|  | /* smp.c: Sparc64 SMP support. | 
|  | * | 
|  | * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/bootmem.h> | 
|  |  | 
|  | #include <asm/head.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/cpudata.h> | 
|  |  | 
|  | #include <asm/irq.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/oplib.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/starfire.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | extern int linux_num_cpus; | 
|  | extern void calibrate_delay(void); | 
|  |  | 
|  | /* Please don't make this stuff initdata!!!  --DaveM */ | 
|  | static unsigned char boot_cpu_id; | 
|  |  | 
|  | cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE; | 
|  | cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE; | 
|  | static cpumask_t smp_commenced_mask; | 
|  | static cpumask_t cpu_callout_map; | 
|  |  | 
|  | void smp_info(struct seq_file *m) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | seq_printf(m, "State:\n"); | 
|  | for (i = 0; i < NR_CPUS; i++) { | 
|  | if (cpu_online(i)) | 
|  | seq_printf(m, | 
|  | "CPU%d:\t\tonline\n", i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void smp_bogo(struct seq_file *m) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_CPUS; i++) | 
|  | if (cpu_online(i)) | 
|  | seq_printf(m, | 
|  | "Cpu%dBogo\t: %lu.%02lu\n" | 
|  | "Cpu%dClkTck\t: %016lx\n", | 
|  | i, cpu_data(i).udelay_val / (500000/HZ), | 
|  | (cpu_data(i).udelay_val / (5000/HZ)) % 100, | 
|  | i, cpu_data(i).clock_tick); | 
|  | } | 
|  |  | 
|  | void __init smp_store_cpu_info(int id) | 
|  | { | 
|  | int cpu_node; | 
|  |  | 
|  | /* multiplier and counter set by | 
|  | smp_setup_percpu_timer()  */ | 
|  | cpu_data(id).udelay_val			= loops_per_jiffy; | 
|  |  | 
|  | cpu_find_by_mid(id, &cpu_node); | 
|  | cpu_data(id).clock_tick = prom_getintdefault(cpu_node, | 
|  | "clock-frequency", 0); | 
|  |  | 
|  | cpu_data(id).pgcache_size		= 0; | 
|  | cpu_data(id).pte_cache[0]		= NULL; | 
|  | cpu_data(id).pte_cache[1]		= NULL; | 
|  | cpu_data(id).pgd_cache			= NULL; | 
|  | cpu_data(id).idle_volume		= 1; | 
|  |  | 
|  | cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size", | 
|  | 16 * 1024); | 
|  | cpu_data(id).dcache_line_size = | 
|  | prom_getintdefault(cpu_node, "dcache-line-size", 32); | 
|  | cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size", | 
|  | 16 * 1024); | 
|  | cpu_data(id).icache_line_size = | 
|  | prom_getintdefault(cpu_node, "icache-line-size", 32); | 
|  | cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size", | 
|  | 4 * 1024 * 1024); | 
|  | cpu_data(id).ecache_line_size = | 
|  | prom_getintdefault(cpu_node, "ecache-line-size", 64); | 
|  | printk("CPU[%d]: Caches " | 
|  | "D[sz(%d):line_sz(%d)] " | 
|  | "I[sz(%d):line_sz(%d)] " | 
|  | "E[sz(%d):line_sz(%d)]\n", | 
|  | id, | 
|  | cpu_data(id).dcache_size, cpu_data(id).dcache_line_size, | 
|  | cpu_data(id).icache_size, cpu_data(id).icache_line_size, | 
|  | cpu_data(id).ecache_size, cpu_data(id).ecache_line_size); | 
|  | } | 
|  |  | 
|  | static void smp_setup_percpu_timer(void); | 
|  |  | 
|  | static volatile unsigned long callin_flag = 0; | 
|  |  | 
|  | extern void inherit_locked_prom_mappings(int save_p); | 
|  |  | 
|  | static inline void cpu_setup_percpu_base(unsigned long cpu_id) | 
|  | { | 
|  | __asm__ __volatile__("mov	%0, %%g5\n\t" | 
|  | "stxa	%0, [%1] %2\n\t" | 
|  | "membar	#Sync" | 
|  | : /* no outputs */ | 
|  | : "r" (__per_cpu_offset(cpu_id)), | 
|  | "r" (TSB_REG), "i" (ASI_IMMU)); | 
|  | } | 
|  |  | 
|  | void __init smp_callin(void) | 
|  | { | 
|  | int cpuid = hard_smp_processor_id(); | 
|  |  | 
|  | inherit_locked_prom_mappings(0); | 
|  |  | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | cpu_setup_percpu_base(cpuid); | 
|  |  | 
|  | smp_setup_percpu_timer(); | 
|  |  | 
|  | if (cheetah_pcache_forced_on) | 
|  | cheetah_enable_pcache(); | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | calibrate_delay(); | 
|  | smp_store_cpu_info(cpuid); | 
|  | callin_flag = 1; | 
|  | __asm__ __volatile__("membar #Sync\n\t" | 
|  | "flush  %%g6" : : : "memory"); | 
|  |  | 
|  | /* Clear this or we will die instantly when we | 
|  | * schedule back to this idler... | 
|  | */ | 
|  | current_thread_info()->new_child = 0; | 
|  |  | 
|  | /* Attach to the address space of init_task. */ | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | current->active_mm = &init_mm; | 
|  |  | 
|  | while (!cpu_isset(cpuid, smp_commenced_mask)) | 
|  | rmb(); | 
|  |  | 
|  | cpu_set(cpuid, cpu_online_map); | 
|  | } | 
|  |  | 
|  | void cpu_panic(void) | 
|  | { | 
|  | printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); | 
|  | panic("SMP bolixed\n"); | 
|  | } | 
|  |  | 
