes a notifier from a raw notifier chain. | 
|  | *	All locking must be provided by the caller. | 
|  | * | 
|  | *	Returns zero on success or %-ENOENT on failure. | 
|  | */ | 
|  | int raw_notifier_chain_unregister(struct raw_notifier_head *nh, | 
|  | struct notifier_block *n) | 
|  | { | 
|  | return notifier_chain_unregister(&nh->head, n); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister); | 
|  |  | 
|  | /** | 
|  | *	raw_notifier_call_chain - Call functions in a raw notifier chain | 
|  | *	@nh: Pointer to head of the raw notifier chain | 
|  | *	@val: Value passed unmodified to notifier function | 
|  | *	@v: Pointer passed unmodified to notifier function | 
|  | * | 
|  | *	Calls each function in a notifier chain in turn.  The functions | 
|  | *	run in an undefined context. | 
|  | *	All locking must be provided by the caller. | 
|  | * | 
|  | *	If the return value of the notifier can be and'ed | 
|  | *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain | 
|  | *	will return immediately, with the return value of | 
|  | *	the notifier function which halted execution. | 
|  | *	Otherwise the return value is the return value | 
|  | *	of the last notifier function called. | 
|  | */ | 
|  |  | 
|  | int raw_notifier_call_chain(struct raw_notifier_head *nh, | 
|  | unsigned long val, void *v) | 
|  | { | 
|  | return notifier_call_chain(&nh->head, val, v); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(raw_notifier_call_chain); | 
|  |  | 
|  | /** | 
|  | *	register_reboot_notifier - Register function to be called at reboot time | 
|  | *	@nb: Info about notifier function to be called | 
|  | * | 
|  | *	Registers a function with the list of functions | 
|  | *	to be called at reboot time. | 
|  | * | 
|  | *	Currently always returns zero, as blocking_notifier_chain_register | 
|  | *	always returns zero. | 
|  | */ | 
|  |  | 
|  | int register_reboot_notifier(struct notifier_block * nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&reboot_notifier_list, nb); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(register_reboot_notifier); | 
|  |  | 
|  | /** | 
|  | *	unregister_reboot_notifier - Unregister previously registered reboot notifier | 
|  | *	@nb: Hook to be unregistered | 
|  | * | 
|  | *	Unregisters a previously registered reboot | 
|  | *	notifier function. | 
|  | * | 
|  | *	Returns zero on success, or %-ENOENT on failure. | 
|  | */ | 
|  |  | 
|  | int unregister_reboot_notifier(struct notifier_block * nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(unregister_reboot_notifier); | 
|  |  | 
|  | static int set_one_prio(struct task_struct *p, int niceval, int error) | 
|  | { | 
|  | int no_nice; | 
|  |  | 
|  | if (p->uid != current->euid && | 
|  | p->euid != current->euid && !capable(CAP_SYS_NICE)) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | if (niceval < task_nice(p) && !can_nice(p, niceval)) { | 
|  | error = -EACCES; | 
|  | goto out; | 
|  | } | 
|  | no_nice = security_task_setnice(p, niceval); | 
|  | if (no_nice) { | 
|  | error = no_nice; | 
|  | goto out; | 
|  | } | 
|  | if (error == -ESRCH) | 
|  | error = 0; | 
|  | set_user_nice(p, niceval); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_setpriority(int which, int who, int niceval) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | struct user_struct *user; | 
|  | int error = -EINVAL; | 
|  |  | 
|  | if (which > 2 || which < 0) | 
|  | goto out; | 
|  |  | 
|  | /* normalize: avoid signed division (rounding problems) */ | 
|  | error = -ESRCH; | 
|  | if (niceval < -20) | 
|  | niceval = -20; | 
|  | if (niceval > 19) | 
|  | niceval = 19; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | switch (which) { | 
|  | case PRIO_PROCESS: | 
|  | if (!who) | 
|  | who = current->pid; | 
|  | p = find_task_by_pid(who); | 
|  | if (p) | 
|  | error = set_one_prio(p, niceval, error); | 
|  | break; | 
|  | case PRIO_PGRP: | 
|  | if (!who) | 
|  | who = process_group(current); | 
|  | do_each_task_pid(who, PIDTYPE_PGID, p) { | 
|  | error = set_one_prio(p, niceval, error); | 
|  | } while_each_task_pid(who, PIDTYPE_PGID, p); | 
|  | break; | 
|  | case PRIO_USER: | 
|  | user = current->user; | 
|  | if (!who) | 
|  | who = current->uid; | 
|  | else | 
|  | if ((who != current->uid) && !(user = find_user(who))) | 
|  | goto out_unlock;	/* No processes for this user */ | 
|  |  | 
|  | do_each_thread(g, p) | 
|  | if (p->uid == who) | 
|  | error = set_one_prio(p, niceval, error); | 
|  | while_each_thread(g, p); | 
|  | if (who != current->uid) | 
|  | free_uid(user);		/* For find_user() */ | 
|  | break; | 
|  | } | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ugh. To avoid negative return values, "getpriority()" will | 
|  | * not return the normal nice-value, but a negated value that | 
|  | * has been offset by 20 (ie it returns 40..1 instead of -20..19) | 
|  | * to stay compatible. | 
|  | */ | 
|  | asmlinkage long sys_getpriority(int which, int who) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | struct user_struct *user; | 
|  | long niceval, retval = -ESRCH; | 
|  |  | 
|  | if (which > 2 || which < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | switch (which) { | 
|  | case PRIO_PROCESS: | 
|  | if (!who) | 
|  | who = current->pid; | 
|  | p = find_task_by_pid(who); | 
|  | if (p) { | 
|  | niceval = 20 - task_nice(p); | 
|  | if (niceval > retval) | 
|  | retval = niceval; | 
|  | } | 
|  | break; | 
|  | case PRIO_PGRP: | 
|  | if (!who) | 
|  | who = process_group(current); | 
|  | do_each_task_pid(who, PIDTYPE_PGID, p) { | 
|  | niceval = 20 - task_nice(p); | 
|  | if (niceval > retval) | 
|  | retval = niceval; | 
|  | } while_each_task_pid(who, PIDTYPE_PGID, p); | 
|  | break; | 
|  | case PRIO_USER: | 
|  | user = current->user; | 
|  | if (!who) | 
|  | who = current->uid; | 
|  | else | 
|  | if ((who != current->uid) && !(user = find_user(who))) | 
|  | goto out_unlock;	/* No processes for this user */ | 
|  |  | 
|  | do_each_thread(g, p) | 
|  | if (p->uid == who) { | 
|  | niceval = 20 - task_nice(p); | 
