Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Extensible Firmware Interface |
| 3 | * |
| 4 | * Based on Extensible Firmware Interface Specification version 1.0 |
| 5 | * |
| 6 | * Copyright (C) 1999 VA Linux Systems |
| 7 | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| 8 | * Copyright (C) 1999-2002 Hewlett-Packard Co. |
| 9 | * David Mosberger-Tang <davidm@hpl.hp.com> |
| 10 | * Stephane Eranian <eranian@hpl.hp.com> |
| 11 | * |
| 12 | * All EFI Runtime Services are not implemented yet as EFI only |
| 13 | * supports physical mode addressing on SoftSDV. This is to be fixed |
| 14 | * in a future version. --drummond 1999-07-20 |
| 15 | * |
| 16 | * Implemented EFI runtime services and virtual mode calls. --davidm |
| 17 | * |
| 18 | * Goutham Rao: <goutham.rao@intel.com> |
| 19 | * Skip non-WB memory and ignore empty memory ranges. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/config.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/types.h> |
| 27 | #include <linux/time.h> |
| 28 | #include <linux/spinlock.h> |
| 29 | #include <linux/bootmem.h> |
| 30 | #include <linux/ioport.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/efi.h> |
| 33 | |
| 34 | #include <asm/setup.h> |
| 35 | #include <asm/io.h> |
| 36 | #include <asm/page.h> |
| 37 | #include <asm/pgtable.h> |
| 38 | #include <asm/processor.h> |
| 39 | #include <asm/desc.h> |
| 40 | #include <asm/tlbflush.h> |
| 41 | |
| 42 | #define EFI_DEBUG 0 |
| 43 | #define PFX "EFI: " |
| 44 | |
| 45 | extern efi_status_t asmlinkage efi_call_phys(void *, ...); |
| 46 | |
| 47 | struct efi efi; |
| 48 | EXPORT_SYMBOL(efi); |
maximilian attems | c41f5eb | 2005-04-16 15:25:53 -0700 | [diff] [blame] | 49 | static struct efi efi_phys; |
| 50 | struct efi_memory_map memmap; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 51 | |
| 52 | /* |
| 53 | * We require an early boot_ioremap mapping mechanism initially |
| 54 | */ |
| 55 | extern void * boot_ioremap(unsigned long, unsigned long); |
| 56 | |
| 57 | /* |
| 58 | * To make EFI call EFI runtime service in physical addressing mode we need |
| 59 | * prelog/epilog before/after the invocation to disable interrupt, to |
| 60 | * claim EFI runtime service handler exclusively and to duplicate a memory in |
| 61 | * low memory space say 0 - 3G. |
| 62 | */ |
| 63 | |
| 64 | static unsigned long efi_rt_eflags; |
| 65 | static DEFINE_SPINLOCK(efi_rt_lock); |
| 66 | static pgd_t efi_bak_pg_dir_pointer[2]; |
| 67 | |
| 68 | static void efi_call_phys_prelog(void) |
| 69 | { |
| 70 | unsigned long cr4; |
| 71 | unsigned long temp; |
| 72 | |
| 73 | spin_lock(&efi_rt_lock); |
| 74 | local_irq_save(efi_rt_eflags); |
| 75 | |
| 76 | /* |
| 77 | * If I don't have PSE, I should just duplicate two entries in page |
| 78 | * directory. If I have PSE, I just need to duplicate one entry in |
| 79 | * page directory. |
| 80 | */ |
| 81 | __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4)); |
| 82 | |
| 83 | if (cr4 & X86_CR4_PSE) { |
| 84 | efi_bak_pg_dir_pointer[0].pgd = |
| 85 | swapper_pg_dir[pgd_index(0)].pgd; |
| 86 | swapper_pg_dir[0].pgd = |
| 87 | swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; |
| 88 | } else { |
| 89 | efi_bak_pg_dir_pointer[0].pgd = |