|  | static unsigned long current_tick_offset __read_mostly; | 
|  |  | 
|  | /* This tick register synchronization scheme is taken entirely from | 
|  | * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. | 
|  | * | 
|  | * The only change I've made is to rework it so that the master | 
|  | * initiates the synchonization instead of the slave. -DaveM | 
|  | */ | 
|  |  | 
|  | #define MASTER	0 | 
|  | #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long)) | 
|  |  | 
|  | #define NUM_ROUNDS	64	/* magic value */ | 
|  | #define NUM_ITERS	5	/* likewise */ | 
|  |  | 
|  | static DEFINE_SPINLOCK(itc_sync_lock); | 
|  | static unsigned long go[SLAVE + 1]; | 
|  |  | 
|  | #define DEBUG_TICK_SYNC	0 | 
|  |  | 
|  | static inline long get_delta (long *rt, long *master) | 
|  | { | 
|  | unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; | 
|  | unsigned long tcenter, t0, t1, tm; | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < NUM_ITERS; i++) { | 
|  | t0 = tick_ops->get_tick(); | 
|  | go[MASTER] = 1; | 
|  | membar_storeload(); | 
|  | while (!(tm = go[SLAVE])) | 
|  | rmb(); | 
|  | go[SLAVE] = 0; | 
|  | wmb(); | 
|  | t1 = tick_ops->get_tick(); | 
|  |  | 
|  | if (t1 - t0 < best_t1 - best_t0) | 
|  | best_t0 = t0, best_t1 = t1, best_tm = tm; | 
|  | } | 
|  |  | 
|  | *rt = best_t1 - best_t0; | 
|  | *master = best_tm - best_t0; | 
|  |  | 
|  | /* average best_t0 and best_t1 without overflow: */ | 
|  | tcenter = (best_t0/2 + best_t1/2); | 
|  | if (best_t0 % 2 + best_t1 % 2 == 2) | 
|  | tcenter++; | 
|  | return tcenter - best_tm; | 
|  | } | 
|  |  | 
|  | void smp_synchronize_tick_client(void) | 
|  | { | 
|  | long i, delta, adj, adjust_latency = 0, done = 0; | 
|  | unsigned long flags, rt, master_time_stamp, bound; | 
|  | #if DEBUG_TICK_SYNC | 
|  | struct { | 
|  | long rt;	/* roundtrip time */ | 
|  | long master;	/* master's timestamp */ | 
|  | long diff;	/* difference between midpoint and master's timestamp */ | 
|  | long lat;	/* estimate of itc adjustment latency */ | 
|  | } t[NUM_ROUNDS]; | 
|  | #endif | 
|  |  | 
|  | go[MASTER] = 1; | 
|  |  | 
|  | while (go[MASTER]) | 
|  | rmb(); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | { | 
|  | for (i = 0; i < NUM_ROUNDS; i++) { | 
|  | delta = get_delta(&rt, &master_time_stamp); | 
|  | if (delta == 0) { | 
|  | done = 1;	/* let's lock on to this... */ | 
|  | bound = rt; | 
|  | } | 
|  |  | 
|  | if (!done) { | 
|  | if (i > 0) { | 
|  | adjust_latency += -delta; | 
|  | adj = -delta + adjust_latency/4; | 
|  | } else | 
|  | adj = -delta; | 
|  |  | 
|  | tick_ops->add_tick(adj, current_tick_offset); | 
|  | } | 
|  | #if DEBUG_TICK_SYNC | 
|  | t[i].rt = rt; | 
|  | t[i].master = master_time_stamp; | 
|  | t[i].diff = delta; | 
|  | t[i].lat = adjust_latency/4; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | #if DEBUG_TICK_SYNC | 
|  | for (i = 0; i < NUM_ROUNDS; i++) | 
|  | printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", | 
|  | t[i].rt, t[i].master, t[i].diff, t[i].lat); | 
|  | #endif | 
|  |  | 
|  | printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles," | 
|  | "maxerr %lu cycles)\n", smp_processor_id(), delta, rt); | 
|  | } | 
|  |  | 
|  | static void smp_start_sync_tick_client(int cpu); | 
|  |  | 
|  | static void smp_synchronize_one_tick(int cpu) | 
|  | { | 
|  | unsigned long flags, i; | 
|  |  | 
|  | go[MASTER] = 0; | 
|  |  | 
|  | smp_start_sync_tick_client(cpu); | 
|  |  | 
|  | /* wait for client to be ready */ | 
|  | while (!go[MASTER]) | 
|  | rmb(); | 
|  |  | 
|  | /* now let the client proceed into his loop */ | 
|  | go[MASTER] = 0; | 
|  | membar_storeload(); | 
|  |  | 
|  | spin_lock_irqsave(&itc_sync_lock, flags); | 
|  | { | 
|  | for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { | 
|  | while (!go[MASTER]) | 
|  | rmb(); | 
|  | go[MASTER] = 0; | 
|  | wmb(); | 
|  | go[SLAVE] = tick_ops->get_tick(); | 
|  | membar_storeload(); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&itc_sync_lock, flags); | 
|  | } | 
|  |  | 
|  | extern unsigned long sparc64_cpu_startup; | 
|  |  | 
|  | /* The OBP cpu startup callback truncates the 3rd arg cookie to | 
|  | * 32-bits (I think) so to be safe we have it read the pointer | 
|  | * contained here so we work on >4GB machines. -DaveM | 
|  | */ | 
|  | static struct thread_info *cpu_new_thread = NULL; | 
|  |  | 
|  | static int __devinit smp_boot_one_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned long entry = | 
|  | (unsigned long)(&sparc64_cpu_startup); | 
|  | unsigned long cookie = | 
|  | (unsigned long)(&cpu_new_thread); | 
|  | struct task_struct *p; | 
|  | int timeout, ret, cpu_node; | 
|  |  | 
|  | p = fork_idle(cpu); | 
|  | callin_flag = 0; | 
