Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * |
| 3 | * |
| 4 | * Procedures for interfacing to Open Firmware. |
| 5 | * |
| 6 | * Paul Mackerras August 1996. |
| 7 | * Copyright (C) 1996 Paul Mackerras. |
| 8 | * |
| 9 | * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| 10 | * {engebret|bergner}@us.ibm.com |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or |
| 13 | * modify it under the terms of the GNU General Public License |
| 14 | * as published by the Free Software Foundation; either version |
| 15 | * 2 of the License, or (at your option) any later version. |
| 16 | */ |
| 17 | |
| 18 | #undef DEBUG |
| 19 | |
| 20 | #include <stdarg.h> |
| 21 | #include <linux/config.h> |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/version.h> |
| 26 | #include <linux/threads.h> |
| 27 | #include <linux/spinlock.h> |
| 28 | #include <linux/types.h> |
| 29 | #include <linux/pci.h> |
| 30 | #include <linux/stringify.h> |
| 31 | #include <linux/delay.h> |
| 32 | #include <linux/initrd.h> |
| 33 | #include <linux/bitops.h> |
| 34 | #include <linux/module.h> |
| 35 | |
| 36 | #include <asm/prom.h> |
| 37 | #include <asm/rtas.h> |
| 38 | #include <asm/lmb.h> |
| 39 | #include <asm/abs_addr.h> |
| 40 | #include <asm/page.h> |
| 41 | #include <asm/processor.h> |
| 42 | #include <asm/irq.h> |
| 43 | #include <asm/io.h> |
| 44 | #include <asm/smp.h> |
| 45 | #include <asm/system.h> |
| 46 | #include <asm/mmu.h> |
| 47 | #include <asm/pgtable.h> |
| 48 | #include <asm/pci.h> |
| 49 | #include <asm/iommu.h> |
| 50 | #include <asm/bootinfo.h> |
| 51 | #include <asm/ppcdebug.h> |
| 52 | #include <asm/btext.h> |
| 53 | #include <asm/sections.h> |
| 54 | #include <asm/machdep.h> |
| 55 | #include <asm/pSeries_reconfig.h> |
| 56 | |
| 57 | #ifdef DEBUG |
| 58 | #define DBG(fmt...) udbg_printf(fmt) |
| 59 | #else |
| 60 | #define DBG(fmt...) |
| 61 | #endif |
| 62 | |
| 63 | struct pci_reg_property { |
| 64 | struct pci_address addr; |
| 65 | u32 size_hi; |
| 66 | u32 size_lo; |
| 67 | }; |
| 68 | |
| 69 | struct isa_reg_property { |
| 70 | u32 space; |
| 71 | u32 address; |
| 72 | u32 size; |
| 73 | }; |
| 74 | |
| 75 | |
| 76 | typedef int interpret_func(struct device_node *, unsigned long *, |
| 77 | int, int, int); |
| 78 | |
| 79 | extern struct rtas_t rtas; |
| 80 | extern struct lmb lmb; |
| 81 | extern unsigned long klimit; |
| 82 | |
| 83 | static int __initdata dt_root_addr_cells; |
| 84 | static int __initdata dt_root_size_cells; |
| 85 | static int __initdata iommu_is_off; |
| 86 | int __initdata iommu_force_on; |
| 87 | typedef u32 cell_t; |
| 88 | |
| 89 | #if 0 |
| 90 | static struct boot_param_header *initial_boot_params __initdata; |
| 91 | #else |
| 92 | struct boot_param_header *initial_boot_params; |
| 93 | #endif |
| 94 | |
| 95 | static struct device_node *allnodes = NULL; |
| 96 | |
| 97 | /* use when traversing tree through the allnext, child, sibling, |
| 98 | * or parent members of struct device_node. |
| 99 | */ |
| 100 | static DEFINE_RWLOCK(devtree_lock); |
| 101 | |
| 102 | /* export that to outside world */ |
| 103 | struct device_node *of_chosen; |
| 104 | |
| 105 | /* |
| 106 | * Wrapper for allocating memory for various data that needs to be |
| 107 | * attached to device nodes as they are processed at boot or when |
| 108 | * added to the device tree later (e.g. DLPAR). At boot there is |
| 109 | * already a region reserved so we just increment *mem_start by size; |
| 110 | * otherwise we call kmalloc. |
| 111 | */ |
| 112 | static void * prom_alloc(unsigned long size, unsigned long *mem_start) |
| 113 | { |
| 114 | unsigned long tmp; |
| 115 | |
| 116 | if (!mem_start) |
| 117 | return kmalloc(size, GFP_KERNEL); |
| 118 | |
| 119 | tmp = *mem_start; |
| 120 | *mem_start += size; |
| 121 | return (void *)tmp; |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * Find the device_node with a given phandle. |
| 126 | */ |
| 127 | static struct device_node * find_phandle(phandle ph) |
| 128 | { |
| 129 | struct device_node *np; |
| 130 | |
| 131 | for (np = allnodes; np != 0; np = np->allnext) |
| 132 | if (np->linux_phandle == ph) |
| 133 | return np; |
| 134 | return NULL; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * Find the interrupt parent of a node. |
| 139 | */ |
| 140 | static struct device_node * __devinit intr_parent(struct device_node *p) |
| 141 | { |
| 142 | phandle *parp; |
| 143 | |
| 144 | parp = (phandle *) get_property(p, "interrupt-parent", NULL); |
| 145 | if (parp == NULL) |
| 146 | return p->parent; |
| 147 | return find_phandle(*parp); |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Find out the size of each entry of the interrupts property |
| 152 | * for a node. |
| 153 | */ |
| 154 | int __devinit prom_n_intr_cells(struct device_node *np) |
| 155 | { |
| 156 | struct device_node *p; |
| 157 | unsigned int *icp; |
| 158 | |
| 159 | for (p = np; (p = intr_parent(p)) != NULL; ) { |
| 160 | icp = (unsigned int *) |
| 161 | get_property(p, "#interrupt-cells", NULL); |
| 162 | if (icp != NULL) |
| 163 | return *icp; |
| 164 | if (get_property(p, "interrupt-controller", NULL) != NULL |