| 90 | swapper_pg_dir[pgd_index(0)].pgd; |
| 91 | efi_bak_pg_dir_pointer[1].pgd = |
| 92 | swapper_pg_dir[pgd_index(0x400000)].pgd; |
| 93 | swapper_pg_dir[pgd_index(0)].pgd = |
| 94 | swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd; |
| 95 | temp = PAGE_OFFSET + 0x400000; |
| 96 | swapper_pg_dir[pgd_index(0x400000)].pgd = |
| 97 | swapper_pg_dir[pgd_index(temp)].pgd; |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * After the lock is released, the original page table is restored. |
| 102 | */ |
| 103 | local_flush_tlb(); |
| 104 | |
| 105 | cpu_gdt_descr[0].address = __pa(cpu_gdt_descr[0].address); |
| 106 | __asm__ __volatile__("lgdt %0":"=m" |
| 107 | (*(struct Xgt_desc_struct *) __pa(&cpu_gdt_descr[0]))); |
| 108 | } |
| 109 | |
| 110 | static void efi_call_phys_epilog(void) |
| 111 | { |
| 112 | unsigned long cr4; |
| 113 | |
| 114 | cpu_gdt_descr[0].address = |
| 115 | (unsigned long) __va(cpu_gdt_descr[0].address); |
| 116 | __asm__ __volatile__("lgdt %0":"=m"(cpu_gdt_descr)); |
| 117 | __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4)); |
| 118 | |
| 119 | if (cr4 & X86_CR4_PSE) { |
| 120 | swapper_pg_dir[pgd_index(0)].pgd = |
| 121 | efi_bak_pg_dir_pointer[0].pgd; |
| 122 | } else { |
| 123 | swapper_pg_dir[pgd_index(0)].pgd = |
| 124 | efi_bak_pg_dir_pointer[0].pgd; |
| 125 | swapper_pg_dir[pgd_index(0x400000)].pgd = |
| 126 | efi_bak_pg_dir_pointer[1].pgd; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * After the lock is released, the original page table is restored. |
| 131 | */ |
| 132 | local_flush_tlb(); |
| 133 | |
| 134 | local_irq_restore(efi_rt_eflags); |
| 135 | spin_unlock(&efi_rt_lock); |
| 136 | } |
| 137 | |
| 138 | static efi_status_t |
| 139 | phys_efi_set_virtual_address_map(unsigned long memory_map_size, |
| 140 | unsigned long descriptor_size, |
| 141 | u32 descriptor_version, |
| 142 | efi_memory_desc_t *virtual_map) |
| 143 | { |
| 144 | efi_status_t status; |
| 145 | |
| 146 | efi_call_phys_prelog(); |
| 147 | status = efi_call_phys(efi_phys.set_virtual_address_map, |
| 148 | memory_map_size, descriptor_size, |
| 149 | descriptor_version, virtual_map); |
| 150 | efi_call_phys_epilog(); |
| 151 | return status; |
| 152 | } |
| 153 | |
| 154 | static efi_status_t |
| 155 | phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) |
| 156 | { |
| 157 | efi_status_t status; |
| 158 | |
| 159 | efi_call_phys_prelog(); |
| 160 | status = efi_call_phys(efi_phys.get_time, tm, tc); |
| 161 | efi_call_phys_epilog(); |
| 162 | return status; |
| 163 | } |
| 164 | |
| 165 | inline int efi_set_rtc_mmss(unsigned long nowtime) |
| 166 | { |
| 167 | int real_seconds, real_minutes; |
| 168 | efi_status_t status; |
| 169 | efi_time_t eft; |
| 170 | efi_time_cap_t cap; |
| 171 | |
| 172 | spin_lock(&efi_rt_lock); |
| 173 | status = efi.get_time(&eft, &cap); |
| 174 | spin_unlock(&efi_rt_lock); |
| 175 | if (status != EFI_SUCCESS) |
| 176 | panic("Ooops, efitime: can't read time!\n"); |
| 177 | real_seconds = nowtime % 60; |
| 178 | real_minutes = nowtime / 60; |
| 179 | |
| 180 | if (((abs(real_minutes - eft.minute) + 15)/30) & 1) |
| 181 | real_minutes += 30; |
| 182 | real_minutes %= 60; |
| 183 | |
| 184 | eft.minute = real_minutes; |
| 185 | eft.second = real_seconds; |