|  | cpu_new_thread = p->thread_info; | 
|  | cpu_set(cpu, cpu_callout_map); | 
|  |  | 
|  | cpu_find_by_mid(cpu, &cpu_node); | 
|  | prom_startcpu(cpu_node, entry, cookie); | 
|  |  | 
|  | for (timeout = 0; timeout < 5000000; timeout++) { | 
|  | if (callin_flag) | 
|  | break; | 
|  | udelay(100); | 
|  | } | 
|  | if (callin_flag) { | 
|  | ret = 0; | 
|  | } else { | 
|  | printk("Processor %d is stuck.\n", cpu); | 
|  | cpu_clear(cpu, cpu_callout_map); | 
|  | ret = -ENODEV; | 
|  | } | 
|  | cpu_new_thread = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) | 
|  | { | 
|  | u64 result, target; | 
|  | int stuck, tmp; | 
|  |  | 
|  | if (this_is_starfire) { | 
|  | /* map to real upaid */ | 
|  | cpu = (((cpu & 0x3c) << 1) | | 
|  | ((cpu & 0x40) >> 4) | | 
|  | (cpu & 0x3)); | 
|  | } | 
|  |  | 
|  | target = (cpu << 14) | 0x70; | 
|  | again: | 
|  | /* Ok, this is the real Spitfire Errata #54. | 
|  | * One must read back from a UDB internal register | 
|  | * after writes to the UDB interrupt dispatch, but | 
|  | * before the membar Sync for that write. | 
|  | * So we use the high UDB control register (ASI 0x7f, | 
|  | * ADDR 0x20) for the dummy read. -DaveM | 
|  | */ | 
|  | tmp = 0x40; | 
|  | __asm__ __volatile__( | 
|  | "wrpr	%1, %2, %%pstate\n\t" | 
|  | "stxa	%4, [%0] %3\n\t" | 
|  | "stxa	%5, [%0+%8] %3\n\t" | 
|  | "add	%0, %8, %0\n\t" | 
|  | "stxa	%6, [%0+%8] %3\n\t" | 
|  | "membar	#Sync\n\t" | 
|  | "stxa	%%g0, [%7] %3\n\t" | 
|  | "membar	#Sync\n\t" | 
|  | "mov	0x20, %%g1\n\t" | 
|  | "ldxa	[%%g1] 0x7f, %%g0\n\t" | 
|  | "membar	#Sync" | 
|  | : "=r" (tmp) | 
|  | : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), | 
|  | "r" (data0), "r" (data1), "r" (data2), "r" (target), | 
|  | "r" (0x10), "0" (tmp) | 
|  | : "g1"); | 
|  |  | 
|  | /* NOTE: PSTATE_IE is still clear. */ | 
|  | stuck = 100000; | 
|  | do { | 
|  | __asm__ __volatile__("ldxa [%%g0] %1, %0" | 
|  | : "=r" (result) | 
|  | : "i" (ASI_INTR_DISPATCH_STAT)); | 
|  | if (result == 0) { | 
|  | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
|  | : : "r" (pstate)); | 
|  | return; | 
|  | } | 
|  | stuck -= 1; | 
|  | if (stuck == 0) | 
|  | break; | 
|  | } while (result & 0x1); | 
|  | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
|  | : : "r" (pstate)); | 
|  | if (stuck == 0) { | 
|  | printk("CPU[%d]: mondo stuckage result[%016lx]\n", | 
|  | smp_processor_id(), result); | 
|  | } else { | 
|  | udelay(2); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) | 
|  | { | 
|  | u64 pstate; | 
|  | int i; | 
|  |  | 
|  | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | 
|  | for_each_cpu_mask(i, mask) | 
|  | spitfire_xcall_helper(data0, data1, data2, pstate, i); | 
|  | } | 
|  |  | 
|  | /* Cheetah now allows to send the whole 64-bytes of data in the interrupt | 
|  | * packet, but we have no use for that.  However we do take advantage of | 
|  | * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). | 
|  | */ | 
|  | static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) | 
|  | { | 
|  | u64 pstate, ver; | 
|  | int nack_busy_id, is_jalapeno; | 
|  |  | 
|  | if (cpus_empty(mask)) | 
|  | return; | 
|  |  | 
|  | /* Unfortunately, someone at Sun had the brilliant idea to make the | 
|  | * busy/nack fields hard-coded by ITID number for this Ultra-III | 
|  | * derivative processor. | 
|  | */ | 
|  | __asm__ ("rdpr %%ver, %0" : "=r" (ver)); | 
|  | is_jalapeno = ((ver >> 32) == 0x003e0016); | 
|  |  | 
|  | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | 
|  |  | 
|  | retry: | 
|  | __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" | 
|  | : : "r" (pstate), "i" (PSTATE_IE)); | 
|  |  | 
|  | /* Setup the dispatch data registers. */ | 
|  | __asm__ __volatile__("stxa	%0, [%3] %6\n\t" | 
|  | "stxa	%1, [%4] %6\n\t" | 
|  | "stxa	%2, [%5] %6\n\t" | 
|  | "membar	#Sync\n\t" | 
|  | : /* no outputs */ | 
|  | : "r" (data0), "r" (data1), "r" (data2), | 
|  | "r" (0x40), "r" (0x50), "r" (0x60), | 
|  | "i" (ASI_INTR_W)); | 
|  |  | 
|  | nack_busy_id = 0; | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, mask) { | 
|  | u64 target = (i << 14) | 0x70; | 
|  |  | 
|  | if (!is_jalapeno) | 
|  | target |= (nack_busy_id << 24); | 
|  | __asm__ __volatile__( | 
|  | "stxa	%%g0, [%0] %1\n\t" | 
|  | "membar	#Sync\n\t" | 
|  | : /* no outputs */ | 
|  | : "r" (target), "i" (ASI_INTR_W)); | 
|  | nack_busy_id++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now, poll for completion. */ | 
|  | { | 
|  | u64 dispatch_stat; | 
|  | long stuck; | 
|  |  | 
|  | stuck = 100000 * nack_busy_id; | 
|  | do { | 
|  | __asm__ __volatile__("ldxa	[%%g0] %1, %0" | 
|  | : "=r" (dispatch_stat) | 
|  | : "i" (ASI_INTR_DISPATCH_STAT)); | 
