Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Kernel Probes (KProbes) |
| 3 | * arch/x86_64/kernel/kprobes.c |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 18 | * |
| 19 | * Copyright (C) IBM Corporation, 2002, 2004 |
| 20 | * |
| 21 | * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| 22 | * Probes initial implementation ( includes contributions from |
| 23 | * Rusty Russell). |
| 24 | * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| 25 | * interface to access function arguments. |
| 26 | * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi |
| 27 | * <prasanna@in.ibm.com> adapted for x86_64 |
| 28 | * 2005-Mar Roland McGrath <roland@redhat.com> |
| 29 | * Fixed to handle %rip-relative addressing mode correctly. |
| 30 | */ |
| 31 | |
| 32 | #include <linux/config.h> |
| 33 | #include <linux/kprobes.h> |
| 34 | #include <linux/ptrace.h> |
| 35 | #include <linux/spinlock.h> |
| 36 | #include <linux/string.h> |
| 37 | #include <linux/slab.h> |
| 38 | #include <linux/preempt.h> |
| 39 | #include <linux/moduleloader.h> |
| 40 | |
| 41 | #include <asm/pgtable.h> |
| 42 | #include <asm/kdebug.h> |
| 43 | |
| 44 | static DECLARE_MUTEX(kprobe_mutex); |
| 45 | |
| 46 | /* kprobe_status settings */ |
| 47 | #define KPROBE_HIT_ACTIVE 0x00000001 |
| 48 | #define KPROBE_HIT_SS 0x00000002 |
| 49 | |
| 50 | static struct kprobe *current_kprobe; |
| 51 | static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags; |
| 52 | static struct pt_regs jprobe_saved_regs; |
| 53 | static long *jprobe_saved_rsp; |
| 54 | static kprobe_opcode_t *get_insn_slot(void); |
| 55 | static void free_insn_slot(kprobe_opcode_t *slot); |
| 56 | void jprobe_return_end(void); |
| 57 | |
| 58 | /* copy of the kernel stack at the probe fire time */ |
| 59 | static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE]; |
| 60 | |
| 61 | /* |
| 62 | * returns non-zero if opcode modifies the interrupt flag. |
| 63 | */ |
| 64 | static inline int is_IF_modifier(kprobe_opcode_t *insn) |
| 65 | { |
| 66 | switch (*insn) { |
| 67 | case 0xfa: /* cli */ |
| 68 | case 0xfb: /* sti */ |
| 69 | case 0xcf: /* iret/iretd */ |
| 70 | case 0x9d: /* popf/popfd */ |
| 71 | return 1; |
| 72 | } |
| 73 | |
| 74 | if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf) |
| 75 | return 1; |
| 76 | return 0; |
| 77 | } |
| 78 | |
| 79 | int arch_prepare_kprobe(struct kprobe *p) |
| 80 | { |
| 81 | /* insn: must be on special executable page on x86_64. */ |
| 82 | up(&kprobe_mutex); |
| 83 | p->ainsn.insn = get_insn_slot(); |
| 84 | down(&kprobe_mutex); |
| 85 | if (!p->ainsn.insn) { |
| 86 | return -ENOMEM; |
| 87 | } |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Determine if the instruction uses the %rip-relative addressing mode. |
| 93 | * If it does, return the address of the 32-bit displacement word. |
| 94 | * If not, return null. |
| 95 | */ |
| 96 | static inline s32 *is_riprel(u8 *insn) |
| 97 | { |
| 98 | #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \ |
| 99 | (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| 100 | (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| 101 | (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| 102 | (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| 103 | << (row % 64)) |
| 104 | static const u64 onebyte_has_modrm[256 / 64] = { |
| 105 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 106 | /* ------------------------------- */ |
| 107 | W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */ |
| 108 | W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */ |
| 109 | W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */ |
| 110 | W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */ |
| 111 | W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */ |
| 112 | W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */ |
| 113 | W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */ |
| 114 | W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */ |
| 115 | W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */ |
| 116 | W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */ |
| 117 | W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */ |
| 118 | W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */ |
| 119 | W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */ |
| 120 | W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */ |
| 121 | W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */ |
| 122 | W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */ |
| 123 | /* ------------------------------- */ |
| 124 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 125 | }; |
| 126 | static const u64 twobyte_has_modrm[256 / 64] = { |
| 127 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 128 | /* ------------------------------- */ |
| 129 | W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */ |
| 130 | W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */ |
| 131 | W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */ |
| 132 | W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */ |
| 133 | W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */ |
| 134 | W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */ |
| 135 | W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */ |
| 136 | W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */ |
| 137 | W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */ |
| 138 | W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */ |
| 139 | W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */ |
| 140 | W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */ |
| 141 | W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */ |
| 142 | W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */ |
| 143 | W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */ |
| 144 | W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */ |
| 145 | /* ------------------------------- */ |
| 146 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 147 | }; |
| 148 | #undef W |
| 149 | int need_modrm; |
| 150 | |
| 151 | /* Skip legacy instruction prefixes. */ |
| 152 | while (1) { |
| 153 | switch (*insn) { |
| 154 | case 0x66: |
| 155 | case 0x67: |
| 156 | case 0x2e: |
| 157 | case 0x3e: |
| 158 | case 0x26: |
| 159 | case 0x64: |
| 160 | case 0x65: |
| 161 | case 0x36: |
| 162 | case 0xf0: |
| 163 | case 0xf3: |
| 164 | case 0xf2: |
| 165 | ++insn; |
| 166 | continue; |
| 167 | } |
| 168 | break; |
| 169 | } |
| 170 | |
| 171 | /* Skip REX instruction prefix. */ |
| 172 | if ((*insn & 0xf0) == 0x40) |
| 173 | ++insn; |
| 174 | |
| 175 | if (*insn == 0x0f) { /* Two-byte opcode. */ |
| 176 | ++insn; |
| 177 | need_modrm = test_bit(*insn, twobyte_has_modrm); |
| 178 | } else { /* One-byte opcode. */ |
| 179 | need_modrm = test_bit(*insn, onebyte_has_modrm); |
| 180 | } |
| 181 | |
| 182 | if (need_modrm) { |
| 183 | u8 modrm = *++insn; |
| 184 | if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */ |
| 185 | /* Displacement follows ModRM byte. */ |
| 186 | return (s32 *) ++insn; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /* No %rip-relative addressing mode here. */ |
| 191 | return NULL; |
| 192 | } |
| 193 | |
| 194 | void arch_copy_kprobe(struct kprobe *p) |
| 195 | { |
| 196 | s32 *ripdisp; |
| 197 | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); |
| 198 | ripdisp = is_riprel(p->ainsn.insn); |
| 199 | if (ripdisp) { |
| 200 | /* |
| 201 | * The copied instruction uses the %rip-relative |
| 202 | * addressing mode. Adjust the displacement for the |
| 203 | * difference between the original location of this |
| 204 | * instruction and the location of the copy that will |
| 205 | * actually be run. The tricky bit here is making sure |
| 206 | * that the sign extension happens correctly in this |
| 207 | * calculation, since we need a signed 32-bit result to |