|  | if (niceval > retval) | 
|  | retval = niceval; | 
|  | } | 
|  | while_each_thread(g, p); | 
|  | if (who != current->uid) | 
|  | free_uid(user);		/* for find_user() */ | 
|  | break; | 
|  | } | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	emergency_restart - reboot the system | 
|  | * | 
|  | *	Without shutting down any hardware or taking any locks | 
|  | *	reboot the system.  This is called when we know we are in | 
|  | *	trouble so this is our best effort to reboot.  This is | 
|  | *	safe to call in interrupt context. | 
|  | */ | 
|  | void emergency_restart(void) | 
|  | { | 
|  | machine_emergency_restart(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(emergency_restart); | 
|  |  | 
|  | static void kernel_restart_prepare(char *cmd) | 
|  | { | 
|  | blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); | 
|  | system_state = SYSTEM_RESTART; | 
|  | device_shutdown(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	kernel_restart - reboot the system | 
|  | *	@cmd: pointer to buffer containing command to execute for restart | 
|  | *		or %NULL | 
|  | * | 
|  | *	Shutdown everything and perform a clean reboot. | 
|  | *	This is not safe to call in interrupt context. | 
|  | */ | 
|  | void kernel_restart(char *cmd) | 
|  | { | 
|  | kernel_restart_prepare(cmd); | 
|  | if (!cmd) | 
|  | printk(KERN_EMERG "Restarting system.\n"); | 
|  | else | 
|  | printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); | 
|  | machine_restart(cmd); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kernel_restart); | 
|  |  | 
|  | /** | 
|  | *	kernel_kexec - reboot the system | 
|  | * | 
|  | *	Move into place and start executing a preloaded standalone | 
|  | *	executable.  If nothing was preloaded return an error. | 
|  | */ | 
|  | static void kernel_kexec(void) | 
|  | { | 
|  | #ifdef CONFIG_KEXEC | 
|  | struct kimage *image; | 
|  | image = xchg(&kexec_image, NULL); | 
|  | if (!image) | 
|  | return; | 
|  | kernel_restart_prepare(NULL); | 
|  | printk(KERN_EMERG "Starting new kernel\n"); | 
|  | machine_shutdown(); | 
|  | machine_kexec(image); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void kernel_shutdown_prepare(enum system_states state) | 
|  | { | 
|  | blocking_notifier_call_chain(&reboot_notifier_list, | 
|  | (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); | 
|  | system_state = state; | 
|  | device_shutdown(); | 
|  | } | 
|  | /** | 
|  | *	kernel_halt - halt the system | 
|  | * | 
|  | *	Shutdown everything and perform a clean system halt. | 
|  | */ | 
|  | void kernel_halt(void) | 
|  | { | 
|  | kernel_shutdown_prepare(SYSTEM_HALT); | 
|  | printk(KERN_EMERG "System halted.\n"); | 
|  | machine_halt(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(kernel_halt); | 
|  |  | 
|  | /** | 
|  | *	kernel_power_off - power_off the system | 
|  | * | 
|  | *	Shutdown everything and perform a clean system power_off. | 
|  | */ | 
|  | void kernel_power_off(void) | 
|  | { | 
|  | kernel_shutdown_prepare(SYSTEM_POWER_OFF); | 
|  | printk(KERN_EMERG "Power down.\n"); | 
|  | machine_power_off(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kernel_power_off); | 
|  | /* | 
|  | * Reboot system call: for obvious reasons only root may call it, | 
|  | * and even root needs to set up some magic numbers in the registers | 
|  | * so that some mistake won't make this reboot the whole machine. | 
|  | * You can also set the meaning of the ctrl-alt-del-key here. | 
|  | * | 
|  | * reboot doesn't sync: do that yourself before calling this. | 
|  | */ | 
|  | asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) | 
|  | { | 
|  | char buffer[256]; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* For safety, we require "magic" arguments. */ | 
|  | if (magic1 != LINUX_REBOOT_MAGIC1 || | 
|  | (magic2 != LINUX_REBOOT_MAGIC2 && | 
|  | magic2 != LINUX_REBOOT_MAGIC2A && | 
|  | magic2 != LINUX_REBOOT_MAGIC2B && | 
|  | magic2 != LINUX_REBOOT_MAGIC2C)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Instead of trying to make the power_off code look like | 
|  | * halt when pm_power_off is not set do it the easy way. | 
|  | */ | 
|  | if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) | 
|  | cmd = LINUX_REBOOT_CMD_HALT; | 
|  |  | 
|  | lock_kernel(); | 
|  | switch (cmd) { | 
|  | case LINUX_REBOOT_CMD_RESTART: | 
|  | kernel_restart(NULL); | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_CAD_ON: | 
|  | C_A_D = 1; | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_CAD_OFF: | 
|  | C_A_D = 0; | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_HALT: | 
|  | kernel_halt(); | 
|  | unlock_kernel(); | 
|  | do_exit(0); | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_POWER_OFF: | 
|  | kernel_power_off(); | 
|  | unlock_kernel(); | 
|  | do_exit(0); | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_RESTART2: | 
|  | if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { | 
|  | unlock_kernel(); | 
|  | return -EFAULT; | 
|  | } | 
|  | buffer[sizeof(buffer) - 1] = '\0'; | 
|  |  | 
|  | kernel_restart(buffer); | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_KEXEC: | 
|  | kernel_kexec(); | 
|  | unlock_kernel(); | 
|  | return -EINVAL; | 
|  |  | 
|  | #ifdef CONFIG_SOFTWARE_SUSPEND | 
|  | case LINUX_REBOOT_CMD_SW_SUSPEND: | 
|  | { | 
|  | int ret = software_suspend(); | 
|  | unlock_kernel(); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | unlock_kernel(); | 
|  | return -EINVAL; | 
|  | } | 
|  | unlock_kernel(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void deferred_cad(void *dummy) | 
|  | { | 
|  | kernel_restart(NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called by ctrl-alt-del - ie the keyboard interrupt. | 
|  | * As it's called within an interrupt, it may NOT sync: the only choice | 
|  | * is whether to reboot at once, or just ignore the ctrl-alt-del. | 
|  | */ | 
|  | void ctrl_alt_del(void) | 
|  | { | 
|  | static DECLARE_WORK(cad_work, deferred_cad, NULL); | 
|  |  | 
|  | if (C_A_D) | 
|  | schedule_work(&cad_work); | 
|  | else | 