| 165 | || get_property(p, "interrupt-map", NULL) != NULL) { |
| 166 | printk("oops, node %s doesn't have #interrupt-cells\n", |
| 167 | p->full_name); |
| 168 | return 1; |
| 169 | } |
| 170 | } |
| 171 | #ifdef DEBUG_IRQ |
| 172 | printk("prom_n_intr_cells failed for %s\n", np->full_name); |
| 173 | #endif |
| 174 | return 1; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * Map an interrupt from a device up to the platform interrupt |
| 179 | * descriptor. |
| 180 | */ |
| 181 | static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler, |
| 182 | struct device_node *np, unsigned int *ints, |
| 183 | int nintrc) |
| 184 | { |
| 185 | struct device_node *p, *ipar; |
| 186 | unsigned int *imap, *imask, *ip; |
| 187 | int i, imaplen, match; |
| 188 | int newintrc = 0, newaddrc = 0; |
| 189 | unsigned int *reg; |
| 190 | int naddrc; |
| 191 | |
| 192 | reg = (unsigned int *) get_property(np, "reg", NULL); |
| 193 | naddrc = prom_n_addr_cells(np); |
| 194 | p = intr_parent(np); |
| 195 | while (p != NULL) { |
| 196 | if (get_property(p, "interrupt-controller", NULL) != NULL) |
| 197 | /* this node is an interrupt controller, stop here */ |
| 198 | break; |
| 199 | imap = (unsigned int *) |
| 200 | get_property(p, "interrupt-map", &imaplen); |
| 201 | if (imap == NULL) { |
| 202 | p = intr_parent(p); |
| 203 | continue; |
| 204 | } |
| 205 | imask = (unsigned int *) |
| 206 | get_property(p, "interrupt-map-mask", NULL); |
| 207 | if (imask == NULL) { |
| 208 | printk("oops, %s has interrupt-map but no mask\n", |
| 209 | p->full_name); |
| 210 | return 0; |
| 211 | } |
| 212 | imaplen /= sizeof(unsigned int); |
| 213 | match = 0; |
| 214 | ipar = NULL; |
| 215 | while (imaplen > 0 && !match) { |
| 216 | /* check the child-interrupt field */ |
| 217 | match = 1; |
| 218 | for (i = 0; i < naddrc && match; ++i) |
| 219 | match = ((reg[i] ^ imap[i]) & imask[i]) == 0; |
| 220 | for (; i < naddrc + nintrc && match; ++i) |
| 221 | match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; |
| 222 | imap += naddrc + nintrc; |
| 223 | imaplen -= naddrc + nintrc; |
| 224 | /* grab the interrupt parent */ |
| 225 | ipar = find_phandle((phandle) *imap++); |
| 226 | --imaplen; |
| 227 | if (ipar == NULL) { |
| 228 | printk("oops, no int parent %x in map of %s\n", |
| 229 | imap[-1], p->full_name); |
| 230 | return 0; |
| 231 | } |
| 232 | /* find the parent's # addr and intr cells */ |
| 233 | ip = (unsigned int *) |
| 234 | get_property(ipar, "#interrupt-cells", NULL); |
| 235 | if (ip == NULL) { |
| 236 | printk("oops, no #interrupt-cells on %s\n", |
| 237 | ipar->full_name); |
| 238 | return 0; |
| 239 | } |
| 240 | newintrc = *ip; |
| 241 | ip = (unsigned int *) |
| 242 | get_property(ipar, "#address-cells", NULL); |
| 243 | newaddrc = (ip == NULL)? 0: *ip; |
| 244 | imap += newaddrc + newintrc; |
| 245 | imaplen -= newaddrc + newintrc; |
| 246 | } |
| 247 | if (imaplen < 0) { |
| 248 | printk("oops, error decoding int-map on %s, len=%d\n", |
| 249 | p->full_name, imaplen); |
| 250 | return 0; |
| 251 | } |
| 252 | if (!match) { |
| 253 | #ifdef DEBUG_IRQ |
| 254 | printk("oops, no match in %s int-map for %s\n", |
| 255 | p->full_name, np->full_name); |
| 256 | #endif |
| 257 | return 0; |
| 258 | } |
| 259 | p = ipar; |
| 260 | naddrc = newaddrc; |
| 261 | nintrc = newintrc; |
| 262 | ints = imap - nintrc; |
| 263 | reg = ints - naddrc; |
| 264 | } |
| 265 | if (p == NULL) { |
| 266 | #ifdef DEBUG_IRQ |
| 267 | printk("hmmm, int tree for %s doesn't have ctrler\n", |
| 268 | np->full_name); |
| 269 | #endif |
| 270 | return 0; |
| 271 | } |
| 272 | *irq = ints; |
| 273 | *ictrler = p; |
| 274 | return nintrc; |
| 275 | } |
| 276 | |
| 277 | static int __devinit finish_node_interrupts(struct device_node *np, |
| 278 | unsigned long *mem_start, |
| 279 | int measure_only) |
| 280 | { |
| 281 | unsigned int *ints; |
| 282 | int intlen, intrcells, intrcount; |
| 283 | int i, j, n; |
| 284 | unsigned int *irq, virq; |
| 285 | struct device_node *ic; |
| 286 | |
| 287 | ints = (unsigned int *) get_property(np, "interrupts", &intlen); |
| 288 | if (ints == NULL) |
| 289 | return 0; |
| 290 | intrcells = prom_n_intr_cells(np); |
| 291 | intlen /= intrcells * sizeof(unsigned int); |
| 292 | |
| 293 | np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start); |
| 294 | if (!np->intrs) |
| 295 | return -ENOMEM; |
| 296 | |
| 297 | if (measure_only) |
| 298 | return 0; |
| 299 | |
| 300 | intrcount = 0; |
| 301 | for (i = 0; i < intlen; ++i, ints += intrcells) { |
| 302 | n = map_interrupt(&irq, &ic, np, ints, intrcells); |
| 303 | if (n <= 0) |
| 304 | continue; |
| 305 | |
| 306 | /* don't map IRQ numbers under a cascaded 8259 controller */ |
| 307 | if (ic && device_is_compatible(ic, "chrp,iic")) { |
| 308 | np->intrs[intrcount].line = irq[0]; |
| 309 | } else { |
| 310 | virq = virt_irq_create_mapping(irq[0]); |
| 311 | if (virq == NO_IRQ) { |
| 312 | printk(KERN_CRIT "Could not allocate interrupt" |
| 313 | " number for %s\n", np->full_name); |
| 314 | continue; |
| 315 | } |
| 316 | np->intrs[intrcount].line = irq_offset_up(virq); |
| 317 | } |
| 318 | |