| 208 | * be sign-extended to 64 bits when it's added to the |
| 209 | * %rip value and yield the same 64-bit result that the |
| 210 | * sign-extension of the original signed 32-bit |
| 211 | * displacement would have given. |
| 212 | */ |
| 213 | s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn; |
| 214 | BUG_ON((s64) (s32) disp != disp); /* Sanity check. */ |
| 215 | *ripdisp = disp; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | void arch_remove_kprobe(struct kprobe *p) |
| 220 | { |
| 221 | up(&kprobe_mutex); |
| 222 | free_insn_slot(p->ainsn.insn); |
| 223 | down(&kprobe_mutex); |
| 224 | } |
| 225 | |
| 226 | static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs) |
| 227 | { |
| 228 | *p->addr = p->opcode; |
| 229 | regs->rip = (unsigned long)p->addr; |
| 230 | } |
| 231 | |
| 232 | static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| 233 | { |
| 234 | regs->eflags |= TF_MASK; |
| 235 | regs->eflags &= ~IF_MASK; |
| 236 | /*single step inline if the instruction is an int3*/ |
| 237 | if (p->opcode == BREAKPOINT_INSTRUCTION) |
| 238 | regs->rip = (unsigned long)p->addr; |
| 239 | else |
| 240 | regs->rip = (unsigned long)p->ainsn.insn; |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * Interrupts are disabled on entry as trap3 is an interrupt gate and they |
| 245 | * remain disabled thorough out this function. |
| 246 | */ |
| 247 | int kprobe_handler(struct pt_regs *regs) |
| 248 | { |
| 249 | struct kprobe *p; |
| 250 | int ret = 0; |
| 251 | kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t)); |
| 252 | |
| 253 | /* We're in an interrupt, but this is clear and BUG()-safe. */ |
| 254 | preempt_disable(); |
| 255 | |
| 256 | /* Check we're not actually recursing */ |
| 257 | if (kprobe_running()) { |
| 258 | /* We *are* holding lock here, so this is safe. |
| 259 | Disarm the probe we just hit, and ignore it. */ |
| 260 | p = get_kprobe(addr); |
| 261 | if (p) { |
| 262 | if (kprobe_status == KPROBE_HIT_SS) { |
| 263 | regs->eflags &= ~TF_MASK; |
| 264 | regs->eflags |= kprobe_saved_rflags; |
| 265 | unlock_kprobes(); |
| 266 | goto no_kprobe; |
| 267 | } |
| 268 | disarm_kprobe(p, regs); |
| 269 | ret = 1; |
| 270 | } else { |
| 271 | p = current_kprobe; |
| 272 | if (p->break_handler && p->break_handler(p, regs)) { |
| 273 | goto ss_probe; |
| 274 | } |
| 275 | } |
| 276 | /* If it's not ours, can't be delete race, (we hold lock). */ |
| 277 | goto no_kprobe; |
| 278 | } |
| 279 | |
| 280 | lock_kprobes(); |
| 281 | p = get_kprobe(addr); |
| 282 | if (!p) { |
| 283 | unlock_kprobes(); |
| 284 | if (*addr != BREAKPOINT_INSTRUCTION) { |
| 285 | /* |
| 286 | * The breakpoint instruction was removed right |
| 287 | * after we hit it. Another cpu has removed |
| 288 | * either a probepoint or a debugger breakpoint |
| 289 | * at this address. In either case, no further |
| 290 | * handling of this interrupt is appropriate. |
| 291 | */ |
| 292 | ret = 1; |
| 293 | } |
| 294 | /* Not one of ours: let kernel handle it */ |
| 295 | goto no_kprobe; |
| 296 | } |
| 297 | |
| 298 | kprobe_status = KPROBE_HIT_ACTIVE; |
| 299 | current_kprobe = p; |
| 300 | kprobe_saved_rflags = kprobe_old_rflags |
| 301 | = (regs->eflags & (TF_MASK | IF_MASK)); |
| 302 | if (is_IF_modifier(p->ainsn.insn)) |
| 303 | kprobe_saved_rflags &= ~IF_MASK; |
| 304 | |
| 305 | if (p->pre_handler && p->pre_handler(p, regs)) |
| 306 | /* handler has already set things up, so skip ss setup */ |
| 307 | return 1; |
| 308 | |
| 309 | ss_probe: |
| 310 | prepare_singlestep(p, regs); |
| 311 | kprobe_status = KPROBE_HIT_SS; |
| 312 | return 1; |
| 313 | |
| 314 | no_kprobe: |
| 315 | preempt_enable_no_resched(); |
| 316 | return ret; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * Called after single-stepping. p->addr is the address of the |
| 321 | * instruction whose first byte has been replaced by the "int 3" |