|  | kill_proc(cad_pid, SIGINT, 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Unprivileged users may change the real gid to the effective gid | 
|  | * or vice versa.  (BSD-style) | 
|  | * | 
|  | * If you set the real gid at all, or set the effective gid to a value not | 
|  | * equal to the real gid, then the saved gid is set to the new effective gid. | 
|  | * | 
|  | * This makes it possible for a setgid program to completely drop its | 
|  | * privileges, which is often a useful assertion to make when you are doing | 
|  | * a security audit over a program. | 
|  | * | 
|  | * The general idea is that a program which uses just setregid() will be | 
|  | * 100% compatible with BSD.  A program which uses just setgid() will be | 
|  | * 100% compatible with POSIX with saved IDs. | 
|  | * | 
|  | * SMP: There are not races, the GIDs are checked only by filesystem | 
|  | *      operations (as far as semantic preservation is concerned). | 
|  | */ | 
|  | asmlinkage long sys_setregid(gid_t rgid, gid_t egid) | 
|  | { | 
|  | int old_rgid = current->gid; | 
|  | int old_egid = current->egid; | 
|  | int new_rgid = old_rgid; | 
|  | int new_egid = old_egid; | 
|  | int retval; | 
|  |  | 
|  | retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (rgid != (gid_t) -1) { | 
|  | if ((old_rgid == rgid) || | 
|  | (current->egid==rgid) || | 
|  | capable(CAP_SETGID)) | 
|  | new_rgid = rgid; | 
|  | else | 
|  | return -EPERM; | 
|  | } | 
|  | if (egid != (gid_t) -1) { | 
|  | if ((old_rgid == egid) || | 
|  | (current->egid == egid) || | 
|  | (current->sgid == egid) || | 
|  | capable(CAP_SETGID)) | 
|  | new_egid = egid; | 
|  | else | 
|  | return -EPERM; | 
|  | } | 
|  | if (new_egid != old_egid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | if (rgid != (gid_t) -1 || | 
|  | (egid != (gid_t) -1 && egid != old_rgid)) | 
|  | current->sgid = new_egid; | 
|  | current->fsgid = new_egid; | 
|  | current->egid = new_egid; | 
|  | current->gid = new_rgid; | 
|  | key_fsgid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_GID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setgid() is implemented like SysV w/ SAVED_IDS | 
|  | * | 
|  | * SMP: Same implicit races as above. | 
|  | */ | 
|  | asmlinkage long sys_setgid(gid_t gid) | 
|  | { | 
|  | int old_egid = current->egid; | 
|  | int retval; | 
|  |  | 
|  | retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (capable(CAP_SETGID)) { | 
|  | if (old_egid != gid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->gid = current->egid = current->sgid = current->fsgid = gid; | 
|  | } else if ((gid == current->gid) || (gid == current->sgid)) { | 
|  | if (old_egid != gid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->egid = current->fsgid = gid; | 
|  | } | 
|  | else | 
|  | return -EPERM; | 
|  |  | 
|  | key_fsgid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_GID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_user(uid_t new_ruid, int dumpclear) | 
|  | { | 
|  | struct user_struct *new_user; | 
|  |  | 
|  | new_user = alloc_uid(new_ruid); | 
|  | if (!new_user) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (atomic_read(&new_user->processes) >= | 
|  | current->signal->rlim[RLIMIT_NPROC].rlim_cur && | 
|  | new_user != &root_user) { | 
|  | free_uid(new_user); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | switch_uid(new_user); | 
|  |  | 
|  | if (dumpclear) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->uid = new_ruid; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unprivileged users may change the real uid to the effective uid | 
|  | * or vice versa.  (BSD-style) | 
|  | * | 
|  | * If you set the real uid at all, or set the effective uid to a value not | 
|  | * equal to the real uid, then the saved uid is set to the new effective uid. | 
|  | * | 
|  | * This makes it possible for a setuid program to completely drop its | 
|  | * privileges, which is often a useful assertion to make when you are doing | 
|  | * a security audit over a program. | 
|  | * | 
|  | * The general idea is that a program which uses just setreuid() will be | 
|  | * 100% compatible with BSD.  A program which uses just setuid() will be | 
|  | * 100% compatible with POSIX with saved IDs. | 
|  | */ | 
|  | asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) | 
|  | { | 
|  | int old_ruid, old_euid, old_suid, new_ruid, new_euid; | 
|  | int retval; | 
|  |  | 
|  | retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | new_ruid = old_ruid = current->uid; | 
|  | new_euid = old_euid = current->euid; | 
|  | old_suid = current->suid; | 
|  |  | 
|  | if (ruid != (uid_t) -1) { | 
|  | new_ruid = ruid; | 
|  | if ((old_ruid != ruid) && | 
|  | (current->euid != ruid) && | 
|  | !capable(CAP_SETUID)) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (euid != (uid_t) -1) { | 
|  | new_euid = euid; | 
|  | if ((old_ruid != euid) && | 
|  | (current->euid != euid) && | 
|  | (current->suid != euid) && | 
|  | !capable(CAP_SETUID)) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (new_euid != old_euid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->fsuid = current->euid = new_euid; | 
|  | if (ruid != (uid_t) -1 || | 
|  | (euid != (uid_t) -1 && euid != old_ruid)) | 
|  | current->suid = current->euid; | 
|  | current->fsuid = current->euid; | 
|  |  | 
|  | key_fsuid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_UID); | 
|  |  | 
|  | return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * setuid() is implemented like SysV with SAVED_IDS | 
|  | * | 
|  | * Note that SAVED_ID's is deficient in that a setuid root program | 
|  | * like sendmail, for example, cannot set its uid to be a normal | 
|  | * user and then switch back, because if you're root, setuid() sets | 
|  | * the saved uid too.  If you don't like this, blame the bright people | 
|  | * in the POSIX committee and/or USG.  Note that the BSD-style setreuid() | 
|  | * will allow a root program to temporarily drop privileges and be able to | 
|  | * regain them by swapping the real and effective uid. | 
|  | */ | 
|  | asmlinkage long sys_setuid(uid_t uid) | 