| 319 | /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */ |
| 320 | if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) { |
| 321 | char *name = get_property(ic->parent, "name", NULL); |
| 322 | if (name && !strcmp(name, "u3")) |
| 323 | np->intrs[intrcount].line += 128; |
| 324 | } |
| 325 | np->intrs[intrcount].sense = 1; |
| 326 | if (n > 1) |
| 327 | np->intrs[intrcount].sense = irq[1]; |
| 328 | if (n > 2) { |
| 329 | printk("hmmm, got %d intr cells for %s:", n, |
| 330 | np->full_name); |
| 331 | for (j = 0; j < n; ++j) |
| 332 | printk(" %d", irq[j]); |
| 333 | printk("\n"); |
| 334 | } |
| 335 | ++intrcount; |
| 336 | } |
| 337 | np->n_intrs = intrcount; |
| 338 | |
| 339 | return 0; |
| 340 | } |
| 341 | |
| 342 | static int __devinit interpret_pci_props(struct device_node *np, |
| 343 | unsigned long *mem_start, |
| 344 | int naddrc, int nsizec, |
| 345 | int measure_only) |
| 346 | { |
| 347 | struct address_range *adr; |
| 348 | struct pci_reg_property *pci_addrs; |
| 349 | int i, l, n_addrs; |
| 350 | |
| 351 | pci_addrs = (struct pci_reg_property *) |
| 352 | get_property(np, "assigned-addresses", &l); |
| 353 | if (!pci_addrs) |
| 354 | return 0; |
| 355 | |
| 356 | n_addrs = l / sizeof(*pci_addrs); |
| 357 | |
| 358 | adr = prom_alloc(n_addrs * sizeof(*adr), mem_start); |
| 359 | if (!adr) |
| 360 | return -ENOMEM; |
| 361 | |
| 362 | if (measure_only) |
| 363 | return 0; |
| 364 | |
| 365 | np->addrs = adr; |
| 366 | np->n_addrs = n_addrs; |
| 367 | |
| 368 | for (i = 0; i < n_addrs; i++) { |
| 369 | adr[i].space = pci_addrs[i].addr.a_hi; |
| 370 | adr[i].address = pci_addrs[i].addr.a_lo | |
| 371 | ((u64)pci_addrs[i].addr.a_mid << 32); |
| 372 | adr[i].size = pci_addrs[i].size_lo; |
| 373 | } |
| 374 | |
| 375 | return 0; |
| 376 | } |
| 377 | |
| 378 | static int __init interpret_dbdma_props(struct device_node *np, |
| 379 | unsigned long *mem_start, |
| 380 | int naddrc, int nsizec, |
| 381 | int measure_only) |
| 382 | { |
| 383 | struct reg_property32 *rp; |
| 384 | struct address_range *adr; |
| 385 | unsigned long base_address; |
| 386 | int i, l; |
| 387 | struct device_node *db; |
| 388 | |
| 389 | base_address = 0; |
| 390 | if (!measure_only) { |
| 391 | for (db = np->parent; db != NULL; db = db->parent) { |
| 392 | if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { |
| 393 | base_address = db->addrs[0].address; |
| 394 | break; |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | rp = (struct reg_property32 *) get_property(np, "reg", &l); |
| 400 | if (rp != 0 && l >= sizeof(struct reg_property32)) { |
| 401 | i = 0; |
| 402 | adr = (struct address_range *) (*mem_start); |
| 403 | while ((l -= sizeof(struct reg_property32)) >= 0) { |
| 404 | if (!measure_only) { |
| 405 | adr[i].space = 2; |
| 406 | adr[i].address = rp[i].address + base_address; |
| 407 | adr[i].size = rp[i].size; |
| 408 | } |
| 409 | ++i; |
| 410 | } |
| 411 | np->addrs = adr; |
| 412 | np->n_addrs = i; |
| 413 | (*mem_start) += i * sizeof(struct address_range); |
| 414 | } |
| 415 | |
| 416 | return 0; |
| 417 | } |
| 418 | |
| 419 | static int __init interpret_macio_props(struct device_node *np, |
| 420 | unsigned long *mem_start, |
| 421 | int naddrc, int nsizec, |
| 422 | int measure_only) |
| 423 | { |
| 424 | struct reg_property32 *rp; |
| 425 | struct address_range *adr; |
| 426 | unsigned long base_address; |
| 427 | int i, l; |
| 428 | struct device_node *db; |
| 429 | |
| 430 | base_address = 0; |
| 431 | if (!measure_only) { |
| 432 | for (db = np->parent; db != NULL; db = db->parent) { |
| 433 | if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { |
| 434 | base_address = db->addrs[0].address; |
| 435 | break; |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | rp = (struct reg_property32 *) get_property(np, "reg", &l); |
| 441 | if (rp != 0 && l >= sizeof(struct reg_property32)) { |
| 442 | i = 0; |
| 443 | adr = (struct address_range *) (*mem_start); |
| 444 | while ((l -= sizeof(struct reg_property32)) >= 0) { |
| 445 | if (!measure_only) { |
| 446 | adr[i].space = 2; |
| 447 | adr[i].address = rp[i].address + base_address; |
| 448 | adr[i].size = rp[i].size; |
| 449 | } |
| 450 | ++i; |
| 451 | } |
| 452 | np->addrs = adr; |
| 453 | np->n_addrs = i; |
| 454 | (*mem_start) += i * sizeof(struct address_range); |
| 455 | } |
| 456 | |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | static int __init interpret_isa_props(struct device_node *np, |
| 461 | unsigned long *mem_start, |
| 462 | int naddrc, int nsizec, |
| 463 | int measure_only) |
| 464 | { |
| 465 | struct isa_reg_property *rp; |
| 466 | struct address_range *adr; |
| 467 | int i, l; |
| 468 | |
| 469 | rp = (struct isa_reg_property *) get_property(np, "reg", &l); |
| 470 | if (rp != 0 && l >= sizeof(struct isa_reg_property)) { |
| 471 | i = 0; |
| 472 | adr = (struct address_range *) (*mem_start); |
| 473 | while ((l -= sizeof(struct isa_reg_property)) >= 0) { |
| 474 | if (!measure_only) { |
| 475 | adr[i].space = rp[i].space; |
| 476 | adr[i].address = rp[i].address; |
| 477 | adr[i].size = rp[i].size; |
| 478 | } |
| 479 | ++i; |
| 480 | } |
| 481 | np->addrs = adr; |