| 186 | |
| 187 | if (status != EFI_SUCCESS) { |
| 188 | printk("Ooops: efitime: can't read time!\n"); |
| 189 | return -1; |
| 190 | } |
| 191 | return 0; |
| 192 | } |
| 193 | /* |
| 194 | * This should only be used during kernel init and before runtime |
| 195 | * services have been remapped, therefore, we'll need to call in physical |
| 196 | * mode. Note, this call isn't used later, so mark it __init. |
| 197 | */ |
| 198 | inline unsigned long __init efi_get_time(void) |
| 199 | { |
| 200 | efi_status_t status; |
| 201 | efi_time_t eft; |
| 202 | efi_time_cap_t cap; |
| 203 | |
| 204 | status = phys_efi_get_time(&eft, &cap); |
| 205 | if (status != EFI_SUCCESS) |
| 206 | printk("Oops: efitime: can't read time status: 0x%lx\n",status); |
| 207 | |
| 208 | return mktime(eft.year, eft.month, eft.day, eft.hour, |
| 209 | eft.minute, eft.second); |
| 210 | } |
| 211 | |
| 212 | int is_available_memory(efi_memory_desc_t * md) |
| 213 | { |
| 214 | if (!(md->attribute & EFI_MEMORY_WB)) |
| 215 | return 0; |
| 216 | |
| 217 | switch (md->type) { |
| 218 | case EFI_LOADER_CODE: |
| 219 | case EFI_LOADER_DATA: |
| 220 | case EFI_BOOT_SERVICES_CODE: |
| 221 | case EFI_BOOT_SERVICES_DATA: |
| 222 | case EFI_CONVENTIONAL_MEMORY: |
| 223 | return 1; |
| 224 | } |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * We need to map the EFI memory map again after paging_init(). |
| 230 | */ |
| 231 | void __init efi_map_memmap(void) |
| 232 | { |
| 233 | memmap.map = NULL; |
| 234 | |
| 235 | memmap.map = (efi_memory_desc_t *) |
| 236 | bt_ioremap((unsigned long) memmap.phys_map, |
| 237 | (memmap.nr_map * sizeof(efi_memory_desc_t))); |
| 238 | |
| 239 | if (memmap.map == NULL) |
| 240 | printk(KERN_ERR PFX "Could not remap the EFI memmap!\n"); |
| 241 | } |
| 242 | |
| 243 | #if EFI_DEBUG |
| 244 | static void __init print_efi_memmap(void) |
| 245 | { |
| 246 | efi_memory_desc_t *md; |
| 247 | int i; |
| 248 | |
| 249 | for (i = 0; i < memmap.nr_map; i++) { |
| 250 | md = &memmap.map[i]; |
| 251 | printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, " |
| 252 | "range=[0x%016llx-0x%016llx) (%lluMB)\n", |
| 253 | i, md->type, md->attribute, md->phys_addr, |
| 254 | md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), |
| 255 | (md->num_pages >> (20 - EFI_PAGE_SHIFT))); |
| 256 | } |
| 257 | } |
| 258 | #endif /* EFI_DEBUG */ |
| 259 | |
| 260 | /* |
| 261 | * Walks the EFI memory map and calls CALLBACK once for each EFI |
| 262 | * memory descriptor that has memory that is available for kernel use. |
| 263 | */ |
| 264 | void efi_memmap_walk(efi_freemem_callback_t callback, void *arg) |
| 265 | { |
| 266 | int prev_valid = 0; |
| 267 | struct range { |
| 268 | unsigned long start; |
| 269 | unsigned long end; |
| 270 | } prev, curr; |
| 271 | efi_memory_desc_t *md; |
| 272 | unsigned long start, end; |
| 273 | int i; |
| 274 | |
| 275 | for (i = 0; i < memmap.nr_map; i++) { |
| 276 | md = &memmap.map[i]; |
| 277 | |
| 278 | if ((md->num_pages == 0) || (!is_available_memory(md))) |
| 279 | continue; |
| 280 | |
| 281 | curr.start = md->phys_addr; |
| 282 | curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); |
| 283 | |
| 284 | if (!prev_valid) { |
| 285 | prev = curr; |