|  | if (dispatch_stat == 0UL) { | 
|  | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
|  | : : "r" (pstate)); | 
|  | return; | 
|  | } | 
|  | if (!--stuck) | 
|  | break; | 
|  | } while (dispatch_stat & 0x5555555555555555UL); | 
|  |  | 
|  | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" | 
|  | : : "r" (pstate)); | 
|  |  | 
|  | if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) { | 
|  | /* Busy bits will not clear, continue instead | 
|  | * of freezing up on this cpu. | 
|  | */ | 
|  | printk("CPU[%d]: mondo stuckage result[%016lx]\n", | 
|  | smp_processor_id(), dispatch_stat); | 
|  | } else { | 
|  | int i, this_busy_nack = 0; | 
|  |  | 
|  | /* Delay some random time with interrupts enabled | 
|  | * to prevent deadlock. | 
|  | */ | 
|  | udelay(2 * nack_busy_id); | 
|  |  | 
|  | /* Clear out the mask bits for cpus which did not | 
|  | * NACK us. | 
|  | */ | 
|  | for_each_cpu_mask(i, mask) { | 
|  | u64 check_mask; | 
|  |  | 
|  | if (is_jalapeno) | 
|  | check_mask = (0x2UL << (2*i)); | 
|  | else | 
|  | check_mask = (0x2UL << | 
|  | this_busy_nack); | 
|  | if ((dispatch_stat & check_mask) == 0) | 
|  | cpu_clear(i, mask); | 
|  | this_busy_nack += 2; | 
|  | } | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Send cross call to all processors mentioned in MASK | 
|  | * except self. | 
|  | */ | 
|  | static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask) | 
|  | { | 
|  | u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); | 
|  | int this_cpu = get_cpu(); | 
|  |  | 
|  | cpus_and(mask, mask, cpu_online_map); | 
|  | cpu_clear(this_cpu, mask); | 
|  |  | 
|  | if (tlb_type == spitfire) | 
|  | spitfire_xcall_deliver(data0, data1, data2, mask); | 
|  | else | 
|  | cheetah_xcall_deliver(data0, data1, data2, mask); | 
|  | /* NOTE: Caller runs local copy on master. */ | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | extern unsigned long xcall_sync_tick; | 
|  |  | 
|  | static void smp_start_sync_tick_client(int cpu) | 
|  | { | 
|  | cpumask_t mask = cpumask_of_cpu(cpu); | 
|  |  | 
|  | smp_cross_call_masked(&xcall_sync_tick, | 
|  | 0, 0, 0, mask); | 
|  | } | 
|  |  | 
|  | /* Send cross call to all processors except self. */ | 
|  | #define smp_cross_call(func, ctx, data1, data2) \ | 
|  | smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map) | 
|  |  | 
|  | struct call_data_struct { | 
|  | void (*func) (void *info); | 
|  | void *info; | 
|  | atomic_t finished; | 
|  | int wait; | 
|  | }; | 
|  |  | 
|  | static DEFINE_SPINLOCK(call_lock); | 
|  | static struct call_data_struct *call_data; | 
|  |  | 
|  | extern unsigned long xcall_call_function; | 
|  |  | 
|  | /* | 
|  | * You must not call this function with disabled interrupts or from a | 
|  | * hardware interrupt handler or from a bottom half handler. | 
|  | */ | 
|  | int smp_call_function(void (*func)(void *info), void *info, | 
|  | int nonatomic, int wait) | 
|  | { | 
|  | struct call_data_struct data; | 
|  | int cpus = num_online_cpus() - 1; | 
|  | long timeout; | 
|  |  | 
|  | if (!cpus) | 
|  | return 0; | 
|  |  | 
|  | /* Can deadlock when called with interrupts disabled */ | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | data.func = func; | 
|  | data.info = info; | 
|  | atomic_set(&data.finished, 0); | 
|  | data.wait = wait; | 
|  |  | 
|  | spin_lock(&call_lock); | 
|  |  | 
|  | call_data = &data; | 
|  |  | 
|  | smp_cross_call(&xcall_call_function, 0, 0, 0); | 
|  |  | 
|  | /* | 
|  | * Wait for other cpus to complete function or at | 
|  | * least snap the call data. | 
|  | */ | 
|  | timeout = 1000000; | 
|  | while (atomic_read(&data.finished) != cpus) { | 
|  | if (--timeout <= 0) | 
|  | goto out_timeout; | 
|  | barrier(); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | spin_unlock(&call_lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_timeout: | 
|  | spin_unlock(&call_lock); | 
|  | printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n", | 
|  | (long) num_online_cpus() - 1L, | 
|  | (long) atomic_read(&data.finished)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void smp_call_function_client(int irq, struct pt_regs *regs) | 
|  | { | 
|  | void (*func) (void *info) = call_data->func; | 
|  | void *info = call_data->info; | 
|  |  | 
|  | clear_softint(1 << irq); | 
|  | if (call_data->wait) { | 
|  | /* let initiator proceed only after completion */ | 
|  | func(info); | 
|  | atomic_inc(&call_data->finished); | 
|  | } else { | 
|  | /* let initiator proceed after getting data */ | 
|  | atomic_inc(&call_data->finished); | 
|  | func(info); | 
|  | } | 
|  | } | 
|  |  | 
|  | extern unsigned long xcall_flush_tlb_mm; | 
|  | extern unsigned long xcall_flush_tlb_pending; | 