| 482 | np->n_addrs = i; |
| 483 | (*mem_start) += i * sizeof(struct address_range); |
| 484 | } |
| 485 | |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | static int __init interpret_root_props(struct device_node *np, |
| 490 | unsigned long *mem_start, |
| 491 | int naddrc, int nsizec, |
| 492 | int measure_only) |
| 493 | { |
| 494 | struct address_range *adr; |
| 495 | int i, l; |
| 496 | unsigned int *rp; |
| 497 | int rpsize = (naddrc + nsizec) * sizeof(unsigned int); |
| 498 | |
| 499 | rp = (unsigned int *) get_property(np, "reg", &l); |
| 500 | if (rp != 0 && l >= rpsize) { |
| 501 | i = 0; |
| 502 | adr = (struct address_range *) (*mem_start); |
| 503 | while ((l -= rpsize) >= 0) { |
| 504 | if (!measure_only) { |
| 505 | adr[i].space = 0; |
| 506 | adr[i].address = rp[naddrc - 1]; |
| 507 | adr[i].size = rp[naddrc + nsizec - 1]; |
| 508 | } |
| 509 | ++i; |
| 510 | rp += naddrc + nsizec; |
| 511 | } |
| 512 | np->addrs = adr; |
| 513 | np->n_addrs = i; |
| 514 | (*mem_start) += i * sizeof(struct address_range); |
| 515 | } |
| 516 | |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | static int __devinit finish_node(struct device_node *np, |
| 521 | unsigned long *mem_start, |
| 522 | interpret_func *ifunc, |
| 523 | int naddrc, int nsizec, |
| 524 | int measure_only) |
| 525 | { |
| 526 | struct device_node *child; |
| 527 | int *ip, rc = 0; |
| 528 | |
| 529 | /* get the device addresses and interrupts */ |
| 530 | if (ifunc != NULL) |
| 531 | rc = ifunc(np, mem_start, naddrc, nsizec, measure_only); |
| 532 | if (rc) |
| 533 | goto out; |
| 534 | |
| 535 | rc = finish_node_interrupts(np, mem_start, measure_only); |
| 536 | if (rc) |
| 537 | goto out; |
| 538 | |
| 539 | /* Look for #address-cells and #size-cells properties. */ |
| 540 | ip = (int *) get_property(np, "#address-cells", NULL); |
| 541 | if (ip != NULL) |
| 542 | naddrc = *ip; |
| 543 | ip = (int *) get_property(np, "#size-cells", NULL); |
| 544 | if (ip != NULL) |
| 545 | nsizec = *ip; |
| 546 | |
| 547 | /* the f50 sets the name to 'display' and 'compatible' to what we |
| 548 | * expect for the name -- Cort |
| 549 | */ |
| 550 | if (!strcmp(np->name, "display")) |
| 551 | np->name = get_property(np, "compatible", NULL); |
| 552 | |
| 553 | if (!strcmp(np->name, "device-tree") || np->parent == NULL) |
| 554 | ifunc = interpret_root_props; |
| 555 | else if (np->type == 0) |
| 556 | ifunc = NULL; |
| 557 | else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) |
| 558 | ifunc = interpret_pci_props; |
| 559 | else if (!strcmp(np->type, "dbdma")) |
| 560 | ifunc = interpret_dbdma_props; |
| 561 | else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props) |
| 562 | ifunc = interpret_macio_props; |
| 563 | else if (!strcmp(np->type, "isa")) |
| 564 | ifunc = interpret_isa_props; |
| 565 | else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3")) |
| 566 | ifunc = interpret_root_props; |
| 567 | else if (!((ifunc == interpret_dbdma_props |
| 568 | || ifunc == interpret_macio_props) |
| 569 | && (!strcmp(np->type, "escc") |
| 570 | || !strcmp(np->type, "media-bay")))) |
| 571 | ifunc = NULL; |
| 572 | |
| 573 | for (child = np->child; child != NULL; child = child->sibling) { |
| 574 | rc = finish_node(child, mem_start, ifunc, |
| 575 | naddrc, nsizec, measure_only); |
| 576 | if (rc) |
| 577 | goto out; |
| 578 | } |
| 579 | out: |
| 580 | return rc; |
| 581 | } |
| 582 | |
| 583 | /** |
| 584 | * finish_device_tree is called once things are running normally |
| 585 | * (i.e. with text and data mapped to the address they were linked at). |
| 586 | * It traverses the device tree and fills in some of the additional, |
| 587 | * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt |
| 588 | * mapping is also initialized at this point. |
| 589 | */ |
| 590 | void __init finish_device_tree(void) |
| 591 | { |
| 592 | unsigned long start, end, size = 0; |
| 593 | |
| 594 | DBG(" -> finish_device_tree\n"); |
| 595 | |
| 596 | if (ppc64_interrupt_controller == IC_INVALID) { |
| 597 | DBG("failed to configure interrupt controller type\n"); |
| 598 | panic("failed to configure interrupt controller type\n"); |
| 599 | } |
| 600 | |
| 601 | /* Initialize virtual IRQ map */ |
| 602 | virt_irq_init(); |
| 603 | |
| 604 | /* |
| 605 | * Finish device-tree (pre-parsing some properties etc...) |
| 606 | * We do this in 2 passes. One with "measure_only" set, which |
| 607 | * will only measure the amount of memory needed, then we can |
| 608 | * allocate that memory, and call finish_node again. However, |
| 609 | * we must be careful as most routines will fail nowadays when |
| 610 | * prom_alloc() returns 0, so we must make sure our first pass |
| 611 | * doesn't start at 0. We pre-initialize size to 16 for that |
| 612 | * reason and then remove those additional 16 bytes |
| 613 | */ |
| 614 | size = 16; |
| 615 | finish_node(allnodes, &size, NULL, 0, 0, 1); |
| 616 | size -= 16; |
| 617 | end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128)); |
| 618 | finish_node(allnodes, &end, NULL, 0, 0, 0); |
| 619 | BUG_ON(end != start + size); |
| 620 | |
| 621 | DBG(" <- finish_device_tree\n"); |