| 286 | prev_valid = 1; |
| 287 | } else { |
| 288 | if (curr.start < prev.start) |
| 289 | printk(KERN_INFO PFX "Unordered memory map\n"); |
| 290 | if (prev.end == curr.start) |
| 291 | prev.end = curr.end; |
| 292 | else { |
| 293 | start = |
| 294 | (unsigned long) (PAGE_ALIGN(prev.start)); |
| 295 | end = (unsigned long) (prev.end & PAGE_MASK); |
| 296 | if ((end > start) |
| 297 | && (*callback) (start, end, arg) < 0) |
| 298 | return; |
| 299 | prev = curr; |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | if (prev_valid) { |
| 304 | start = (unsigned long) PAGE_ALIGN(prev.start); |
| 305 | end = (unsigned long) (prev.end & PAGE_MASK); |
| 306 | if (end > start) |
| 307 | (*callback) (start, end, arg); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | void __init efi_init(void) |
| 312 | { |
| 313 | efi_config_table_t *config_tables; |
| 314 | efi_runtime_services_t *runtime; |
| 315 | efi_char16_t *c16; |
| 316 | char vendor[100] = "unknown"; |
| 317 | unsigned long num_config_tables; |
| 318 | int i = 0; |
| 319 | |
| 320 | memset(&efi, 0, sizeof(efi) ); |
| 321 | memset(&efi_phys, 0, sizeof(efi_phys)); |
| 322 | |
| 323 | efi_phys.systab = EFI_SYSTAB; |
| 324 | memmap.phys_map = EFI_MEMMAP; |
| 325 | memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE; |
| 326 | memmap.desc_version = EFI_MEMDESC_VERSION; |
| 327 | |
| 328 | efi.systab = (efi_system_table_t *) |
| 329 | boot_ioremap((unsigned long) efi_phys.systab, |
| 330 | sizeof(efi_system_table_t)); |
| 331 | /* |
| 332 | * Verify the EFI Table |
| 333 | */ |
| 334 | if (efi.systab == NULL) |
| 335 | printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n"); |
| 336 | if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) |
| 337 | printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n"); |
| 338 | if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) |
| 339 | printk(KERN_ERR PFX |
| 340 | "Warning: EFI system table major version mismatch: " |
| 341 | "got %d.%02d, expected %d.%02d\n", |
| 342 | efi.systab->hdr.revision >> 16, |
| 343 | efi.systab->hdr.revision & 0xffff, |
| 344 | EFI_SYSTEM_TABLE_REVISION >> 16, |
| 345 | EFI_SYSTEM_TABLE_REVISION & 0xffff); |
| 346 | /* |
| 347 | * Grab some details from the system table |
| 348 | */ |
| 349 | num_config_tables = efi.systab->nr_tables; |
| 350 | config_tables = (efi_config_table_t *)efi.systab->tables; |
| 351 | runtime = efi.systab->runtime; |
| 352 | |
| 353 | /* |
| 354 | * Show what we know for posterity |
| 355 | */ |
| 356 | c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2); |
| 357 | if (c16) { |
| 358 | for (i = 0; i < sizeof(vendor) && *c16; ++i) |
| 359 | vendor[i] = *c16++; |
| 360 | vendor[i] = '\0'; |
| 361 | } else |
| 362 | printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); |
| 363 | |
| 364 | printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n", |
| 365 | efi.systab->hdr.revision >> 16, |
| 366 | efi.systab->hdr.revision & 0xffff, vendor); |
| 367 | |
| 368 | /* |
| 369 | * Let's see what config tables the firmware passed to us. |
| 370 | */ |
| 371 | config_tables = (efi_config_table_t *) |
| 372 | boot_ioremap((unsigned long) config_tables, |
| 373 | num_config_tables * sizeof(efi_config_table_t)); |
| 374 | |
