blob: 390296efe3e0b4dc32e6703204b252b782732847 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10#include <linux/init.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/hugetlb.h>
14#include <linux/pagemap.h>
15#include <linux/smp_lock.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/sysctl.h>
19#include <asm/mman.h>
20#include <asm/pgalloc.h>
21#include <asm/tlb.h>
22#include <asm/tlbflush.h>
23#include <asm/mmu_context.h>
24#include <asm/machdep.h>
25#include <asm/cputable.h>
26#include <asm/tlb.h>
27
28#include <linux/sysctl.h>
29
30#define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3)
31#define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT)
32#define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1))
33
34#define HUGEPTE_INDEX_SIZE 9
35#define HUGEPGD_INDEX_SIZE 10
36
37#define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE)
38#define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE)
39
40static inline int hugepgd_index(unsigned long addr)
41{
42 return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT;
43}
44
45static pgd_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr)
46{
47 int index;
48
49 if (! mm->context.huge_pgdir)
50 return NULL;
51
52
53 index = hugepgd_index(addr);
54 BUG_ON(index >= PTRS_PER_HUGEPGD);
55 return mm->context.huge_pgdir + index;
56}
57
58static inline pte_t *hugepte_offset(pgd_t *dir, unsigned long addr)
59{
60 int index;
61
62 if (pgd_none(*dir))
63 return NULL;
64
65 index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE;
66 return (pte_t *)pgd_page(*dir) + index;
67}
68
69static pgd_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr)
70{
71 BUG_ON(! in_hugepage_area(mm->context, addr));
72
73 if (! mm->context.huge_pgdir) {
74 pgd_t *new;
75 spin_unlock(&mm->page_table_lock);
76 /* Don't use pgd_alloc(), because we want __GFP_REPEAT */
77 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
78 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
79 spin_lock(&mm->page_table_lock);
80
81 /*
82 * Because we dropped the lock, we should re-check the
83 * entry, as somebody else could have populated it..
84 */
85 if (mm->context.huge_pgdir)
86 pgd_free(new);
87 else
88 mm->context.huge_pgdir = new;
89 }
90 return hugepgd_offset(mm, addr);
91}
92
93static pte_t *hugepte_alloc(struct mm_struct *mm, pgd_t *dir,
94 unsigned long addr)
95{
96 if (! pgd_present(*dir)) {
97 pte_t *new;
98
99 spin_unlock(&mm->page_table_lock);
100 new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT);
101 BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE));
102 spin_lock(&mm->page_table_lock);
103 /*
104 * Because we dropped the lock, we should re-check the
105 * entry, as somebody else could have populated it..
106 */
107 if (pgd_present(*dir)) {
108 if (new)
109 kmem_cache_free(zero_cache, new);
110 } else {
111 struct page *ptepage;
112
113 if (! new)
114 return NULL;
115 ptepage = virt_to_page(new);
116 ptepage->mapping = (void *) mm;
117 ptepage->index = addr & HUGEPGDIR_MASK;
118 pgd_populate(mm, dir, new);
119 }
120 }
121
122 return hugepte_offset(dir, addr);
123}
124
125static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
126{
127 pgd_t *pgd;
128
129 BUG_ON(! in_hugepage_area(mm->context, addr));
130
131 pgd = hugepgd_offset(mm, addr);
132 if (! pgd)
133 return NULL;
134
135 return hugepte_offset(pgd, addr);
136}
137
138static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
139{
140 pgd_t *pgd;
141
142 BUG_ON(! in_hugepage_area(mm->context, addr));
143
144 pgd = hugepgd_alloc(mm, addr);
145 if (! pgd)
146 return NULL;
147
148 return hugepte_alloc(mm, pgd, addr);
149}
150
151static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
152 unsigned long addr, struct page *page,
153 pte_t *ptep, int write_access)
154{
155 pte_t entry;
156
157 add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
158 if (write_access) {
159 entry =
160 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
161 } else {
162 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
163 }
164 entry = pte_mkyoung(entry);
165 entry = pte_mkhuge(entry);
166
167 set_pte_at(mm, addr, ptep, entry);
168}
169
170/*
171 * This function checks for proper alignment of input addr and len parameters.