| 622 | } |
| 623 | |
| 624 | #ifdef DEBUG |
| 625 | #define printk udbg_printf |
| 626 | #endif |
| 627 | |
| 628 | static inline char *find_flat_dt_string(u32 offset) |
| 629 | { |
| 630 | return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings |
| 631 | + offset; |
| 632 | } |
| 633 | |
| 634 | /** |
| 635 | * This function is used to scan the flattened device-tree, it is |
| 636 | * used to extract the memory informations at boot before we can |
| 637 | * unflatten the tree |
| 638 | */ |
| 639 | static int __init scan_flat_dt(int (*it)(unsigned long node, |
| 640 | const char *full_path, void *data), |
| 641 | void *data) |
| 642 | { |
| 643 | unsigned long p = ((unsigned long)initial_boot_params) + |
| 644 | initial_boot_params->off_dt_struct; |
| 645 | int rc = 0; |
| 646 | |
| 647 | do { |
| 648 | u32 tag = *((u32 *)p); |
| 649 | char *pathp; |
| 650 | |
| 651 | p += 4; |
| 652 | if (tag == OF_DT_END_NODE) |
| 653 | continue; |
| 654 | if (tag == OF_DT_END) |
| 655 | break; |
| 656 | if (tag == OF_DT_PROP) { |
| 657 | u32 sz = *((u32 *)p); |
| 658 | p += 8; |
| 659 | p = _ALIGN(p, sz >= 8 ? 8 : 4); |
| 660 | p += sz; |
| 661 | p = _ALIGN(p, 4); |
| 662 | continue; |
| 663 | } |
| 664 | if (tag != OF_DT_BEGIN_NODE) { |
| 665 | printk(KERN_WARNING "Invalid tag %x scanning flattened" |
| 666 | " device tree !\n", tag); |
| 667 | return -EINVAL; |
| 668 | } |
| 669 | pathp = (char *)p; |
| 670 | p = _ALIGN(p + strlen(pathp) + 1, 4); |
| 671 | rc = it(p, pathp, data); |
| 672 | if (rc != 0) |
| 673 | break; |
| 674 | } while(1); |
| 675 | |
| 676 | return rc; |
| 677 | } |
| 678 | |
| 679 | /** |
| 680 | * This function can be used within scan_flattened_dt callback to get |
| 681 | * access to properties |
| 682 | */ |
| 683 | static void* __init get_flat_dt_prop(unsigned long node, const char *name, |
| 684 | unsigned long *size) |
| 685 | { |
| 686 | unsigned long p = node; |
| 687 | |
| 688 | do { |
| 689 | u32 tag = *((u32 *)p); |
| 690 | u32 sz, noff; |
| 691 | const char *nstr; |
| 692 | |
| 693 | p += 4; |
| 694 | if (tag != OF_DT_PROP) |
| 695 | return NULL; |
| 696 | |
| 697 | sz = *((u32 *)p); |
| 698 | noff = *((u32 *)(p + 4)); |
| 699 | p += 8; |
| 700 | p = _ALIGN(p, sz >= 8 ? 8 : 4); |
| 701 | |
| 702 | nstr = find_flat_dt_string(noff); |
| 703 | if (nstr == NULL) { |
| 704 | printk(KERN_WARNING "Can't find property index name !\n"); |
| 705 | return NULL; |
| 706 | } |
| 707 | if (strcmp(name, nstr) == 0) { |
| 708 | if (size) |
| 709 | *size = sz; |
| 710 | return (void *)p; |
| 711 | } |
| 712 | p += sz; |
| 713 | p = _ALIGN(p, 4); |
| 714 | } while(1); |
| 715 | } |
| 716 | |
| 717 | static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, |
| 718 | unsigned long align) |
| 719 | { |
| 720 | void *res; |
| 721 | |
| 722 | *mem = _ALIGN(*mem, align); |
| 723 | res = (void *)*mem; |
| 724 | *mem += size; |
| 725 | |
| 726 | return res; |
| 727 | } |
| 728 | |
| 729 | static unsigned long __init unflatten_dt_node(unsigned long mem, |
| 730 | unsigned long *p, |
| 731 | struct device_node *dad, |
| 732 | struct device_node ***allnextpp) |
| 733 | { |
| 734 | struct device_node *np; |
| 735 | struct property *pp, **prev_pp = NULL; |
| 736 | char *pathp; |
| 737 | u32 tag; |
| 738 | unsigned int l; |
| 739 | |
| 740 | tag = *((u32 *)(*p)); |
| 741 | if (tag != OF_DT_BEGIN_NODE) { |
| 742 | printk("Weird tag at start of node: %x\n", tag); |
| 743 | return mem; |
| 744 | } |
| 745 | *p += 4; |
| 746 | pathp = (char *)*p; |
| 747 | l = strlen(pathp) + 1; |
| 748 | *p = _ALIGN(*p + l, 4); |
| 749 | |
| 750 | np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + l, |
| 751 | __alignof__(struct device_node)); |
| 752 | if (allnextpp) { |
| 753 | memset(np, 0, sizeof(*np)); |
| 754 | np->full_name = ((char*)np) + sizeof(struct device_node); |
| 755 | memcpy(np->full_name, pathp, l); |
| 756 | prev_pp = &np->properties; |
| 757 | **allnextpp = np; |
| 758 | *allnextpp = &np->allnext; |
| 759 | if (dad != NULL) { |
| 760 | np->parent = dad; |
| 761 | /* we temporarily use the `next' field as `last_child'. */ |
| 762 | if (dad->next == 0) |
| 763 | dad->child = np; |
| 764 | else |
| 765 | dad->next->sibling = np; |
| 766 | dad->next = np; |
| 767 | } |
| 768 | kref_init(&np->kref); |
| 769 | } |
| 770 | while(1) { |
| 771 | u32 sz, noff; |
| 772 | char *pname; |
| 773 | |
| 774 | tag = *((u32 *)(*p)); |
| 775 | if (tag != OF_DT_PROP) |
| 776 | break; |
| 777 | *p += 4; |
| 778 | sz = *((u32 *)(*p)); |
| 779 | noff = *((u32 *)((*p) + 4)); |
| 780 | *p = _ALIGN((*p) + 8, sz >= 8 ? 8 : 4); |
| 781 | |
| 782 | pname = find_flat_dt_string(noff); |
| 783 | if (pname == NULL) { |
| 784 | printk("Can't find property name in list !\n"); |
| 785 | break; |
| 786 | } |
| 787 | l = strlen(pname) + 1; |
| 788 | pp = unflatten_dt_alloc(&mem, sizeof(struct property), |
| 789 | __alignof__(struct property)); |
| 790 | if (allnextpp) { |
| 791 | if (strcmp(pname, "linux,phandle") == 0) { |
| 792 | np->node = *((u32 *)*p); |
| 793 | if (np->linux_phandle == 0) |
| 794 | np->linux_phandle = np->node; |
| 795 | } |
| 796 | if (strcmp(pname, "ibm,phandle") == 0) |