| 375 | if (config_tables == NULL) |
| 376 | printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n"); |
| 377 | |
| 378 | for (i = 0; i < num_config_tables; i++) { |
| 379 | if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { |
| 380 | efi.mps = (void *)config_tables[i].table; |
| 381 | printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table); |
| 382 | } else |
| 383 | if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { |
| 384 | efi.acpi20 = __va(config_tables[i].table); |
| 385 | printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table); |
| 386 | } else |
| 387 | if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { |
| 388 | efi.acpi = __va(config_tables[i].table); |
| 389 | printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table); |
| 390 | } else |
| 391 | if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { |
| 392 | efi.smbios = (void *) config_tables[i].table; |
| 393 | printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table); |
| 394 | } else |
| 395 | if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { |
| 396 | efi.hcdp = (void *)config_tables[i].table; |
| 397 | printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table); |
| 398 | } else |
| 399 | if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) { |
| 400 | efi.uga = (void *)config_tables[i].table; |
| 401 | printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table); |
| 402 | } |
| 403 | } |
| 404 | printk("\n"); |
| 405 | |
| 406 | /* |
| 407 | * Check out the runtime services table. We need to map |
| 408 | * the runtime services table so that we can grab the physical |
| 409 | * address of several of the EFI runtime functions, needed to |
| 410 | * set the firmware into virtual mode. |
| 411 | */ |
| 412 | |
| 413 | runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long) |
| 414 | runtime, |
| 415 | sizeof(efi_runtime_services_t)); |
| 416 | if (runtime != NULL) { |
| 417 | /* |
| 418 | * We will only need *early* access to the following |
| 419 | * two EFI runtime services before set_virtual_address_map |
| 420 | * is invoked. |
| 421 | */ |
| 422 | efi_phys.get_time = (efi_get_time_t *) runtime->get_time; |
| 423 | efi_phys.set_virtual_address_map = |
| 424 | (efi_set_virtual_address_map_t *) |
| 425 | runtime->set_virtual_address_map; |
| 426 | } else |
| 427 | printk(KERN_ERR PFX "Could not map the runtime service table!\n"); |
| 428 | |
| 429 | /* Map the EFI memory map for use until paging_init() */ |
| 430 | |
| 431 | memmap.map = (efi_memory_desc_t *) |
| 432 | boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE); |
| 433 | |
| 434 | if (memmap.map == NULL) |
| 435 | printk(KERN_ERR PFX "Could not map the EFI memory map!\n"); |
| 436 | |
| 437 | if (EFI_MEMDESC_SIZE != sizeof(efi_memory_desc_t)) { |
| 438 | printk(KERN_WARNING PFX "Warning! Kernel-defined memdesc doesn't " |
| 439 | "match the one from EFI!\n"); |
| 440 | } |
| 441 | #if EFI_DEBUG |
| 442 | print_efi_memmap(); |
| 443 | #endif |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * This function will switch the EFI runtime services to virtual mode. |
| 448 | * Essentially, look through the EFI memmap and map every region that |