|  | extern unsigned long xcall_flush_tlb_kernel_range; | 
|  | extern unsigned long xcall_flush_tlb_all_spitfire; | 
|  | extern unsigned long xcall_flush_tlb_all_cheetah; | 
|  | extern unsigned long xcall_report_regs; | 
|  | extern unsigned long xcall_receive_signal; | 
|  |  | 
|  | #ifdef DCACHE_ALIASING_POSSIBLE | 
|  | extern unsigned long xcall_flush_dcache_page_cheetah; | 
|  | #endif | 
|  | extern unsigned long xcall_flush_dcache_page_spitfire; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | extern atomic_t dcpage_flushes; | 
|  | extern atomic_t dcpage_flushes_xcall; | 
|  | #endif | 
|  |  | 
|  | static __inline__ void __local_flush_dcache_page(struct page *page) | 
|  | { | 
|  | #ifdef DCACHE_ALIASING_POSSIBLE | 
|  | __flush_dcache_page(page_address(page), | 
|  | ((tlb_type == spitfire) && | 
|  | page_mapping(page) != NULL)); | 
|  | #else | 
|  | if (page_mapping(page) != NULL && | 
|  | tlb_type == spitfire) | 
|  | __flush_icache_page(__pa(page_address(page))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void smp_flush_dcache_page_impl(struct page *page, int cpu) | 
|  | { | 
|  | cpumask_t mask = cpumask_of_cpu(cpu); | 
|  | int this_cpu = get_cpu(); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | atomic_inc(&dcpage_flushes); | 
|  | #endif | 
|  | if (cpu == this_cpu) { | 
|  | __local_flush_dcache_page(page); | 
|  | } else if (cpu_online(cpu)) { | 
|  | void *pg_addr = page_address(page); | 
|  | u64 data0; | 
|  |  | 
|  | if (tlb_type == spitfire) { | 
|  | data0 = | 
|  | ((u64)&xcall_flush_dcache_page_spitfire); | 
|  | if (page_mapping(page) != NULL) | 
|  | data0 |= ((u64)1 << 32); | 
|  | spitfire_xcall_deliver(data0, | 
|  | __pa(pg_addr), | 
|  | (u64) pg_addr, | 
|  | mask); | 
|  | } else { | 
|  | #ifdef DCACHE_ALIASING_POSSIBLE | 
|  | data0 = | 
|  | ((u64)&xcall_flush_dcache_page_cheetah); | 
|  | cheetah_xcall_deliver(data0, | 
|  | __pa(pg_addr), | 
|  | 0, mask); | 
|  | #endif | 
|  | } | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | atomic_inc(&dcpage_flushes_xcall); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | void flush_dcache_page_all(struct mm_struct *mm, struct page *page) | 
|  | { | 
|  | void *pg_addr = page_address(page); | 
|  | cpumask_t mask = cpu_online_map; | 
|  | u64 data0; | 
|  | int this_cpu = get_cpu(); | 
|  |  | 
|  | cpu_clear(this_cpu, mask); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | atomic_inc(&dcpage_flushes); | 
|  | #endif | 
|  | if (cpus_empty(mask)) | 
|  | goto flush_self; | 
|  | if (tlb_type == spitfire) { | 
|  | data0 = ((u64)&xcall_flush_dcache_page_spitfire); | 
|  | if (page_mapping(page) != NULL) | 
|  | data0 |= ((u64)1 << 32); | 
|  | spitfire_xcall_deliver(data0, | 
|  | __pa(pg_addr), | 
|  | (u64) pg_addr, | 
|  | mask); | 
|  | } else { | 
|  | #ifdef DCACHE_ALIASING_POSSIBLE | 
|  | data0 = ((u64)&xcall_flush_dcache_page_cheetah); | 
|  | cheetah_xcall_deliver(data0, | 
|  | __pa(pg_addr), | 
|  | 0, mask); | 
|  | #endif | 
|  | } | 
|  | #ifdef CONFIG_DEBUG_DCFLUSH | 
|  | atomic_inc(&dcpage_flushes_xcall); | 
|  | #endif | 
|  | flush_self: | 
|  | __local_flush_dcache_page(page); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | void smp_receive_signal(int cpu) | 
|  | { | 
|  | cpumask_t mask = cpumask_of_cpu(cpu); | 
|  |  | 
|  | if (cpu_online(cpu)) { | 
|  | u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff); | 
|  |  | 
|  | if (tlb_type == spitfire) | 
|  | spitfire_xcall_deliver(data0, 0, 0, mask); | 
|  | else | 
|  | cheetah_xcall_deliver(data0, 0, 0, mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | void smp_receive_signal_client(int irq, struct pt_regs *regs) | 
|  | { | 
|  | /* Just return, rtrap takes care of the rest. */ | 
|  | clear_softint(1 << irq); | 
|  | } | 
|  |  | 
|  | void smp_report_regs(void) | 
|  | { | 
|  | smp_cross_call(&xcall_report_regs, 0, 0, 0); | 
|  | } | 
|  |  | 
|  | void smp_flush_tlb_all(void) | 
|  | { | 
|  | if (tlb_type == spitfire) | 
|  | smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0); | 
|  | else | 
|  | smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0); | 
|  | __flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | /* We know that the window frames of the user have been flushed | 
|  | * to the stack before we get here because all callers of us | 
|  | * are flush_tlb_*() routines, and these run after flush_cache_*() | 
|  | * which performs the flushw. | 
|  | * | 
|  | * The SMP TLB coherency scheme we use works as follows: | 
|  | * | 
|  | * 1) mm->cpu_vm_mask is a bit mask of which cpus an address | 
|  | *    space has (potentially) executed on, this is the heuristic | 
|  | *    we use to avoid doing cross calls. | 
|  | * | 