| 797 | np->linux_phandle = *((u32 *)*p); |
| 798 | pp->name = pname; |
| 799 | pp->length = sz; |
| 800 | pp->value = (void *)*p; |
| 801 | *prev_pp = pp; |
| 802 | prev_pp = &pp->next; |
| 803 | } |
| 804 | *p = _ALIGN((*p) + sz, 4); |
| 805 | } |
| 806 | if (allnextpp) { |
| 807 | *prev_pp = NULL; |
| 808 | np->name = get_property(np, "name", NULL); |
| 809 | np->type = get_property(np, "device_type", NULL); |
| 810 | |
| 811 | if (!np->name) |
| 812 | np->name = "<NULL>"; |
| 813 | if (!np->type) |
| 814 | np->type = "<NULL>"; |
| 815 | } |
| 816 | while (tag == OF_DT_BEGIN_NODE) { |
| 817 | mem = unflatten_dt_node(mem, p, np, allnextpp); |
| 818 | tag = *((u32 *)(*p)); |
| 819 | } |
| 820 | if (tag != OF_DT_END_NODE) { |
| 821 | printk("Weird tag at start of node: %x\n", tag); |
| 822 | return mem; |
| 823 | } |
| 824 | *p += 4; |
| 825 | return mem; |
| 826 | } |
| 827 | |
| 828 | |
| 829 | /** |
| 830 | * unflattens the device-tree passed by the firmware, creating the |
| 831 | * tree of struct device_node. It also fills the "name" and "type" |
| 832 | * pointers of the nodes so the normal device-tree walking functions |
| 833 | * can be used (this used to be done by finish_device_tree) |
| 834 | */ |
| 835 | void __init unflatten_device_tree(void) |
| 836 | { |
| 837 | unsigned long start, mem, size; |
| 838 | struct device_node **allnextp = &allnodes; |
| 839 | char *p; |
| 840 | int l = 0; |
| 841 | |
| 842 | DBG(" -> unflatten_device_tree()\n"); |
| 843 | |
| 844 | /* First pass, scan for size */ |
| 845 | start = ((unsigned long)initial_boot_params) + |
| 846 | initial_boot_params->off_dt_struct; |
| 847 | size = unflatten_dt_node(0, &start, NULL, NULL); |
| 848 | |
| 849 | DBG(" size is %lx, allocating...\n", size); |
| 850 | |
| 851 | /* Allocate memory for the expanded device tree */ |
| 852 | mem = (unsigned long)abs_to_virt(lmb_alloc(size, |
| 853 | __alignof__(struct device_node))); |
| 854 | DBG(" unflattening...\n", mem); |
| 855 | |
| 856 | /* Second pass, do actual unflattening */ |
| 857 | start = ((unsigned long)initial_boot_params) + |
| 858 | initial_boot_params->off_dt_struct; |
| 859 | unflatten_dt_node(mem, &start, NULL, &allnextp); |
| 860 | if (*((u32 *)start) != OF_DT_END) |
| 861 | printk(KERN_WARNING "Weird tag at end of tree: %x\n", *((u32 *)start)); |
| 862 | *allnextp = NULL; |
| 863 | |
| 864 | /* Get pointer to OF "/chosen" node for use everywhere */ |
| 865 | of_chosen = of_find_node_by_path("/chosen"); |
| 866 | |
| 867 | /* Retreive command line */ |
| 868 | if (of_chosen != NULL) { |
| 869 | p = (char *)get_property(of_chosen, "bootargs", &l); |
| 870 | if (p != NULL && l > 0) |
| 871 | strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE)); |
| 872 | } |
| 873 | #ifdef CONFIG_CMDLINE |
| 874 | if (l == 0 || (l == 1 && (*p) == 0)) |
| 875 | strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
| 876 | #endif /* CONFIG_CMDLINE */ |
| 877 | |
| 878 | DBG("Command line is: %s\n", cmd_line); |
| 879 | |
| 880 | DBG(" <- unflatten_device_tree()\n"); |
| 881 | } |
| 882 | |
| 883 | |
| 884 | static int __init early_init_dt_scan_cpus(unsigned long node, |
| 885 | const char *full_path, void *data) |
| 886 | { |
| 887 | char *type = get_flat_dt_prop(node, "device_type", NULL); |
Benjamin Herrenschmidt | 187335a | 2005-04-16 15:24:36 -0700 | [diff] [blame^] | 888 | u32 *prop; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 889 | |
| 890 | /* We are scanning "cpu" nodes only */ |
| 891 | if (type == NULL || strcmp(type, "cpu") != 0) |
| 892 | return 0; |
| 893 | |
| 894 | /* On LPAR, look for the first ibm,pft-size property for the hash table size |
| 895 | */ |
| 896 | if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) { |
| 897 | u32 *pft_size; |
| 898 | pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL); |
| 899 | if (pft_size != NULL) { |
| 900 | /* pft_size[0] is the NUMA CEC cookie */ |
| 901 | ppc64_pft_size = pft_size[1]; |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | if (initial_boot_params && initial_boot_params->version >= 2) { |
| 906 | /* version 2 of the kexec param format adds the phys cpuid |
| 907 | * of booted proc. |
| 908 | */ |
| 909 | boot_cpuid_phys = initial_boot_params->boot_cpuid_phys; |
| 910 | boot_cpuid = 0; |
| 911 | } else { |
| 912 | /* Check if it's the boot-cpu, set it's hw index in paca now */ |
| 913 | if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) { |
| 914 | u32 *prop = get_flat_dt_prop(node, "reg", NULL); |
| 915 | set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop); |
| 916 | boot_cpuid_phys = get_hard_smp_processor_id(0); |
| 917 | } |
| 918 | } |
| 919 | |
Benjamin Herrenschmidt | 187335a | 2005-04-16 15:24:36 -0700 | [diff] [blame^] | 920 | /* Check if we have a VMX and eventually update CPU features */ |
| 921 | prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL); |
| 922 | if (prop && (*prop) > 0) { |
| 923 | cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; |
| 924 | cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; |
| 925 | } |
| 926 | |
| 927 | /* Same goes for Apple's "altivec" property */ |