| 449 | * has the runtime attribute bit set in its memory descriptor and update |
| 450 | * that memory descriptor with the virtual address obtained from ioremap(). |
| 451 | * This enables the runtime services to be called without having to |
| 452 | * thunk back into physical mode for every invocation. |
| 453 | */ |
| 454 | |
| 455 | void __init efi_enter_virtual_mode(void) |
| 456 | { |
| 457 | efi_memory_desc_t *md; |
| 458 | efi_status_t status; |
| 459 | int i; |
| 460 | |
| 461 | efi.systab = NULL; |
| 462 | |
| 463 | for (i = 0; i < memmap.nr_map; i++) { |
| 464 | md = &memmap.map[i]; |
| 465 | |
| 466 | if (md->attribute & EFI_MEMORY_RUNTIME) { |
| 467 | md->virt_addr = |
| 468 | (unsigned long)ioremap(md->phys_addr, |
| 469 | md->num_pages << EFI_PAGE_SHIFT); |
| 470 | if (!(unsigned long)md->virt_addr) { |
| 471 | printk(KERN_ERR PFX "ioremap of 0x%lX failed\n", |
| 472 | (unsigned long)md->phys_addr); |
| 473 | } |
| 474 | |
| 475 | if (((unsigned long)md->phys_addr <= |
| 476 | (unsigned long)efi_phys.systab) && |
| 477 | ((unsigned long)efi_phys.systab < |
| 478 | md->phys_addr + |
| 479 | ((unsigned long)md->num_pages << |
| 480 | EFI_PAGE_SHIFT))) { |
| 481 | unsigned long addr; |
| 482 | |
| 483 | addr = md->virt_addr - md->phys_addr + |
| 484 | (unsigned long)efi_phys.systab; |
| 485 | efi.systab = (efi_system_table_t *)addr; |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | if (!efi.systab) |
| 491 | BUG(); |
| 492 | |
| 493 | status = phys_efi_set_virtual_address_map( |
| 494 | sizeof(efi_memory_desc_t) * memmap.nr_map, |
| 495 | sizeof(efi_memory_desc_t), |
| 496 | memmap.desc_version, |
| 497 | memmap.phys_map); |
| 498 | |
| 499 | if (status != EFI_SUCCESS) { |
| 500 | printk (KERN_ALERT "You are screwed! " |
| 501 | "Unable to switch EFI into virtual mode " |
| 502 | "(status=%lx)\n", status); |
| 503 | panic("EFI call to SetVirtualAddressMap() failed!"); |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * Now that EFI is in virtual mode, update the function |
| 508 | * pointers in the runtime service table to the new virtual addresses. |
| 509 | */ |
| 510 | |
| 511 | efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time; |
| 512 | efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time; |
| 513 | efi.get_wakeup_time = (efi_get_wakeup_time_t *) |
| 514 | efi.systab->runtime->get_wakeup_time; |
| 515 | efi.set_wakeup_time = (efi_set_wakeup_time_t *) |
| 516 | efi.systab->runtime->set_wakeup_time; |
| 517 | efi.get_variable = (efi_get_variable_t *) |
| 518 | efi.systab->runtime->get_variable; |
| 519 | efi.get_next_variable = (efi_get_next_variable_t *) |
| 520 | efi.systab->runtime->get_next_variable; |
| 521 | efi.set_variable = (efi_set_variable_t *) |
| 522 | efi.systab->runtime->set_variable; |
| 523 | efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *) |
| 524 | efi.systab->runtime->get_next_high_mono_count; |
| 525 | efi.reset_system = (efi_reset_system_t *) |
| 526 | efi.systab->runtime->reset_system; |
| 527 | } |
| 528 | |
| 529 | void __init |
| 530 | efi_initialize_iomem_resources(struct resource *code_resource, |
| 531 | struct resource *data_resource) |
| 532 | { |
| 533 | struct resource *res; |
| 534 | efi_memory_desc_t *md; |
| 535 | int i; |
| 536 | |