|  | { | 
|  | int old_euid = current->euid; | 
|  | int old_ruid, old_suid, new_ruid, new_suid; | 
|  | int retval; | 
|  |  | 
|  | retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | old_ruid = new_ruid = current->uid; | 
|  | old_suid = current->suid; | 
|  | new_suid = old_suid; | 
|  |  | 
|  | if (capable(CAP_SETUID)) { | 
|  | if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) | 
|  | return -EAGAIN; | 
|  | new_suid = uid; | 
|  | } else if ((uid != current->uid) && (uid != new_suid)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (old_euid != uid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->fsuid = current->euid = uid; | 
|  | current->suid = new_suid; | 
|  |  | 
|  | key_fsuid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_UID); | 
|  |  | 
|  | return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This function implements a generic ability to update ruid, euid, | 
|  | * and suid.  This allows you to implement the 4.4 compatible seteuid(). | 
|  | */ | 
|  | asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) | 
|  | { | 
|  | int old_ruid = current->uid; | 
|  | int old_euid = current->euid; | 
|  | int old_suid = current->suid; | 
|  | int retval; | 
|  |  | 
|  | retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (!capable(CAP_SETUID)) { | 
|  | if ((ruid != (uid_t) -1) && (ruid != current->uid) && | 
|  | (ruid != current->euid) && (ruid != current->suid)) | 
|  | return -EPERM; | 
|  | if ((euid != (uid_t) -1) && (euid != current->uid) && | 
|  | (euid != current->euid) && (euid != current->suid)) | 
|  | return -EPERM; | 
|  | if ((suid != (uid_t) -1) && (suid != current->uid) && | 
|  | (suid != current->euid) && (suid != current->suid)) | 
|  | return -EPERM; | 
|  | } | 
|  | if (ruid != (uid_t) -1) { | 
|  | if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) | 
|  | return -EAGAIN; | 
|  | } | 
|  | if (euid != (uid_t) -1) { | 
|  | if (euid != current->euid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->euid = euid; | 
|  | } | 
|  | current->fsuid = current->euid; | 
|  | if (suid != (uid_t) -1) | 
|  | current->suid = suid; | 
|  |  | 
|  | key_fsuid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_UID); | 
|  |  | 
|  | return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | if (!(retval = put_user(current->uid, ruid)) && | 
|  | !(retval = put_user(current->euid, euid))) | 
|  | retval = put_user(current->suid, suid); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as above, but for rgid, egid, sgid. | 
|  | */ | 
|  | asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (!capable(CAP_SETGID)) { | 
|  | if ((rgid != (gid_t) -1) && (rgid != current->gid) && | 
|  | (rgid != current->egid) && (rgid != current->sgid)) | 
|  | return -EPERM; | 
|  | if ((egid != (gid_t) -1) && (egid != current->gid) && | 
|  | (egid != current->egid) && (egid != current->sgid)) | 
|  | return -EPERM; | 
|  | if ((sgid != (gid_t) -1) && (sgid != current->gid) && | 
|  | (sgid != current->egid) && (sgid != current->sgid)) | 
|  | return -EPERM; | 
|  | } | 
|  | if (egid != (gid_t) -1) { | 
|  | if (egid != current->egid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->egid = egid; | 
|  | } | 
|  | current->fsgid = current->egid; | 
|  | if (rgid != (gid_t) -1) | 
|  | current->gid = rgid; | 
|  | if (sgid != (gid_t) -1) | 
|  | current->sgid = sgid; | 
|  |  | 
|  | key_fsgid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_GID); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | if (!(retval = put_user(current->gid, rgid)) && | 
|  | !(retval = put_user(current->egid, egid))) | 
|  | retval = put_user(current->sgid, sgid); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This | 
|  | * is used for "access()" and for the NFS daemon (letting nfsd stay at | 
|  | * whatever uid it wants to). It normally shadows "euid", except when | 
|  | * explicitly set by setfsuid() or for access.. | 
|  | */ | 
|  | asmlinkage long sys_setfsuid(uid_t uid) | 
|  | { | 
|  | int old_fsuid; | 
|  |  | 
|  | old_fsuid = current->fsuid; | 
|  | if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) | 
|  | return old_fsuid; | 
|  |  | 
|  | if (uid == current->uid || uid == current->euid || | 
|  | uid == current->suid || uid == current->fsuid || | 
|  | capable(CAP_SETUID)) { | 
|  | if (uid != old_fsuid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->fsuid = uid; | 
|  | } | 
|  |  | 
|  | key_fsuid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_UID); | 
|  |  | 
|  | security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); | 
|  |  | 
|  | return old_fsuid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Samma på svenska.. | 
|  | */ | 
|  | asmlinkage long sys_setfsgid(gid_t gid) | 
|  | { | 
|  | int old_fsgid; | 
|  |  | 
|  | old_fsgid = current->fsgid; | 
|  | if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) | 
|  | return old_fsgid; | 
|  |  | 
|  | if (gid == current->gid || gid == current->egid || | 
|  | gid == current->sgid || gid == current->fsgid || | 
|  | capable(CAP_SETGID)) { | 
|  | if (gid != old_fsgid) { | 
|  | current->mm->dumpable = suid_dumpable; | 
|  | smp_wmb(); | 
|  | } | 
|  | current->fsgid = gid; | 
|  | key_fsgid_changed(current); | 
|  | proc_id_connector(current, PROC_EVENT_GID); | 
|  | } | 
|  | return old_fsgid; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_times(struct tms __user * tbuf) | 
|  | { | 
|  | /* | 
|  | *	In the SMP world we might just be unlucky and have one of | 
|  | *	the times increment as we use it. Since the value is an | 
|  | *	atomically safe type this is just fine. Conceptually its | 
|  | *	as if the syscall took an instant longer to occur. | 
|  | */ | 
|  | if (tbuf) { | 
|  | struct tms tmp; | 
|  | struct task_struct *tsk = current; | 
|  | struct task_struct *t; | 
|  | cputime_t utime, stime, cutime, cstime; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | utime = tsk->signal->utime; | 
|  | stime = tsk->signal->stime; | 
|  | t = tsk; | 
|  | do { | 
|  | utime = cputime_add(utime, t->utime); | 