172 */
173int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
174{
175 if (len & ~HPAGE_MASK)
176 return -EINVAL;
177 if (addr & ~HPAGE_MASK)
178 return -EINVAL;
179 if (! (within_hugepage_low_range(addr, len)
180 || within_hugepage_high_range(addr, len)) )
181 return -EINVAL;
182 return 0;
183}
184
185static void flush_segments(void *parm)
186{
187 u16 segs = (unsigned long) parm;
188 unsigned long i;
189
190 asm volatile("isync" : : : "memory");
191
192 for (i = 0; i < 16; i++) {
193 if (! (segs & (1U << i)))
194 continue;
195 asm volatile("slbie %0" : : "r" (i << SID_SHIFT));
196 }
197
198 asm volatile("isync" : : : "memory");
199}
200
201static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg)
202{
203 unsigned long start = seg << SID_SHIFT;
204 unsigned long end = (seg+1) << SID_SHIFT;
205 struct vm_area_struct *vma;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206
207 BUG_ON(seg >= 16);
208
209 /* Check no VMAs are in the region */
210 vma = find_vma(mm, start);
211 if (vma && (vma->vm_start < end))
212 return -EBUSY;
213
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214 return 0;
215}
216
217static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs)
218{
219 unsigned long i;
220
221 newsegs &= ~(mm->context.htlb_segs);
222 if (! newsegs)
223 return 0; /* The segments we want are already open */
224
225 for (i = 0; i < 16; i++)
226 if ((1 << i) & newsegs)
227 if (prepare_low_seg_for_htlb(mm, i) != 0)
228 return -EBUSY;
229
230 mm->context.htlb_segs |= newsegs;
231
232 /* update the paca copy of the context struct */
233 get_paca()->context = mm->context;
234
235 /* the context change must make it to memory before the flush,
236 * so that further SLB misses do the right thing. */
237 mb();
238 on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1);
239
240 return 0;
241}
242
243int prepare_hugepage_range(unsigned long addr, unsigned long len)
244{
245 if (within_hugepage_high_range(addr, len))
246 return 0;
247 else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) {
248 int err;
249 /* Yes, we need both tests, in case addr+len overflows
250 * 64-bit arithmetic */
251 err = open_low_hpage_segs(current->mm,
252 LOW_ESID_MASK(addr, len));
253 if (err)
254 printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
255 " failed (segs: 0x%04hx)\n", addr, len,
256 LOW_ESID_MASK(addr, len));
257 return err;
258 }
259
260 return -EINVAL;
261}
262
263int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
264 struct vm_area_struct *vma)
265{
266 pte_t *src_pte, *dst_pte, entry;
267 struct page *ptepage;
268 unsigned long addr = vma->vm_start;
269 unsigned long end = vma->vm_end;
270 int err = -ENOMEM;
271
272 while (addr < end) {
273 dst_pte = huge_pte_alloc(dst, addr);
274 if (!dst_pte)
275 goto out;
276
277 src_pte = huge_pte_offset(src, addr);
278 entry = *src_pte;
279
280 ptepage = pte_page(entry);
281 get_page(ptepage);
282 add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
283 set_pte_at(dst, addr, dst_pte, entry);
284
285 addr += HPAGE_SIZE;
286 }
287
288 err = 0;
289 out:
290 return err;
291}
292
293int
294follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
295 struct page **pages, struct vm_area_struct **vmas,
296 unsigned long *position, int *length, int i)
297{
298 unsigned long vpfn, vaddr = *position;
299 int remainder = *length;
300
301 WARN_ON(!is_vm_hugetlb_page(vma));
302
303 vpfn = vaddr/PAGE_SIZE;
304 while (vaddr < vma->vm_end && remainder) {
305 if (pages) {
306 pte_t *pte;
307 struct page *page;
308
309 pte = huge_pte_offset(mm, vaddr);
310
311 /* hugetlb should be locked, and hence, prefaulted */
312 WARN_ON(!pte || pte_none(*pte));
313