| 537 | for (i = 0; i < memmap.nr_map; i++) { |
| 538 | md = &memmap.map[i]; |
| 539 | |
| 540 | if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) > |
| 541 | 0x100000000ULL) |
| 542 | continue; |
| 543 | res = alloc_bootmem_low(sizeof(struct resource)); |
| 544 | switch (md->type) { |
| 545 | case EFI_RESERVED_TYPE: |
| 546 | res->name = "Reserved Memory"; |
| 547 | break; |
| 548 | case EFI_LOADER_CODE: |
| 549 | res->name = "Loader Code"; |
| 550 | break; |
| 551 | case EFI_LOADER_DATA: |
| 552 | res->name = "Loader Data"; |
| 553 | break; |
| 554 | case EFI_BOOT_SERVICES_DATA: |
| 555 | res->name = "BootServices Data"; |
| 556 | break; |
| 557 | case EFI_BOOT_SERVICES_CODE: |
| 558 | res->name = "BootServices Code"; |
| 559 | break; |
| 560 | case EFI_RUNTIME_SERVICES_CODE: |
| 561 | res->name = "Runtime Service Code"; |
| 562 | break; |
| 563 | case EFI_RUNTIME_SERVICES_DATA: |
| 564 | res->name = "Runtime Service Data"; |
| 565 | break; |
| 566 | case EFI_CONVENTIONAL_MEMORY: |
| 567 | res->name = "Conventional Memory"; |
| 568 | break; |
| 569 | case EFI_UNUSABLE_MEMORY: |
| 570 | res->name = "Unusable Memory"; |
| 571 | break; |
| 572 | case EFI_ACPI_RECLAIM_MEMORY: |
| 573 | res->name = "ACPI Reclaim"; |
| 574 | break; |
| 575 | case EFI_ACPI_MEMORY_NVS: |
| 576 | res->name = "ACPI NVS"; |
| 577 | break; |
| 578 | case EFI_MEMORY_MAPPED_IO: |
| 579 | res->name = "Memory Mapped IO"; |
| 580 | break; |
| 581 | case EFI_MEMORY_MAPPED_IO_PORT_SPACE: |
| 582 | res->name = "Memory Mapped IO Port Space"; |
| 583 | break; |
| 584 | default: |
| 585 | res->name = "Reserved"; |
| 586 | break; |
| 587 | } |
| 588 | res->start = md->phys_addr; |
| 589 | res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1); |
| 590 | res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| 591 | if (request_resource(&iomem_resource, res) < 0) |
| 592 | printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n", |
| 593 | res->name, res->start, res->end); |
| 594 | /* |
| 595 | * We don't know which region contains kernel data so we try |
| 596 | * it repeatedly and let the resource manager test it. |
| 597 | */ |
| 598 | if (md->type == EFI_CONVENTIONAL_MEMORY) { |
| 599 | request_resource(res, code_resource); |
| 600 | request_resource(res, data_resource); |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * Convenience functions to obtain memory types and attributes |
| 607 | */ |
| 608 | |
| 609 | u32 efi_mem_type(unsigned long phys_addr) |
| 610 | { |
| 611 | efi_memory_desc_t *md; |
| 612 | int i; |
| 613 | |
| 614 | for (i = 0; i < memmap.nr_map; i++) { |
| 615 | md = &memmap.map[i]; |
| 616 | if ((md->phys_addr <= phys_addr) && (phys_addr < |
| 617 | (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) |
| 618 | return md->type; |
| 619 | } |
| 620 | return 0; |
| 621 | } |
| 622 | |
| 623 | u64 efi_mem_attributes(unsigned long phys_addr) |
| 624 | { |
| 625 | efi_memory_desc_t *md; |
| 626 | int i; |
| 627 | |
| 628 | for (i = 0; i < memmap.nr_map; i++) { |
| 629 | md = &memmap.map[i]; |
| 630 | if ((md->phys_addr <= phys_addr) && (phys_addr < |
| 631 | (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) )) |
| 632 | return md->attribute; |
| 633 | } |
| 634 | return 0; |
| 635 | } |