|  | stime = cputime_add(stime, t->stime); | 
|  | t = next_thread(t); | 
|  | } while (t != tsk); | 
|  |  | 
|  | cutime = tsk->signal->cutime; | 
|  | cstime = tsk->signal->cstime; | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | tmp.tms_utime = cputime_to_clock_t(utime); | 
|  | tmp.tms_stime = cputime_to_clock_t(stime); | 
|  | tmp.tms_cutime = cputime_to_clock_t(cutime); | 
|  | tmp.tms_cstime = cputime_to_clock_t(cstime); | 
|  | if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) | 
|  | return -EFAULT; | 
|  | } | 
|  | return (long) jiffies_64_to_clock_t(get_jiffies_64()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This needs some heavy checking ... | 
|  | * I just haven't the stomach for it. I also don't fully | 
|  | * understand sessions/pgrp etc. Let somebody who does explain it. | 
|  | * | 
|  | * OK, I think I have the protection semantics right.... this is really | 
|  | * only important on a multi-user system anyway, to make sure one user | 
|  | * can't send a signal to a process owned by another.  -TYT, 12/12/91 | 
|  | * | 
|  | * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. | 
|  | * LBT 04.03.94 | 
|  | */ | 
|  |  | 
|  | asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct task_struct *group_leader = current->group_leader; | 
|  | int err = -EINVAL; | 
|  |  | 
|  | if (!pid) | 
|  | pid = group_leader->pid; | 
|  | if (!pgid) | 
|  | pgid = pid; | 
|  | if (pgid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* From this point forward we keep holding onto the tasklist lock | 
|  | * so that our parent does not change from under us. -DaveM | 
|  | */ | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | err = -ESRCH; | 
|  | p = find_task_by_pid(pid); | 
|  | if (!p) | 
|  | goto out; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (!thread_group_leader(p)) | 
|  | goto out; | 
|  |  | 
|  | if (p->real_parent == group_leader) { | 
|  | err = -EPERM; | 
|  | if (p->signal->session != group_leader->signal->session) | 
|  | goto out; | 
|  | err = -EACCES; | 
|  | if (p->did_exec) | 
|  | goto out; | 
|  | } else { | 
|  | err = -ESRCH; | 
|  | if (p != group_leader) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = -EPERM; | 
|  | if (p->signal->leader) | 
|  | goto out; | 
|  |  | 
|  | if (pgid != pid) { | 
|  | struct task_struct *p; | 
|  |  | 
|  | do_each_task_pid(pgid, PIDTYPE_PGID, p) { | 
|  | if (p->signal->session == group_leader->signal->session) | 
|  | goto ok_pgid; | 
|  | } while_each_task_pid(pgid, PIDTYPE_PGID, p); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ok_pgid: | 
|  | err = security_task_setpgid(p, pgid); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (process_group(p) != pgid) { | 
|  | detach_pid(p, PIDTYPE_PGID); | 
|  | p->signal->pgrp = pgid; | 
|  | attach_pid(p, PIDTYPE_PGID, pgid); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  | /* All paths lead to here, thus we are safe. -DaveM */ | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getpgid(pid_t pid) | 
|  | { | 
|  | if (!pid) | 
|  | return process_group(current); | 
|  | else { | 
|  | int retval; | 
|  | struct task_struct *p; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_task_by_pid(pid); | 
|  |  | 
|  | retval = -ESRCH; | 
|  | if (p) { | 
|  | retval = security_task_getpgid(p); | 
|  | if (!retval) | 
|  | retval = process_group(p); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_GETPGRP | 
|  |  | 
|  | asmlinkage long sys_getpgrp(void) | 
|  | { | 
|  | /* SMP - assuming writes are word atomic this is fine */ | 
|  | return process_group(current); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | asmlinkage long sys_getsid(pid_t pid) | 
|  | { | 
|  | if (!pid) | 
|  | return current->signal->session; | 
|  | else { | 
|  | int retval; | 
|  | struct task_struct *p; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_task_by_pid(pid); | 
|  |  | 
|  | retval = -ESRCH; | 
|  | if (p) { | 
|  | retval = security_task_getsid(p); | 
|  | if (!retval) | 
|  | retval = p->signal->session; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_setsid(void) | 
|  | { | 
|  | struct task_struct *group_leader = current->group_leader; | 
|  | pid_t session; | 
|  | int err = -EPERM; | 
|  |  | 
|  | mutex_lock(&tty_mutex); | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | /* Fail if I am already a session leader */ | 
|  | if (group_leader->signal->leader) | 
|  | goto out; | 
|  |  | 
|  | session = group_leader->pid; | 
|  | /* Fail if a process group id already exists that equals the | 
|  | * proposed session id. | 
|  | * | 
|  | * Don't check if session id == 1 because kernel threads use this | 
|  | * session id and so the check will always fail and make it so | 
|  | * init cannot successfully call setsid. | 
|  | */ | 
|  | if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session)) | 
|  | goto out; | 
|  |  | 
|  | group_leader->signal->leader = 1; | 
|  | __set_special_pids(session, session); | 
|  | group_leader->signal->tty = NULL; | 
|  | group_leader->signal->tty_old_pgrp = 0; | 
|  | err = process_group(group_leader); | 
|  | out: | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | mutex_unlock(&tty_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Supplementary group IDs | 
|  | */ | 
|  |  | 
|  | /* init to 2 - one for init_task, one to ensure it is never freed */ | 
|  | struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; | 
|  |  | 
|  | struct group_info *groups_alloc(int gidsetsize) | 
|  | { | 
|  | struct group_info *group_info; | 
|  | int nblocks; | 
|  | int i; | 
|  |  | 
|  | nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; | 
|  | /* Make sure we always allocate at least one indirect block pointer */ | 
|  | nblocks = nblocks ? : 1; | 
|  | group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); | 
|  | if (!group_info) | 
|  | return NULL; | 
|  | group_info->ngroups = gidsetsize; | 
|  | group_info->nblocks = nblocks; | 
|  | atomic_set(&group_info->usage, 1); | 
|  |  | 
|  | if (gidsetsize <= NGROUPS_SMALL) | 
|  | group_info->blocks[0] = group_info->small_block; | 