314 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
315
316 WARN_ON(!PageCompound(page));
317
318 get_page(page);
319 pages[i] = page;
320 }
321
322 if (vmas)
323 vmas[i] = vma;
324
325 vaddr += PAGE_SIZE;
326 ++vpfn;
327 --remainder;
328 ++i;
329 }
330
331 *length = remainder;
332 *position = vaddr;
333
334 return i;
335}
336
337struct page *
338follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
339{
340 pte_t *ptep;
341 struct page *page;
342
343 if (! in_hugepage_area(mm->context, address))
344 return ERR_PTR(-EINVAL);
345
346 ptep = huge_pte_offset(mm, address);
347 page = pte_page(*ptep);
348 if (page)
349 page += (address % HPAGE_SIZE) / PAGE_SIZE;
350
351 return page;
352}
353
354int pmd_huge(pmd_t pmd)
355{
356 return 0;
357}
358
359struct page *
360follow_huge_pmd(struct mm_struct *mm, unsigned long address,
361 pmd_t *pmd, int write)
362{
363 BUG();
364 return NULL;
365}
366
367void unmap_hugepage_range(struct vm_area_struct *vma,
368 unsigned long start, unsigned long end)
369{
370 struct mm_struct *mm = vma->vm_mm;
371 unsigned long addr;
372 pte_t *ptep;
373 struct page *page;
374
375 WARN_ON(!is_vm_hugetlb_page(vma));
376 BUG_ON((start % HPAGE_SIZE) != 0);
377 BUG_ON((end % HPAGE_SIZE) != 0);
378
379 for (addr = start; addr < end; addr += HPAGE_SIZE) {
380 pte_t pte;
381
382 ptep = huge_pte_offset(mm, addr);
383 if (!ptep || pte_none(*ptep))
384 continue;
385
386 pte = *ptep;
387 page = pte_page(pte);
388 pte_clear(mm, addr, ptep);
389
390 put_page(page);
391 }
392 add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
393 flush_tlb_pending();
394}
395
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
397{
398 struct mm_struct *mm = current->mm;
399 unsigned long addr;
400 int ret = 0;
401
402 WARN_ON(!is_vm_hugetlb_page(vma));
403 BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
404 BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);
405
406 spin_lock(&mm->page_table_lock);
407 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
408 unsigned long idx;
409 pte_t *pte = huge_pte_alloc(mm, addr);
410 struct page *page;
411
412 if (!pte) {
413 ret = -ENOMEM;
414 goto out;
415 }
416 if (! pte_none(*pte))
417 continue;
418
419 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
420 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
421 page = find_get_page(mapping, idx);
422 if (!page) {
423 /* charge the fs quota first */
424 if (hugetlb_get_quota(mapping)) {
425 ret = -ENOMEM;
426 goto out;
427 }
428 page = alloc_huge_page();
429 if (!page) {
430 hugetlb_put_quota(mapping);
431 ret = -ENOMEM;
432 goto out;
433 }
434 ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
435 if (! ret) {
436 unlock_page(page);
437 } else {
438 hugetlb_put_quota(mapping);
439 free_huge_page(page);
440 goto out;
441 }
442 }
443 set_huge_pte(mm, vma, addr, page, pte, vma->vm_flags & VM_WRITE);
444 }
445out:
446 spin_unlock(&mm->page_table_lock);
447 return ret;
448}
449
450/* Because we have an exclusive hugepage region which lies within the
451 * normal user address space, we have to take special measures to make
452 * non-huge mmap()s evade the hugepage reserved regions. */
453unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
454 unsigned long len, unsigned long pgoff,
455 unsigned long flags)
456{
457 struct mm_struct *mm = current->mm;
458 struct vm_area_struct *vma;
459 unsigned long start_addr;
460
461 if (len > TASK_SIZE)
462 return -ENOMEM;
463
464 if (addr) {
465 addr = PAGE_ALIGN(addr);
466 vma = find_vma(mm, addr);
467 if (((TASK_SIZE - len) >= addr)
468 && (!vma || (addr+len) <= vma->vm_start)
469 && !is_hugepage_only_range(mm, addr,len))
470 return addr;
471 }