| 322 | * instruction. To avoid the SMP problems that can occur when we |
| 323 | * temporarily put back the original opcode to single-step, we |
| 324 | * single-stepped a copy of the instruction. The address of this |
| 325 | * copy is p->ainsn.insn. |
| 326 | * |
| 327 | * This function prepares to return from the post-single-step |
| 328 | * interrupt. We have to fix up the stack as follows: |
| 329 | * |
| 330 | * 0) Except in the case of absolute or indirect jump or call instructions, |
| 331 | * the new rip is relative to the copied instruction. We need to make |
| 332 | * it relative to the original instruction. |
| 333 | * |
| 334 | * 1) If the single-stepped instruction was pushfl, then the TF and IF |
| 335 | * flags are set in the just-pushed eflags, and may need to be cleared. |
| 336 | * |
| 337 | * 2) If the single-stepped instruction was a call, the return address |
| 338 | * that is atop the stack is the address following the copied instruction. |
| 339 | * We need to make it the address following the original instruction. |
| 340 | */ |
| 341 | static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| 342 | { |
| 343 | unsigned long *tos = (unsigned long *)regs->rsp; |
| 344 | unsigned long next_rip = 0; |
| 345 | unsigned long copy_rip = (unsigned long)p->ainsn.insn; |
| 346 | unsigned long orig_rip = (unsigned long)p->addr; |
| 347 | kprobe_opcode_t *insn = p->ainsn.insn; |
| 348 | |
| 349 | /*skip the REX prefix*/ |
| 350 | if (*insn >= 0x40 && *insn <= 0x4f) |
| 351 | insn++; |
| 352 | |
| 353 | switch (*insn) { |
| 354 | case 0x9c: /* pushfl */ |
| 355 | *tos &= ~(TF_MASK | IF_MASK); |
| 356 | *tos |= kprobe_old_rflags; |
| 357 | break; |
Prasanna S Panchamukhi | 0b9e2ca | 2005-05-05 16:15:40 -0700 | [diff] [blame^] | 358 | case 0xc3: /* ret/lret */ |
| 359 | case 0xcb: |
| 360 | case 0xc2: |
| 361 | case 0xca: |
| 362 | regs->eflags &= ~TF_MASK; |
| 363 | /* rip is already adjusted, no more changes required*/ |
| 364 | return; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 365 | case 0xe8: /* call relative - Fix return addr */ |
| 366 | *tos = orig_rip + (*tos - copy_rip); |
| 367 | break; |
| 368 | case 0xff: |
| 369 | if ((*insn & 0x30) == 0x10) { |
| 370 | /* call absolute, indirect */ |
| 371 | /* Fix return addr; rip is correct. */ |
| 372 | next_rip = regs->rip; |
| 373 | *tos = orig_rip + (*tos - copy_rip); |
| 374 | } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */ |
| 375 | ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */ |
| 376 | /* rip is correct. */ |
| 377 | next_rip = regs->rip; |
| 378 | } |
| 379 | break; |
| 380 | case 0xea: /* jmp absolute -- rip is correct */ |
| 381 | next_rip = regs->rip; |
| 382 | break; |
| 383 | default: |
| 384 | break; |
| 385 | } |
| 386 | |
| 387 | regs->eflags &= ~TF_MASK; |
| 388 | if (next_rip) { |
| 389 | regs->rip = next_rip; |
| 390 | } else { |
| 391 | regs->rip = orig_rip + (regs->rip - copy_rip); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Interrupts are disabled on entry as trap1 is an interrupt gate and they |
| 397 | * remain disabled thoroughout this function. And we hold kprobe lock. |
| 398 | */ |
| 399 | int post_kprobe_handler(struct pt_regs *regs) |
| 400 | { |
| 401 | if (!kprobe_running()) |
| 402 | return 0; |
| 403 | |
| 404 | if (current_kprobe->post_handler) |
| 405 | current_kprobe->post_handler(current_kprobe, regs, 0); |
| 406 | |
| 407 | resume_execution(current_kprobe, regs); |
| 408 | regs->eflags |= kprobe_saved_rflags; |
| 409 | |
| 410 | unlock_kprobes(); |
| 411 | preempt_enable_no_resched(); |
| 412 | |
| 413 | /* |
| 414 | * if somebody else is singlestepping across a probe point, eflags |
| 415 | * will have TF set, in which case, continue the remaining processing |
| 416 | * of do_debug, as if this is not a probe hit. |
| 417 | */ |
| 418 | if (regs->eflags & TF_MASK) |
| 419 | return 0; |