|  | else { | 
|  | for (i = 0; i < nblocks; i++) { | 
|  | gid_t *b; | 
|  | b = (void *)__get_free_page(GFP_USER); | 
|  | if (!b) | 
|  | goto out_undo_partial_alloc; | 
|  | group_info->blocks[i] = b; | 
|  | } | 
|  | } | 
|  | return group_info; | 
|  |  | 
|  | out_undo_partial_alloc: | 
|  | while (--i >= 0) { | 
|  | free_page((unsigned long)group_info->blocks[i]); | 
|  | } | 
|  | kfree(group_info); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(groups_alloc); | 
|  |  | 
|  | void groups_free(struct group_info *group_info) | 
|  | { | 
|  | if (group_info->blocks[0] != group_info->small_block) { | 
|  | int i; | 
|  | for (i = 0; i < group_info->nblocks; i++) | 
|  | free_page((unsigned long)group_info->blocks[i]); | 
|  | } | 
|  | kfree(group_info); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(groups_free); | 
|  |  | 
|  | /* export the group_info to a user-space array */ | 
|  | static int groups_to_user(gid_t __user *grouplist, | 
|  | struct group_info *group_info) | 
|  | { | 
|  | int i; | 
|  | int count = group_info->ngroups; | 
|  |  | 
|  | for (i = 0; i < group_info->nblocks; i++) { | 
|  | int cp_count = min(NGROUPS_PER_BLOCK, count); | 
|  | int off = i * NGROUPS_PER_BLOCK; | 
|  | int len = cp_count * sizeof(*grouplist); | 
|  |  | 
|  | if (copy_to_user(grouplist+off, group_info->blocks[i], len)) | 
|  | return -EFAULT; | 
|  |  | 
|  | count -= cp_count; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* fill a group_info from a user-space array - it must be allocated already */ | 
|  | static int groups_from_user(struct group_info *group_info, | 
|  | gid_t __user *grouplist) | 
|  | { | 
|  | int i; | 
|  | int count = group_info->ngroups; | 
|  |  | 
|  | for (i = 0; i < group_info->nblocks; i++) { | 
|  | int cp_count = min(NGROUPS_PER_BLOCK, count); | 
|  | int off = i * NGROUPS_PER_BLOCK; | 
|  | int len = cp_count * sizeof(*grouplist); | 
|  |  | 
|  | if (copy_from_user(group_info->blocks[i], grouplist+off, len)) | 
|  | return -EFAULT; | 
|  |  | 
|  | count -= cp_count; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* a simple Shell sort */ | 
|  | static void groups_sort(struct group_info *group_info) | 
|  | { | 
|  | int base, max, stride; | 
|  | int gidsetsize = group_info->ngroups; | 
|  |  | 
|  | for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) | 
|  | ; /* nothing */ | 
|  | stride /= 3; | 
|  |  | 
|  | while (stride) { | 
|  | max = gidsetsize - stride; | 
|  | for (base = 0; base < max; base++) { | 
|  | int left = base; | 
|  | int right = left + stride; | 
|  | gid_t tmp = GROUP_AT(group_info, right); | 
|  |  | 
|  | while (left >= 0 && GROUP_AT(group_info, left) > tmp) { | 
|  | GROUP_AT(group_info, right) = | 
|  | GROUP_AT(group_info, left); | 
|  | right = left; | 
|  | left -= stride; | 
|  | } | 
|  | GROUP_AT(group_info, right) = tmp; | 
|  | } | 
|  | stride /= 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* a simple bsearch */ | 
|  | int groups_search(struct group_info *group_info, gid_t grp) | 
|  | { | 
|  | unsigned int left, right; | 
|  |  | 
|  | if (!group_info) | 
|  | return 0; | 
|  |  | 
|  | left = 0; | 
|  | right = group_info->ngroups; | 
|  | while (left < right) { | 
|  | unsigned int mid = (left+right)/2; | 
|  | int cmp = grp - GROUP_AT(group_info, mid); | 
|  | if (cmp > 0) | 
|  | left = mid + 1; | 
|  | else if (cmp < 0) | 
|  | right = mid; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* validate and set current->group_info */ | 
|  | int set_current_groups(struct group_info *group_info) | 
|  | { | 
|  | int retval; | 
|  | struct group_info *old_info; | 
|  |  | 
|  | retval = security_task_setgroups(group_info); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | groups_sort(group_info); | 
|  | get_group_info(group_info); | 
|  |  | 
|  | task_lock(current); | 
|  | old_info = current->group_info; | 
|  | current->group_info = group_info; | 
|  | task_unlock(current); | 
|  |  | 
|  | put_group_info(old_info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(set_current_groups); | 
|  |  | 
|  | asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | /* | 
|  | *	SMP: Nobody else can change our grouplist. Thus we are | 
|  | *	safe. | 
|  | */ | 
|  |  | 
|  | if (gidsetsize < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* no need to grab task_lock here; it cannot change */ | 
|  | i = current->group_info->ngroups; | 
|  | if (gidsetsize) { | 
|  | if (i > gidsetsize) { | 
|  | i = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | if (groups_to_user(grouplist, current->group_info)) { | 
|  | i = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	SMP: Our groups are copy-on-write. We can set them safely | 
|  | *	without another task interfering. | 
|  | */ | 
|  |  | 
|  | asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) | 
|  | { | 
|  | struct group_info *group_info; | 
|  | int retval; | 
|  |  | 
|  | if (!capable(CAP_SETGID)) | 
|  | return -EPERM; | 
|  | if ((unsigned)gidsetsize > NGROUPS_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | group_info = groups_alloc(gidsetsize); | 
|  | if (!group_info) | 
|  | return -ENOMEM; | 
|  | retval = groups_from_user(group_info, grouplist); | 
|  | if (retval) { | 
|  | put_group_info(group_info); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | retval = set_current_groups(group_info); | 
|  | put_group_info(group_info); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether we're fsgid/egid or in the supplemental group.. | 
|  | */ | 
|  | int in_group_p(gid_t grp) | 
|  | { | 
|  | int retval = 1; | 
|  | if (grp != current->fsgid) | 
|  | retval = groups_search(current->group_info, grp); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(in_group_p); | 
|  |  | 
|  | int in_egroup_p(gid_t grp) | 
|  | { | 
|  | int retval = 1; | 
|  | if (grp != current->egid) | 
|  | retval = groups_search(current->group_info, grp); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(in_egroup_p); | 
|  |  | 
|  | DECLARE_RWSEM(uts_sem); | 
|  |  | 
|  | EXPORT_SYMBOL(uts_sem); | 
|  |  | 