472 start_addr = addr = mm->free_area_cache;
473
474full_search:
475 vma = find_vma(mm, addr);
476 while (TASK_SIZE - len >= addr) {
477 BUG_ON(vma && (addr >= vma->vm_end));
478
479 if (touches_hugepage_low_range(mm, addr, len)) {
480 addr = ALIGN(addr+1, 1<<SID_SHIFT);
481 vma = find_vma(mm, addr);
482 continue;
483 }
484 if (touches_hugepage_high_range(addr, len)) {
485 addr = TASK_HPAGE_END;
486 vma = find_vma(mm, addr);
487 continue;
488 }
489 if (!vma || addr + len <= vma->vm_start) {
490 /*
491 * Remember the place where we stopped the search:
492 */
493 mm->free_area_cache = addr + len;
494 return addr;
495 }
496 addr = vma->vm_end;
497 vma = vma->vm_next;
498 }
499
500 /* Make sure we didn't miss any holes */
501 if (start_addr != TASK_UNMAPPED_BASE) {
502 start_addr = addr = TASK_UNMAPPED_BASE;
503 goto full_search;
504 }
505 return -ENOMEM;
506}
507
508/*
509 * This mmap-allocator allocates new areas top-down from below the
510 * stack's low limit (the base):
511 *
512 * Because we have an exclusive hugepage region which lies within the
513 * normal user address space, we have to take special measures to make
514 * non-huge mmap()s evade the hugepage reserved regions.
515 */
516unsigned long
517arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
518 const unsigned long len, const unsigned long pgoff,
519 const unsigned long flags)
520{
521 struct vm_area_struct *vma, *prev_vma;
522 struct mm_struct *mm = current->mm;
523 unsigned long base = mm->mmap_base, addr = addr0;
524 int first_time = 1;
525
526 /* requested length too big for entire address space */
527 if (len > TASK_SIZE)
528 return -ENOMEM;
529
530 /* dont allow allocations above current base */
531 if (mm->free_area_cache > base)
532 mm->free_area_cache = base;
533
534 /* requesting a specific address */
535 if (addr) {
536 addr = PAGE_ALIGN(addr);
537 vma = find_vma(mm, addr);
538 if (TASK_SIZE - len >= addr &&
539 (!vma || addr + len <= vma->vm_start)
540 && !is_hugepage_only_range(mm, addr,len))
541 return addr;
542 }
543
544try_again:
545 /* make sure it can fit in the remaining address space */
546 if (mm->free_area_cache < len)
547 goto fail;
548
549 /* either no address requested or cant fit in requested address hole */
550 addr = (mm->free_area_cache - len) & PAGE_MASK;
551 do {
552hugepage_recheck:
553 if (touches_hugepage_low_range(mm, addr, len)) {
554 addr = (addr & ((~0) << SID_SHIFT)) - len;
555 goto hugepage_recheck;
556 } else if (touches_hugepage_high_range(addr, len)) {
557 addr = TASK_HPAGE_BASE - len;
558 }
559
560 /*
561 * Lookup failure means no vma is above this address,
562 * i.e. return with success:
563 */
564 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
565 return addr;
566
567 /*
568 * new region fits between prev_vma->vm_end and
569 * vma->vm_start, use it:
570 */
571 if (addr+len <= vma->vm_start &&
572 (!prev_vma || (addr >= prev_vma->vm_end)))
573 /* remember the address as a hint for next time */
574 return (mm->free_area_cache = addr);
575 else
576 /* pull free_area_cache down to the first hole */
577 if (mm->free_area_cache == vma->vm_end)
578 mm->free_area_cache = vma->vm_start;
579
580 /* try just below the current vma->vm_start */
581 addr = vma->vm_start-len;
582 } while (len <= vma->vm_start);
583
584fail:
585 /*
586 * if hint left us with no space for the requested
587 * mapping then try again:
588 */
589 if (first_time) {
590 mm->free_area_cache = base;
591 first_time = 0;
592 goto try_again;
593 }
594 /*
595 * A failed mmap() very likely causes application failure,
596 * so fall back to the bottom-up function here. This scenario
597 * can happen with large stack limits and large mmap()
598 * allocations.