| 420 | |
| 421 | return 1; |
| 422 | } |
| 423 | |
| 424 | /* Interrupts disabled, kprobe_lock held. */ |
| 425 | int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| 426 | { |
| 427 | if (current_kprobe->fault_handler |
| 428 | && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| 429 | return 1; |
| 430 | |
| 431 | if (kprobe_status & KPROBE_HIT_SS) { |
| 432 | resume_execution(current_kprobe, regs); |
| 433 | regs->eflags |= kprobe_old_rflags; |
| 434 | |
| 435 | unlock_kprobes(); |
| 436 | preempt_enable_no_resched(); |
| 437 | } |
| 438 | return 0; |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * Wrapper routine for handling exceptions. |
| 443 | */ |
| 444 | int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| 445 | void *data) |
| 446 | { |
| 447 | struct die_args *args = (struct die_args *)data; |
| 448 | switch (val) { |
| 449 | case DIE_INT3: |
| 450 | if (kprobe_handler(args->regs)) |
| 451 | return NOTIFY_STOP; |
| 452 | break; |
| 453 | case DIE_DEBUG: |
| 454 | if (post_kprobe_handler(args->regs)) |
| 455 | return NOTIFY_STOP; |
| 456 | break; |
| 457 | case DIE_GPF: |
| 458 | if (kprobe_running() && |
| 459 | kprobe_fault_handler(args->regs, args->trapnr)) |
| 460 | return NOTIFY_STOP; |
| 461 | break; |
| 462 | case DIE_PAGE_FAULT: |
| 463 | if (kprobe_running() && |
| 464 | kprobe_fault_handler(args->regs, args->trapnr)) |
| 465 | return NOTIFY_STOP; |
| 466 | break; |
| 467 | default: |
| 468 | break; |
| 469 | } |
| 470 | return NOTIFY_DONE; |
| 471 | } |
| 472 | |
| 473 | int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| 474 | { |
| 475 | struct jprobe *jp = container_of(p, struct jprobe, kp); |
| 476 | unsigned long addr; |
| 477 | |
| 478 | jprobe_saved_regs = *regs; |
| 479 | jprobe_saved_rsp = (long *) regs->rsp; |
| 480 | addr = (unsigned long)jprobe_saved_rsp; |
| 481 | /* |
| 482 | * As Linus pointed out, gcc assumes that the callee |
| 483 | * owns the argument space and could overwrite it, e.g. |
| 484 | * tailcall optimization. So, to be absolutely safe |
| 485 | * we also save and restore enough stack bytes to cover |
| 486 | * the argument area. |
| 487 | */ |
| 488 | memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr)); |
| 489 | regs->eflags &= ~IF_MASK; |
| 490 | regs->rip = (unsigned long)(jp->entry); |
| 491 | return 1; |
| 492 | } |
| 493 | |
| 494 | void jprobe_return(void) |
| 495 | { |
| 496 | preempt_enable_no_resched(); |
| 497 | asm volatile (" xchg %%rbx,%%rsp \n" |
| 498 | " int3 \n" |
| 499 | " .globl jprobe_return_end \n" |
| 500 | " jprobe_return_end: \n" |
| 501 | " nop \n"::"b" |
| 502 | (jprobe_saved_rsp):"memory"); |
| 503 | } |
| 504 | |
| 505 | int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| 506 | { |
| 507 | u8 *addr = (u8 *) (regs->rip - 1); |
| 508 | unsigned long stack_addr = (unsigned long)jprobe_saved_rsp; |
| 509 | struct jprobe *jp = container_of(p, struct jprobe, kp); |
| 510 | |
| 511 | if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { |
| 512 | if ((long *)regs->rsp != jprobe_saved_rsp) { |
| 513 | struct pt_regs *saved_regs = |
| 514 | container_of(jprobe_saved_rsp, struct pt_regs, rsp); |
| 515 | printk("current rsp %p does not match saved rsp %p\n", |
| 516 | (long *)regs->rsp, jprobe_saved_rsp); |
| 517 | printk("Saved registers for jprobe %p\n", jp); |
| 518 | show_registers(saved_regs); |
| 519 | printk("Current registers\n"); |
| 520 | show_registers(regs); |
| 521 | BUG(); |
| 522 | } |
| 523 | *regs = jprobe_saved_regs; |
| 524 | memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack, |
| 525 | MIN_STACK_SIZE(stack_addr)); |
| 526 | return 1; |
| 527 | } |
| 528 | return 0; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * kprobe->ainsn.insn points to the copy of the instruction to be single-stepped. |
| 533 | * By default on x86_64, pages we get from kmalloc or vmalloc are not |