|  | *    Also, for flushing from kswapd and also for clones, we | 
|  | *    use cpu_vm_mask as the list of cpus to make run the TLB. | 
|  | * | 
|  | * 2) TLB context numbers are shared globally across all processors | 
|  | *    in the system, this allows us to play several games to avoid | 
|  | *    cross calls. | 
|  | * | 
|  | *    One invariant is that when a cpu switches to a process, and | 
|  | *    that processes tsk->active_mm->cpu_vm_mask does not have the | 
|  | *    current cpu's bit set, that tlb context is flushed locally. | 
|  | * | 
|  | *    If the address space is non-shared (ie. mm->count == 1) we avoid | 
|  | *    cross calls when we want to flush the currently running process's | 
|  | *    tlb state.  This is done by clearing all cpu bits except the current | 
|  | *    processor's in current->active_mm->cpu_vm_mask and performing the | 
|  | *    flush locally only.  This will force any subsequent cpus which run | 
|  | *    this task to flush the context from the local tlb if the process | 
|  | *    migrates to another cpu (again). | 
|  | * | 
|  | * 3) For shared address spaces (threads) and swapping we bite the | 
|  | *    bullet for most cases and perform the cross call (but only to | 
|  | *    the cpus listed in cpu_vm_mask). | 
|  | * | 
|  | *    The performance gain from "optimizing" away the cross call for threads is | 
|  | *    questionable (in theory the big win for threads is the massive sharing of | 
|  | *    address space state across processors). | 
|  | */ | 
|  | void smp_flush_tlb_mm(struct mm_struct *mm) | 
|  | { | 
|  | /* | 
|  | * This code is called from two places, dup_mmap and exit_mmap. In the | 
|  | * former case, we really need a flush. In the later case, the callers | 
|  | * are single threaded exec_mmap (really need a flush), multithreaded | 
|  | * exec_mmap case (do not need to flush, since the caller gets a new | 
|  | * context via activate_mm), and all other callers of mmput() whence | 
|  | * the flush can be optimized since the associated threads are dead and | 
|  | * the mm is being torn down (__exit_mm and other mmput callers) or the | 
|  | * owning thread is dissociating itself from the mm. The | 
|  | * (atomic_read(&mm->mm_users) == 0) check ensures real work is done | 
|  | * for single thread exec and dup_mmap cases. An alternate check might | 
|  | * have been (current->mm != mm). | 
|  | *                                              Kanoj Sarcar | 
|  | */ | 
|  | if (atomic_read(&mm->mm_users) == 0) | 
|  | return; | 
|  |  | 
|  | { | 
|  | u32 ctx = CTX_HWBITS(mm->context); | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | if (atomic_read(&mm->mm_users) == 1) { | 
|  | mm->cpu_vm_mask = cpumask_of_cpu(cpu); | 
|  | goto local_flush_and_out; | 
|  | } | 
|  |  | 
|  | smp_cross_call_masked(&xcall_flush_tlb_mm, | 
|  | ctx, 0, 0, | 
|  | mm->cpu_vm_mask); | 
|  |  | 
|  | local_flush_and_out: | 
|  | __flush_tlb_mm(ctx, SECONDARY_CONTEXT); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) | 
|  | { | 
|  | u32 ctx = CTX_HWBITS(mm->context); | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { | 
|  | mm->cpu_vm_mask = cpumask_of_cpu(cpu); | 
|  | goto local_flush_and_out; | 
|  | } else { | 
|  | /* This optimization is not valid.  Normally | 
|  | * we will be holding the page_table_lock, but | 
|  | * there is an exception which is copy_page_range() | 
|  | * when forking.  The lock is held during the individual | 
|  | * page table updates in the parent, but not at the | 
|  | * top level, which is where we are invoked. | 
|  | */ | 
|  | if (0) { | 
|  | cpumask_t this_cpu_mask = cpumask_of_cpu(cpu); | 
|  |  | 
|  | /* By virtue of running under the mm->page_table_lock, | 
|  | * and mmu_context.h:switch_mm doing the same, the | 
|  | * following operation is safe. | 
|  | */ | 
|  | if (cpus_equal(mm->cpu_vm_mask, this_cpu_mask)) | 
|  | goto local_flush_and_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | smp_cross_call_masked(&xcall_flush_tlb_pending, | 
|  | ctx, nr, (unsigned long) vaddrs, | 
|  | mm->cpu_vm_mask); | 
|  |  | 
|  | local_flush_and_out: | 
|  | __flush_tlb_pending(ctx, nr, vaddrs); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | start &= PAGE_MASK; | 
|  | end    = PAGE_ALIGN(end); | 
|  | if (start != end) { | 
|  | smp_cross_call(&xcall_flush_tlb_kernel_range, | 
|  | 0, start, end); | 
|  |  | 
|  | __flush_tlb_kernel_range(start, end); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* CPU capture. */ | 
|  | /* #define CAPTURE_DEBUG */ | 
|  | extern unsigned long xcall_capture; | 
|  |  | 
|  | static atomic_t smp_capture_depth = ATOMIC_INIT(0); | 
|  | static atomic_t smp_capture_registry = ATOMIC_INIT(0); | 
|  | static unsigned long penguins_are_doing_time; | 