599 */
600 mm->free_area_cache = TASK_UNMAPPED_BASE;
601 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
602 /*
603 * Restore the topdown base:
604 */
605 mm->free_area_cache = base;
606
607 return addr;
608}
609
610static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
611{
612 unsigned long addr = 0;
613 struct vm_area_struct *vma;
614
615 vma = find_vma(current->mm, addr);
616 while (addr + len <= 0x100000000UL) {
617 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
618
619 if (! __within_hugepage_low_range(addr, len, segmask)) {
620 addr = ALIGN(addr+1, 1<<SID_SHIFT);
621 vma = find_vma(current->mm, addr);
622 continue;
623 }
624
625 if (!vma || (addr + len) <= vma->vm_start)
626 return addr;
627 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
628 /* Depending on segmask this might not be a confirmed
629 * hugepage region, so the ALIGN could have skipped
630 * some VMAs */
631 vma = find_vma(current->mm, addr);
632 }
633
634 return -ENOMEM;
635}
636
637static unsigned long htlb_get_high_area(unsigned long len)
638{
639 unsigned long addr = TASK_HPAGE_BASE;
640 struct vm_area_struct *vma;
641
642 vma = find_vma(current->mm, addr);
643 for (vma = find_vma(current->mm, addr);
644 addr + len <= TASK_HPAGE_END;
645 vma = vma->vm_next) {
646 BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
647 BUG_ON(! within_hugepage_high_range(addr, len));
648
649 if (!vma || (addr + len) <= vma->vm_start)
650 return addr;
651 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
652 /* Because we're in a hugepage region, this alignment
653 * should not skip us over any VMAs */
654 }
655
656 return -ENOMEM;
657}
658
659unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
660 unsigned long len, unsigned long pgoff,
661 unsigned long flags)
662{
663 if (len & ~HPAGE_MASK)
664 return -EINVAL;
665
666 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
667 return -EINVAL;
668
669 if (test_thread_flag(TIF_32BIT)) {
670 int lastshift = 0;
671 u16 segmask, cursegs = current->mm->context.htlb_segs;
672
673 /* First see if we can do the mapping in the existing
674 * low hpage segments */
675 addr = htlb_get_low_area(len, cursegs);
676 if (addr != -ENOMEM)
677 return addr;
678
679 for (segmask = LOW_ESID_MASK(0x100000000UL-len, len);
680 ! lastshift; segmask >>=1) {
681 if (segmask & 1)
682 lastshift = 1;
683
684 addr = htlb_get_low_area(len, cursegs | segmask);
685 if ((addr != -ENOMEM)
686 && open_low_hpage_segs(current->mm, segmask) == 0)
687 return addr;
688 }
689 printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
690 " enough segments\n");
691 return -ENOMEM;
692 } else {
693 return htlb_get_high_area(len);
694 }
695}
696
697void hugetlb_mm_free_pgd(struct mm_struct *mm)
698{
699 int i;
700 pgd_t *pgdir;
701
702 spin_lock(&mm->page_table_lock);
703
704 pgdir = mm->context.huge_pgdir;
705 if (! pgdir)
706 goto out;
707
708 mm->context.huge_pgdir = NULL;
709
710 /* cleanup any hugepte pages leftover */
711 for (i = 0; i < PTRS_PER_HUGEPGD; i++) {
712 pgd_t *pgd = pgdir + i;
713
714 if (! pgd_none(*pgd)) {
715 pte_t *pte = (pte_t *)pgd_page(*pgd);
716 struct page *ptepage = virt_to_page(pte);
717
718 ptepage->mapping = NULL;
719
720 BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE));
721 kmem_cache_free(zero_cache, pte);
722 }
723 pgd_clear(pgd);
724 }
725
726 BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE));
727 kmem_cache_free(zero_cache, pgdir);
728
729 out:
730 spin_unlock(&mm->page_table_lock);
731}
732
733int hash_huge_page(struct mm_struct *mm, unsigned long access,
734 unsigned long ea, unsigned long vsid, int local)
735{
736 pte_t *ptep;
737 unsigned long va, vpn;
738 pte_t old_pte, new_pte;
739 unsigned long hpteflags, prpn;
740 long slot;
741 int err = 1;
742
743 spin_lock(&mm->page_table_lock);
744
745 ptep = huge_pte_offset(mm, ea);
746
747 /* Search the Linux page table for a match with va */
748 va = (vsid << 28) | (ea & 0x0fffffff);
749 vpn = va >> HPAGE_SHIFT;
750
751 /*
752 * If no pte found or not present, send the problem up to
753 * do_page_fault
754 */
755 if (unlikely(!ptep || pte_none(*ptep)))
756 goto out;
757
758/* BUG_ON(pte_bad(*ptep)); */
759
760 /*
761 * Check the user's access rights to the page. If access should be
762 * prevented then send the problem up to do_page_fault.