|  | asmlinkage long sys_newuname(struct new_utsname __user * name) | 
|  | { | 
|  | int errno = 0; | 
|  |  | 
|  | down_read(&uts_sem); | 
|  | if (copy_to_user(name,&system_utsname,sizeof *name)) | 
|  | errno = -EFAULT; | 
|  | up_read(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_sethostname(char __user *name, int len) | 
|  | { | 
|  | int errno; | 
|  | char tmp[__NEW_UTS_LEN]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (len < 0 || len > __NEW_UTS_LEN) | 
|  | return -EINVAL; | 
|  | down_write(&uts_sem); | 
|  | errno = -EFAULT; | 
|  | if (!copy_from_user(tmp, name, len)) { | 
|  | memcpy(system_utsname.nodename, tmp, len); | 
|  | system_utsname.nodename[len] = 0; | 
|  | errno = 0; | 
|  | } | 
|  | up_write(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_GETHOSTNAME | 
|  |  | 
|  | asmlinkage long sys_gethostname(char __user *name, int len) | 
|  | { | 
|  | int i, errno; | 
|  |  | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  | down_read(&uts_sem); | 
|  | i = 1 + strlen(system_utsname.nodename); | 
|  | if (i > len) | 
|  | i = len; | 
|  | errno = 0; | 
|  | if (copy_to_user(name, system_utsname.nodename, i)) | 
|  | errno = -EFAULT; | 
|  | up_read(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Only setdomainname; getdomainname can be implemented by calling | 
|  | * uname() | 
|  | */ | 
|  | asmlinkage long sys_setdomainname(char __user *name, int len) | 
|  | { | 
|  | int errno; | 
|  | char tmp[__NEW_UTS_LEN]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (len < 0 || len > __NEW_UTS_LEN) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_write(&uts_sem); | 
|  | errno = -EFAULT; | 
|  | if (!copy_from_user(tmp, name, len)) { | 
|  | memcpy(system_utsname.domainname, tmp, len); | 
|  | system_utsname.domainname[len] = 0; | 
|  | errno = 0; | 
|  | } | 
|  | up_write(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) | 
|  | { | 
|  | if (resource >= RLIM_NLIMITS) | 
|  | return -EINVAL; | 
|  | else { | 
|  | struct rlimit value; | 
|  | task_lock(current->group_leader); | 
|  | value = current->signal->rlim[resource]; | 
|  | task_unlock(current->group_leader); | 
|  | return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT | 
|  |  | 
|  | /* | 
|  | *	Back compatibility for getrlimit. Needed for some apps. | 
|  | */ | 
|  |  | 
|  | asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) | 
|  | { | 
|  | struct rlimit x; | 
|  | if (resource >= RLIM_NLIMITS) | 
|  | return -EINVAL; | 
|  |  | 
|  | task_lock(current->group_leader); | 
|  | x = current->signal->rlim[resource]; | 
|  | task_unlock(current->group_leader); | 
|  | if (x.rlim_cur > 0x7FFFFFFF) | 
|  | x.rlim_cur = 0x7FFFFFFF; | 
|  | if (x.rlim_max > 0x7FFFFFFF) | 
|  | x.rlim_max = 0x7FFFFFFF; | 
|  | return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) | 
|  | { | 
|  | struct rlimit new_rlim, *old_rlim; | 
|  | unsigned long it_prof_secs; | 
|  | int retval; | 
|  |  | 
|  | if (resource >= RLIM_NLIMITS) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) | 
|  | return -EFAULT; | 
|  | if (new_rlim.rlim_cur > new_rlim.rlim_max) | 
|  | return -EINVAL; | 
|  | old_rlim = current->signal->rlim + resource; | 
|  | if ((new_rlim.rlim_max > old_rlim->rlim_max) && | 
|  | !capable(CAP_SYS_RESOURCE)) | 
|  | return -EPERM; | 
|  | if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setrlimit(resource, &new_rlim); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | task_lock(current->group_leader); | 
|  | *old_rlim = new_rlim; | 
|  | task_unlock(current->group_leader); | 
|  |  | 
|  | if (resource != RLIMIT_CPU) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * RLIMIT_CPU handling.   Note that the kernel fails to return an error | 
|  | * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a | 
|  | * very long-standing error, and fixing it now risks breakage of | 
|  | * applications, so we live with it | 
|  | */ | 
|  | if (new_rlim.rlim_cur == RLIM_INFINITY) | 
|  | goto out; | 
|  |  | 
|  | it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); | 
|  | if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { | 
|  | unsigned long rlim_cur = new_rlim.rlim_cur; | 
|  | cputime_t cputime; | 
|  |  | 
|  | if (rlim_cur == 0) { | 
|  | /* | 
|  | * The caller is asking for an immediate RLIMIT_CPU | 
|  | * expiry.  But we use the zero value to mean "it was | 
|  | * never set".  So let's cheat and make it one second | 
|  | * instead | 
|  | */ | 
|  | rlim_cur = 1; | 
|  | } | 
|  | cputime = secs_to_cputime(rlim_cur); | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It would make sense to put struct rusage in the task_struct, | 
|  | * except that would make the task_struct be *really big*.  After | 
|  | * task_struct gets moved into malloc'ed memory, it would | 
|  | * make sense to do this.  It will make moving the rest of the information | 
|  | * a lot simpler!  (Which we're not doing right now because we're not | 
|  | * measuring them yet). | 
|  | * | 
|  | * When sampling multiple threads for RUSAGE_SELF, under SMP we might have | 
|  | * races with threads incrementing their own counters.  But since word | 
|  | * reads are atomic, we either get new values or old values and we don't | 
|  | * care which for the sums.  We always take the siglock to protect reading | 
|  | * the c* fields from p->signal from races with exit.c updating those | 
|  | * fields when reaping, so a sample either gets all the additions of a | 
|  | * given child after it's reaped, or none so this sample is before reaping. | 
|  | * | 
|  | * Locking: | 
|  | * We need to take the siglock for CHILDEREN, SELF and BOTH | 
|  | * for  the cases current multithreaded, non-current single threaded | 
|  | * non-current multithreaded.  Thread traversal is now safe with | 
|  | * the siglock held. | 
|  | * Strictly speaking, we donot need to take the siglock if we are current and | 
|  | * single threaded,  as no one else can take our signal_struct away, no one | 
|  | * else can  reap the  children to update signal->c* counters, and no one else | 