|  |  | 
|  | void smp_capture(void) | 
|  | { | 
|  | int result = atomic_add_ret(1, &smp_capture_depth); | 
|  |  | 
|  | if (result == 1) { | 
|  | int ncpus = num_online_cpus(); | 
|  |  | 
|  | #ifdef CAPTURE_DEBUG | 
|  | printk("CPU[%d]: Sending penguins to jail...", | 
|  | smp_processor_id()); | 
|  | #endif | 
|  | penguins_are_doing_time = 1; | 
|  | membar_storestore_loadstore(); | 
|  | atomic_inc(&smp_capture_registry); | 
|  | smp_cross_call(&xcall_capture, 0, 0, 0); | 
|  | while (atomic_read(&smp_capture_registry) != ncpus) | 
|  | rmb(); | 
|  | #ifdef CAPTURE_DEBUG | 
|  | printk("done\n"); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | void smp_release(void) | 
|  | { | 
|  | if (atomic_dec_and_test(&smp_capture_depth)) { | 
|  | #ifdef CAPTURE_DEBUG | 
|  | printk("CPU[%d]: Giving pardon to " | 
|  | "imprisoned penguins\n", | 
|  | smp_processor_id()); | 
|  | #endif | 
|  | penguins_are_doing_time = 0; | 
|  | membar_storeload_storestore(); | 
|  | atomic_dec(&smp_capture_registry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they | 
|  | * can service tlb flush xcalls... | 
|  | */ | 
|  | extern void prom_world(int); | 
|  | extern void save_alternate_globals(unsigned long *); | 
|  | extern void restore_alternate_globals(unsigned long *); | 
|  | void smp_penguin_jailcell(int irq, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long global_save[24]; | 
|  |  | 
|  | clear_softint(1 << irq); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | __asm__ __volatile__("flushw"); | 
|  | save_alternate_globals(global_save); | 
|  | prom_world(1); | 
|  | atomic_inc(&smp_capture_registry); | 
|  | membar_storeload_storestore(); | 
|  | while (penguins_are_doing_time) | 
|  | rmb(); | 
|  | restore_alternate_globals(global_save); | 
|  | atomic_dec(&smp_capture_registry); | 
|  | prom_world(0); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | #define prof_multiplier(__cpu)		cpu_data(__cpu).multiplier | 
|  | #define prof_counter(__cpu)		cpu_data(__cpu).counter | 
|  |  | 
|  | void smp_percpu_timer_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long compare, tick, pstate; | 
|  | int cpu = smp_processor_id(); | 
|  | int user = user_mode(regs); | 
|  |  | 
|  | /* | 
|  | * Check for level 14 softint. | 
|  | */ | 
|  | { | 
|  | unsigned long tick_mask = tick_ops->softint_mask; | 
|  |  | 
|  | if (!(get_softint() & tick_mask)) { | 
|  | extern void handler_irq(int, struct pt_regs *); | 
|  |  | 
|  | handler_irq(14, regs); | 
|  | return; | 
|  | } | 
|  | clear_softint(tick_mask); | 
|  | } | 
|  |  | 
|  | do { | 
|  | profile_tick(CPU_PROFILING, regs); | 
|  | if (!--prof_counter(cpu)) { | 
|  | irq_enter(); | 
|  |  | 
|  | if (cpu == boot_cpu_id) { | 
|  | kstat_this_cpu.irqs[0]++; | 
|  | timer_tick_interrupt(regs); | 
|  | } | 
|  |  | 
|  | update_process_times(user); | 
|  |  | 
|  | irq_exit(); | 
|  |  | 
|  | prof_counter(cpu) = prof_multiplier(cpu); | 
|  | } | 
|  |  | 
|  | /* Guarantee that the following sequences execute | 
|  | * uninterrupted. | 
|  | */ | 
|  | __asm__ __volatile__("rdpr	%%pstate, %0\n\t" | 
|  | "wrpr	%0, %1, %%pstate" | 
|  | : "=r" (pstate) | 
|  | : "i" (PSTATE_IE)); | 
|  |  | 
|  | compare = tick_ops->add_compare(current_tick_offset); | 
|  | tick = tick_ops->get_tick(); | 
|  |  | 
|  | /* Restore PSTATE_IE. */ | 
|  | __asm__ __volatile__("wrpr	%0, 0x0, %%pstate" | 
|  | : /* no outputs */ | 
|  | : "r" (pstate)); | 
|  | } while (time_after_eq(tick, compare)); | 
|  | } | 
|  |  | 
|  | static void __init smp_setup_percpu_timer(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | unsigned long pstate; | 
|  |  | 
|  | prof_counter(cpu) = prof_multiplier(cpu) = 1; | 
|  |  | 
|  | /* Guarantee that the following sequences execute | 
|  | * uninterrupted. | 
|  | */ | 
|  | __asm__ __volatile__("rdpr	%%pstate, %0\n\t" | 
|  | "wrpr	%0, %1, %%pstate" | 
|  | : "=r" (pstate) | 
|  | : "i" (PSTATE_IE)); | 
|  |  | 
|  | tick_ops->init_tick(current_tick_offset); | 
|  |  | 
|  | /* Restore PSTATE_IE. */ | 
|  | __asm__ __volatile__("wrpr	%0, 0x0, %%pstate" | 
|  | : /* no outputs */ | 
|  | : "r" (pstate)); | 
|  | } | 
|  |  | 
|  | void __init smp_tick_init(void) | 
|  | { | 
|  | boot_cpu_id = hard_smp_processor_id(); | 
|  | current_tick_offset = timer_tick_offset; | 
|  |  | 
|  | cpu_set(boot_cpu_id, cpu_online_map); | 
|  | prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1; | 
|  | } | 
|  |  | 
|  | /* /proc/profile writes can call this, don't __init it please. */ | 
|  | static DEFINE_SPINLOCK(prof_setup_lock); | 
|  |  | 
|  | int setup_profiling_timer(unsigned int multiplier) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if ((!multiplier) || (timer_tick_offset / multiplier) < 1000) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&prof_setup_lock, flags); | 