763 */
764 if (unlikely(access & ~pte_val(*ptep)))
765 goto out;
766 /*
767 * At this point, we have a pte (old_pte) which can be used to build
768 * or update an HPTE. There are 2 cases:
769 *
770 * 1. There is a valid (present) pte with no associated HPTE (this is
771 * the most common case)
772 * 2. There is a valid (present) pte with an associated HPTE. The
773 * current values of the pp bits in the HPTE prevent access
774 * because we are doing software DIRTY bit management and the
775 * page is currently not DIRTY.
776 */
777
778
779 old_pte = *ptep;
780 new_pte = old_pte;
781
782 hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW));
783 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
784 hpteflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC);
785
786 /* Check if pte already has an hpte (case 2) */
787 if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) {
788 /* There MIGHT be an HPTE for this pte */
789 unsigned long hash, slot;
790
791 hash = hpt_hash(vpn, 1);
792 if (pte_val(old_pte) & _PAGE_SECONDARY)
793 hash = ~hash;
794 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
795 slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12;
796
797 if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
798 pte_val(old_pte) &= ~_PAGE_HPTEFLAGS;
799 }
800
801 if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) {
802 unsigned long hash = hpt_hash(vpn, 1);
803 unsigned long hpte_group;
804
805 prpn = pte_pfn(old_pte);
806
807repeat:
808 hpte_group = ((hash & htab_hash_mask) *
809 HPTES_PER_GROUP) & ~0x7UL;
810
811 /* Update the linux pte with the HPTE slot */
812 pte_val(new_pte) &= ~_PAGE_HPTEFLAGS;
813 pte_val(new_pte) |= _PAGE_HASHPTE;
814
815 /* Add in WIMG bits */
816 /* XXX We should store these in the pte */
817 hpteflags |= _PAGE_COHERENT;
818
819 slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
820 hpteflags, 0, 1);
821
822 /* Primary is full, try the secondary */
823 if (unlikely(slot == -1)) {
824 pte_val(new_pte) |= _PAGE_SECONDARY;
825 hpte_group = ((~hash & htab_hash_mask) *
826 HPTES_PER_GROUP) & ~0x7UL;
827 slot = ppc_md.hpte_insert(hpte_group, va, prpn,
828 1, hpteflags, 0, 1);
829 if (slot == -1) {
830 if (mftb() & 0x1)
831 hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
832
833 ppc_md.hpte_remove(hpte_group);
834 goto repeat;
835 }
836 }
837
838 if (unlikely(slot == -2))
839 panic("hash_huge_page: pte_insert failed\n");
840
841 pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX;
842
843 /*
844 * No need to use ldarx/stdcx here because all who
845 * might be updating the pte will hold the
846 * page_table_lock
847 */
848 *ptep = new_pte;
849 }
850
851 err = 0;
852
853 out:
854 spin_unlock(&mm->page_table_lock);
855
856 return err;
857}