|  | * can race with the signal-> fields. If we do not take any lock, the | 
|  | * signal-> fields could be read out of order while another thread was just | 
|  | * exiting. So we should  place a read memory barrier when we avoid the lock. | 
|  | * On the writer side,  write memory barrier is implied in  __exit_signal | 
|  | * as __exit_signal releases  the siglock spinlock after updating the signal-> | 
|  | * fields. But we don't do this yet to keep things simple. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | 
|  | { | 
|  | struct task_struct *t; | 
|  | unsigned long flags; | 
|  | cputime_t utime, stime; | 
|  |  | 
|  | memset((char *) r, 0, sizeof *r); | 
|  | utime = stime = cputime_zero; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!lock_task_sighand(p, &flags)) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (who) { | 
|  | case RUSAGE_BOTH: | 
|  | case RUSAGE_CHILDREN: | 
|  | utime = p->signal->cutime; | 
|  | stime = p->signal->cstime; | 
|  | r->ru_nvcsw = p->signal->cnvcsw; | 
|  | r->ru_nivcsw = p->signal->cnivcsw; | 
|  | r->ru_minflt = p->signal->cmin_flt; | 
|  | r->ru_majflt = p->signal->cmaj_flt; | 
|  |  | 
|  | if (who == RUSAGE_CHILDREN) | 
|  | break; | 
|  |  | 
|  | case RUSAGE_SELF: | 
|  | utime = cputime_add(utime, p->signal->utime); | 
|  | stime = cputime_add(stime, p->signal->stime); | 
|  | r->ru_nvcsw += p->signal->nvcsw; | 
|  | r->ru_nivcsw += p->signal->nivcsw; | 
|  | r->ru_minflt += p->signal->min_flt; | 
|  | r->ru_majflt += p->signal->maj_flt; | 
|  | t = p; | 
|  | do { | 
|  | utime = cputime_add(utime, t->utime); | 
|  | stime = cputime_add(stime, t->stime); | 
|  | r->ru_nvcsw += t->nvcsw; | 
|  | r->ru_nivcsw += t->nivcsw; | 
|  | r->ru_minflt += t->min_flt; | 
|  | r->ru_majflt += t->maj_flt; | 
|  | t = next_thread(t); | 
|  | } while (t != p); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | unlock_task_sighand(p, &flags); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | cputime_to_timeval(utime, &r->ru_utime); | 
|  | cputime_to_timeval(stime, &r->ru_stime); | 
|  | } | 
|  |  | 
|  | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 
|  | { | 
|  | struct rusage r; | 
|  | k_getrusage(p, who, &r); | 
|  | return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getrusage(int who, struct rusage __user *ru) | 
|  | { | 
|  | if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) | 
|  | return -EINVAL; | 
|  | return getrusage(current, who, ru); | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_umask(int mask) | 
|  | { | 
|  | mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, | 
|  | unsigned long arg4, unsigned long arg5) | 
|  | { | 
|  | long error; | 
|  |  | 
|  | error = security_task_prctl(option, arg2, arg3, arg4, arg5); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | switch (option) { | 
|  | case PR_SET_PDEATHSIG: | 
|  | if (!valid_signal(arg2)) { | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | current->pdeath_signal = arg2; | 
|  | break; | 
|  | case PR_GET_PDEATHSIG: | 
|  | error = put_user(current->pdeath_signal, (int __user *)arg2); | 
|  | break; | 
|  | case PR_GET_DUMPABLE: | 
|  | error = current->mm->dumpable; | 
|  | break; | 
|  | case PR_SET_DUMPABLE: | 
|  | if (arg2 < 0 || arg2 > 1) { | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | current->mm->dumpable = arg2; | 
|  | break; | 
|  |  | 
|  | case PR_SET_UNALIGN: | 
|  | error = SET_UNALIGN_CTL(current, arg2); | 
|  | break; | 
|  | case PR_GET_UNALIGN: | 
|  | error = GET_UNALIGN_CTL(current, arg2); | 
|  | break; | 
|  | case PR_SET_FPEMU: | 
|  | error = SET_FPEMU_CTL(current, arg2); | 
|  | break; | 
|  | case PR_GET_FPEMU: | 
|  | error = GET_FPEMU_CTL(current, arg2); | 
|  | break; | 
|  | case PR_SET_FPEXC: | 
|  | error = SET_FPEXC_CTL(current, arg2); | 
|  | break; | 
|  | case PR_GET_FPEXC: | 
|  | error = GET_FPEXC_CTL(current, arg2); | 
|  | break; | 
|  | case PR_GET_TIMING: | 
|  | error = PR_TIMING_STATISTICAL; | 
|  | break; | 
|  | case PR_SET_TIMING: | 
|  | if (arg2 == PR_TIMING_STATISTICAL) | 
|  | error = 0; | 
|  | else | 
|  | error = -EINVAL; | 
|  | break; | 
|  |  | 
|  | case PR_GET_KEEPCAPS: | 
|  | if (current->keep_capabilities) | 
|  | error = 1; | 
|  | break; | 
|  | case PR_SET_KEEPCAPS: | 
|  | if (arg2 != 0 && arg2 != 1) { | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | current->keep_capabilities = arg2; | 
|  | break; | 
|  | case PR_SET_NAME: { | 
|  | struct task_struct *me = current; | 
|  | unsigned char ncomm[sizeof(me->comm)]; | 
|  |  | 
|  | ncomm[sizeof(me->comm)-1] = 0; | 
|  | if (strncpy_from_user(ncomm, (char __user *)arg2, | 
|  | sizeof(me->comm)-1) < 0) | 
|  | return -EFAULT; | 
|  | set_task_comm(me, ncomm); | 
|  | return 0; | 
|  | } | 
|  | case PR_GET_NAME: { | 
|  | struct task_struct *me = current; | 
|  | unsigned char tcomm[sizeof(me->comm)]; | 
|  |  | 
|  | get_task_comm(tcomm, me); | 
|  | if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | case PR_GET_ENDIAN: | 
|  | error = GET_ENDIAN(current, arg2); | 
|  | break; | 
|  | case PR_SET_ENDIAN: | 
|  | error = SET_ENDIAN(current, arg2); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep, | 
|  | struct getcpu_cache __user *cache) | 
|  | { | 
|  | int err = 0; | 
|  | int cpu = raw_smp_processor_id(); | 
|  | if (cpup) | 
|  | err |= put_user(cpu, cpup); | 
|  | if (nodep) | 
|  | err |= put_user(cpu_to_node(cpu), nodep); | 
|  | if (cache) { | 
|  | /* | 
|  | * The cache is not needed for this implementation, | 
|  | * but make sure user programs pass something | 
|  | * valid. vsyscall implementations can instead make | 
|  | * good use of the cache. Only use t0 and t1 because | 
|  | * these are available in both 32bit and 64bit ABI (no | 
|  | * need for a compat_getcpu). 32bit has enough | 
|  | * padding | 
|  | */ | 
|  | unsigned long t0, t1; | 
|  | get_user(t0, &cache->blob[0]); | 
|  | get_user(t1, &cache->blob[1]); | 
|  | t0++; | 
|  | t1++; | 
|  | put_user(t0, &cache->blob[0]); | 
|  | put_user(t1, &cache->blob[1]); | 
|  | } | 
|  | return err ? -EFAULT : 0; | 
|  | } |