| 928 | prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL); |
| 929 | if (prop) { |
| 930 | cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; |
| 931 | cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; |
| 932 | } |
| 933 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 934 | return 0; |
| 935 | } |
| 936 | |
| 937 | static int __init early_init_dt_scan_chosen(unsigned long node, |
| 938 | const char *full_path, void *data) |
| 939 | { |
| 940 | u32 *prop; |
| 941 | u64 *prop64; |
| 942 | extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end; |
| 943 | |
| 944 | if (strcmp(full_path, "/chosen") != 0) |
| 945 | return 0; |
| 946 | |
| 947 | /* get platform type */ |
| 948 | prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL); |
| 949 | if (prop == NULL) |
| 950 | return 0; |
| 951 | systemcfg->platform = *prop; |
| 952 | |
| 953 | /* check if iommu is forced on or off */ |
| 954 | if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) |
| 955 | iommu_is_off = 1; |
| 956 | if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) |
| 957 | iommu_force_on = 1; |
| 958 | |
| 959 | prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL); |
| 960 | if (prop64) |
| 961 | memory_limit = *prop64; |
| 962 | |
| 963 | prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); |
| 964 | if (prop64) |
| 965 | tce_alloc_start = *prop64; |
| 966 | |
| 967 | prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); |
| 968 | if (prop64) |
| 969 | tce_alloc_end = *prop64; |
| 970 | |
| 971 | #ifdef CONFIG_PPC_RTAS |
| 972 | /* To help early debugging via the front panel, we retreive a minimal |
| 973 | * set of RTAS infos now if available |
| 974 | */ |
| 975 | { |
| 976 | u64 *basep, *entryp; |
| 977 | |
| 978 | basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL); |
| 979 | entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL); |
| 980 | prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL); |
| 981 | if (basep && entryp && prop) { |
| 982 | rtas.base = *basep; |
| 983 | rtas.entry = *entryp; |
| 984 | rtas.size = *prop; |
| 985 | } |
| 986 | } |
| 987 | #endif /* CONFIG_PPC_RTAS */ |
| 988 | |
| 989 | /* break now */ |
| 990 | return 1; |
| 991 | } |
| 992 | |
| 993 | static int __init early_init_dt_scan_root(unsigned long node, |
| 994 | const char *full_path, void *data) |
| 995 | { |
| 996 | u32 *prop; |
| 997 | |
| 998 | if (strcmp(full_path, "/") != 0) |
| 999 | return 0; |
| 1000 | |
| 1001 | prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL); |
| 1002 | dt_root_size_cells = (prop == NULL) ? 1 : *prop; |
| 1003 | |
| 1004 | prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL); |
| 1005 | dt_root_addr_cells = (prop == NULL) ? 2 : *prop; |
| 1006 | |
| 1007 | /* break now */ |
| 1008 | return 1; |
| 1009 | } |
| 1010 | |
| 1011 | static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp) |
| 1012 | { |
| 1013 | cell_t *p = *cellp; |
| 1014 | unsigned long r = 0; |
| 1015 | |
| 1016 | /* Ignore more than 2 cells */ |
| 1017 | while (s > 2) { |
| 1018 | p++; |
| 1019 | s--; |
| 1020 | } |
| 1021 | while (s) { |
| 1022 | r <<= 32; |
| 1023 | r |= *(p++); |
| 1024 | s--; |
| 1025 | } |
| 1026 | |
| 1027 | *cellp = p; |
| 1028 | return r; |
| 1029 | } |
| 1030 | |
| 1031 | |
| 1032 | static int __init early_init_dt_scan_memory(unsigned long node, |
| 1033 | const char *full_path, void *data) |
| 1034 | { |
| 1035 | char *type = get_flat_dt_prop(node, "device_type", NULL); |
| 1036 | cell_t *reg, *endp; |
| 1037 | unsigned long l; |
| 1038 | |
| 1039 | /* We are scanning "memory" nodes only */ |
| 1040 | if (type == NULL || strcmp(type, "memory") != 0) |
| 1041 | return 0; |
| 1042 | |
| 1043 | reg = (cell_t *)get_flat_dt_prop(node, "reg", &l); |
| 1044 | if (reg == NULL) |
| 1045 | return 0; |
| 1046 | |
| 1047 | endp = reg + (l / sizeof(cell_t)); |
| 1048 | |
| 1049 | DBG("memory scan node %s ...\n", full_path); |
| 1050 | while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| 1051 | unsigned long base, size; |
| 1052 | |
| 1053 | base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| 1054 | size = dt_mem_next_cell(dt_root_size_cells, ®); |
| 1055 | |
| 1056 | if (size == 0) |
| 1057 | continue; |
| 1058 | DBG(" - %lx , %lx\n", base, size); |
| 1059 | if (iommu_is_off) { |
| 1060 | if (base >= 0x80000000ul) |
| 1061 | continue; |
| 1062 | if ((base + size) > 0x80000000ul) |
| 1063 | size = 0x80000000ul - base; |
| 1064 | } |
| 1065 | lmb_add(base, size); |
| 1066 | } |
| 1067 | return 0; |
| 1068 | } |
| 1069 | |
| 1070 | static void __init early_reserve_mem(void) |
| 1071 | { |
| 1072 | u64 base, size; |
| 1073 | u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) + |
| 1074 | initial_boot_params->off_mem_rsvmap); |
| 1075 | while (1) { |
| 1076 | base = *(reserve_map++); |
| 1077 | size = *(reserve_map++); |
| 1078 | if (size == 0) |
| 1079 | break; |
| 1080 | DBG("reserving: %lx -> %lx\n", base, size); |
| 1081 | lmb_reserve(base, size); |
| 1082 | } |
| 1083 | |
| 1084 | #if 0 |
| 1085 | DBG("memory reserved, lmbs :\n"); |
| 1086 | lmb_dump_all(); |
| 1087 | #endif |
| 1088 | } |