| 534 | * executable. Single-stepping an instruction on such a page yields an |
| 535 | * oops. So instead of storing the instruction copies in their respective |
| 536 | * kprobe objects, we allocate a page, map it executable, and store all the |
| 537 | * instruction copies there. (We can allocate additional pages if somebody |
| 538 | * inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE |
| 539 | * instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t) |
| 540 | * bytes. |
| 541 | */ |
| 542 | #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t))) |
| 543 | struct kprobe_insn_page { |
| 544 | struct hlist_node hlist; |
| 545 | kprobe_opcode_t *insns; /* page of instruction slots */ |
| 546 | char slot_used[INSNS_PER_PAGE]; |
| 547 | int nused; |
| 548 | }; |
| 549 | |
| 550 | static struct hlist_head kprobe_insn_pages; |
| 551 | |
| 552 | /** |
| 553 | * get_insn_slot() - Find a slot on an executable page for an instruction. |
| 554 | * We allocate an executable page if there's no room on existing ones. |
| 555 | */ |
| 556 | static kprobe_opcode_t *get_insn_slot(void) |
| 557 | { |
| 558 | struct kprobe_insn_page *kip; |
| 559 | struct hlist_node *pos; |
| 560 | |
| 561 | hlist_for_each(pos, &kprobe_insn_pages) { |
| 562 | kip = hlist_entry(pos, struct kprobe_insn_page, hlist); |
| 563 | if (kip->nused < INSNS_PER_PAGE) { |
| 564 | int i; |
| 565 | for (i = 0; i < INSNS_PER_PAGE; i++) { |
| 566 | if (!kip->slot_used[i]) { |
| 567 | kip->slot_used[i] = 1; |
| 568 | kip->nused++; |
| 569 | return kip->insns + (i*MAX_INSN_SIZE); |
| 570 | } |
| 571 | } |
| 572 | /* Surprise! No unused slots. Fix kip->nused. */ |
| 573 | kip->nused = INSNS_PER_PAGE; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | /* All out of space. Need to allocate a new page. Use slot 0.*/ |
| 578 | kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); |
| 579 | if (!kip) { |
| 580 | return NULL; |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * For the %rip-relative displacement fixups to be doable, we |
| 585 | * need our instruction copy to be within +/- 2GB of any data it |
| 586 | * might access via %rip. That is, within 2GB of where the |
| 587 | * kernel image and loaded module images reside. So we allocate |
| 588 | * a page in the module loading area. |
| 589 | */ |
| 590 | kip->insns = module_alloc(PAGE_SIZE); |
| 591 | if (!kip->insns) { |
| 592 | kfree(kip); |
| 593 | return NULL; |
| 594 | } |
| 595 | INIT_HLIST_NODE(&kip->hlist); |
| 596 | hlist_add_head(&kip->hlist, &kprobe_insn_pages); |
| 597 | memset(kip->slot_used, 0, INSNS_PER_PAGE); |
| 598 | kip->slot_used[0] = 1; |
| 599 | kip->nused = 1; |
| 600 | return kip->insns; |
| 601 | } |
| 602 | |
| 603 | /** |
| 604 | * free_insn_slot() - Free instruction slot obtained from get_insn_slot(). |
| 605 | */ |
| 606 | static void free_insn_slot(kprobe_opcode_t *slot) |
| 607 | { |
| 608 | struct kprobe_insn_page *kip; |
| 609 | struct hlist_node *pos; |
| 610 | |
| 611 | hlist_for_each(pos, &kprobe_insn_pages) { |
| 612 | kip = hlist_entry(pos, struct kprobe_insn_page, hlist); |
| 613 | if (kip->insns <= slot |
| 614 | && slot < kip->insns+(INSNS_PER_PAGE*MAX_INSN_SIZE)) { |
| 615 | int i = (slot - kip->insns) / MAX_INSN_SIZE; |
| 616 | kip->slot_used[i] = 0; |
| 617 | kip->nused--; |
| 618 | if (kip->nused == 0) { |
| 619 | /* |
| 620 | * Page is no longer in use. Free it unless |
| 621 | * it's the last one. We keep the last one |
| 622 | * so as not to have to set it up again the |
| 623 | * next time somebody inserts a probe. |
| 624 | */ |
| 625 | hlist_del(&kip->hlist); |
| 626 | if (hlist_empty(&kprobe_insn_pages)) { |
| 627 | INIT_HLIST_NODE(&kip->hlist); |
| 628 | hlist_add_head(&kip->hlist, |
| 629 | &kprobe_insn_pages); |
| 630 | } else { |
| 631 | module_free(NULL, kip->insns); |
| 632 | kfree(kip); |
| 633 | } |
| 634 | } |
| 635 | return; |
| 636 | } |
| 637 | } |
| 638 | } |