|  | for (i = 0; i < NR_CPUS; i++) | 
|  | prof_multiplier(i) = multiplier; | 
|  | current_tick_offset = (timer_tick_offset / multiplier); | 
|  | spin_unlock_irqrestore(&prof_setup_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | int instance, mid; | 
|  |  | 
|  | instance = 0; | 
|  | while (!cpu_find_by_instance(instance, NULL, &mid)) { | 
|  | if (mid < max_cpus) | 
|  | cpu_set(mid, phys_cpu_present_map); | 
|  | instance++; | 
|  | } | 
|  |  | 
|  | if (num_possible_cpus() > max_cpus) { | 
|  | instance = 0; | 
|  | while (!cpu_find_by_instance(instance, NULL, &mid)) { | 
|  | if (mid != boot_cpu_id) { | 
|  | cpu_clear(mid, phys_cpu_present_map); | 
|  | if (num_possible_cpus() <= max_cpus) | 
|  | break; | 
|  | } | 
|  | instance++; | 
|  | } | 
|  | } | 
|  |  | 
|  | smp_store_cpu_info(boot_cpu_id); | 
|  | } | 
|  |  | 
|  | void __devinit smp_prepare_boot_cpu(void) | 
|  | { | 
|  | if (hard_smp_processor_id() >= NR_CPUS) { | 
|  | prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | current_thread_info()->cpu = hard_smp_processor_id(); | 
|  |  | 
|  | cpu_set(smp_processor_id(), cpu_online_map); | 
|  | cpu_set(smp_processor_id(), phys_cpu_present_map); | 
|  | } | 
|  |  | 
|  | int __devinit __cpu_up(unsigned int cpu) | 
|  | { | 
|  | int ret = smp_boot_one_cpu(cpu); | 
|  |  | 
|  | if (!ret) { | 
|  | cpu_set(cpu, smp_commenced_mask); | 
|  | while (!cpu_isset(cpu, cpu_online_map)) | 
|  | mb(); | 
|  | if (!cpu_isset(cpu, cpu_online_map)) { | 
|  | ret = -ENODEV; | 
|  | } else { | 
|  | smp_synchronize_one_tick(cpu); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void __init smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | unsigned long bogosum = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_CPUS; i++) { | 
|  | if (cpu_online(i)) | 
|  | bogosum += cpu_data(i).udelay_val; | 
|  | } | 
|  | printk("Total of %ld processors activated " | 
|  | "(%lu.%02lu BogoMIPS).\n", | 
|  | (long) num_online_cpus(), | 
|  | bogosum/(500000/HZ), | 
|  | (bogosum/(5000/HZ))%100); | 
|  | } | 
|  |  | 
|  | /* This needn't do anything as we do not sleep the cpu | 
|  | * inside of the idler task, so an interrupt is not needed | 
|  | * to get a clean fast response. | 
|  | * | 
|  | * XXX Reverify this assumption... -DaveM | 
|  | * | 
|  | * Addendum: We do want it to do something for the signal | 
|  | *           delivery case, we detect that by just seeing | 
|  | *           if we are trying to send this to an idler or not. | 
|  | */ | 
|  | void smp_send_reschedule(int cpu) | 
|  | { | 
|  | if (cpu_data(cpu).idle_volume == 0) | 
|  | smp_receive_signal(cpu); | 
|  | } | 
|  |  | 
|  | /* This is a nop because we capture all other cpus | 
|  | * anyways when making the PROM active. | 
|  | */ | 
|  | void smp_send_stop(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | unsigned long __per_cpu_base __read_mostly; | 
|  | unsigned long __per_cpu_shift __read_mostly; | 
|  |  | 
|  | EXPORT_SYMBOL(__per_cpu_base); | 
|  | EXPORT_SYMBOL(__per_cpu_shift); | 
|  |  | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | unsigned long goal, size, i; | 
|  | char *ptr; | 
|  | /* Created by linker magic */ | 
|  | extern char __per_cpu_start[], __per_cpu_end[]; | 
|  |  | 
|  | /* Copy section for each CPU (we discard the original) */ | 
|  | goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_MODULES | 
|  | if (goal < PERCPU_ENOUGH_ROOM) | 
|  | goal = PERCPU_ENOUGH_ROOM; | 
|  | #endif | 
|  | __per_cpu_shift = 0; | 
|  | for (size = 1UL; size < goal; size <<= 1UL) | 
|  | __per_cpu_shift++; | 
|  |  | 
|  | /* Make sure the resulting __per_cpu_base value | 
|  | * will fit in the 43-bit sign extended IMMU | 
|  | * TSB register. | 
|  | */ | 
|  | ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE, | 
|  | (unsigned long) __per_cpu_start); | 
|  |  | 
|  | __per_cpu_base = ptr - __per_cpu_start; | 
|  |  | 
|  | if ((__per_cpu_shift < PAGE_SHIFT) || | 
|  | (__per_cpu_base & ~PAGE_MASK) || | 
|  | (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) { | 
|  | prom_printf("PER_CPU: Invalid layout, " | 
|  | "ptr[%p] shift[%lx] base[%lx]\n", | 
|  | ptr, __per_cpu_shift, __per_cpu_base); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_CPUS; i++, ptr += size) | 
|  | memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); | 
|  |  | 
|  | /* Finally, load in the boot cpu's base value. | 
|  | * We abuse the IMMU TSB register for trap handler | 
|  | * entry and exit loading of %g5.  That is why it | 
|  | * has to be page aligned. | 
|  | */ | 
|  | cpu_setup_percpu_base(hard_smp_processor_id()); | 
|  | } |