| 1089 | |
| 1090 | void __init early_init_devtree(void *params) |
| 1091 | { |
| 1092 | DBG(" -> early_init_devtree()\n"); |
| 1093 | |
| 1094 | /* Setup flat device-tree pointer */ |
| 1095 | initial_boot_params = params; |
| 1096 | |
| 1097 | /* By default, hash size is not set */ |
| 1098 | ppc64_pft_size = 0; |
| 1099 | |
| 1100 | /* Retreive various informations from the /chosen node of the |
| 1101 | * device-tree, including the platform type, initrd location and |
| 1102 | * size, TCE reserve, and more ... |
| 1103 | */ |
| 1104 | scan_flat_dt(early_init_dt_scan_chosen, NULL); |
| 1105 | |
| 1106 | /* Scan memory nodes and rebuild LMBs */ |
| 1107 | lmb_init(); |
| 1108 | scan_flat_dt(early_init_dt_scan_root, NULL); |
| 1109 | scan_flat_dt(early_init_dt_scan_memory, NULL); |
| 1110 | lmb_enforce_memory_limit(); |
| 1111 | lmb_analyze(); |
| 1112 | systemcfg->physicalMemorySize = lmb_phys_mem_size(); |
| 1113 | lmb_reserve(0, __pa(klimit)); |
| 1114 | |
| 1115 | DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize); |
| 1116 | |
| 1117 | /* Reserve LMB regions used by kernel, initrd, dt, etc... */ |
| 1118 | early_reserve_mem(); |
| 1119 | |
| 1120 | DBG("Scanning CPUs ...\n"); |
| 1121 | |
Benjamin Herrenschmidt | 187335a | 2005-04-16 15:24:36 -0700 | [diff] [blame^] | 1122 | /* Retreive hash table size from flattened tree plus other |
| 1123 | * CPU related informations (altivec support, boot CPU ID, ...) |
| 1124 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1125 | scan_flat_dt(early_init_dt_scan_cpus, NULL); |
| 1126 | |
| 1127 | /* If hash size wasn't obtained above, we calculate it now based on |
| 1128 | * the total RAM size |
| 1129 | */ |
| 1130 | if (ppc64_pft_size == 0) { |
| 1131 | unsigned long rnd_mem_size, pteg_count; |
| 1132 | |
| 1133 | /* round mem_size up to next power of 2 */ |
| 1134 | rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize); |
| 1135 | if (rnd_mem_size < systemcfg->physicalMemorySize) |
| 1136 | rnd_mem_size <<= 1; |
| 1137 | |
| 1138 | /* # pages / 2 */ |
| 1139 | pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11); |
| 1140 | |
| 1141 | ppc64_pft_size = __ilog2(pteg_count << 7); |
| 1142 | } |
| 1143 | |
| 1144 | DBG("Hash pftSize: %x\n", (int)ppc64_pft_size); |
| 1145 | DBG(" <- early_init_devtree()\n"); |
| 1146 | } |
| 1147 | |
| 1148 | #undef printk |
| 1149 | |
| 1150 | int |
| 1151 | prom_n_addr_cells(struct device_node* np) |
| 1152 | { |
| 1153 | int* ip; |
| 1154 | do { |
| 1155 | if (np->parent) |
| 1156 | np = np->parent; |
| 1157 | ip = (int *) get_property(np, "#address-cells", NULL); |
| 1158 | if (ip != NULL) |
| 1159 | return *ip; |
| 1160 | } while (np->parent); |
| 1161 | /* No #address-cells property for the root node, default to 1 */ |
| 1162 | return 1; |
| 1163 | } |
| 1164 | |
| 1165 | int |
| 1166 | prom_n_size_cells(struct device_node* np) |
| 1167 | { |
| 1168 | int* ip; |
| 1169 | do { |
| 1170 | if (np->parent) |
| 1171 | np = np->parent; |
| 1172 | ip = (int *) get_property(np, "#size-cells", NULL); |
| 1173 | if (ip != NULL) |
| 1174 | return *ip; |
| 1175 | } while (np->parent); |
| 1176 | /* No #size-cells property for the root node, default to 1 */ |
| 1177 | return 1; |
| 1178 | } |
| 1179 | |
| 1180 | /** |
| 1181 | * Work out the sense (active-low level / active-high edge) |
| 1182 | * of each interrupt from the device tree. |
| 1183 | */ |
| 1184 | void __init prom_get_irq_senses(unsigned char *senses, int off, int max) |
| 1185 | { |
| 1186 | struct device_node *np; |
| 1187 | int i, j; |
| 1188 | |
| 1189 | /* default to level-triggered */ |
| 1190 | memset(senses, 1, max - off); |
| 1191 | |
| 1192 | for (np = allnodes; np != 0; np = np->allnext) { |
| 1193 | for (j = 0; j < np->n_intrs; j++) { |
| 1194 | i = np->intrs[j].line; |
| 1195 | if (i >= off && i < max) |
| 1196 | senses[i-off] = np->intrs[j].sense ? |
| 1197 | IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE : |
| 1198 | IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE; |
| 1199 | } |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | /** |
| 1204 | * Construct and return a list of the device_nodes with a given name. |
| 1205 | */ |
| 1206 | struct device_node * |
| 1207 | find_devices(const char *name) |
| 1208 | { |
| 1209 | struct device_node *head, **prevp, *np; |
| 1210 | |
| 1211 | prevp = &head; |
| 1212 | for (np = allnodes; np != 0; np = np->allnext) { |
| 1213 | if (np->name != 0 && strcasecmp(np->name, name) == 0) { |
| 1214 | *prevp = np; |
| 1215 | prevp = &np->next; |
| 1216 | } |
| 1217 | } |
| 1218 | *prevp = NULL; |
| 1219 | return head; |
| 1220 | } |
| 1221 | EXPORT_SYMBOL(find_devices); |
| 1222 | |
| 1223 | /** |
| 1224 | * Construct and return a list of the device_nodes with a given type. |
| 1225 | */ |
| 1226 | struct device_node * |
| 1227 | find_type_devices(const char *type) |
| 1228 | { |
| 1229 | struct device_node *head, **prevp, *np; |
| 1230 | |
| 1231 | prevp = &head; |
| 1232 | for (np = allnodes; np != 0; np = np->allnext) { |
| 1233 | if (np->type != 0 && strcasecmp(np->type, type) == 0) { |
| 1234 | *prevp = np; |
| 1235 | prevp = &np->next; |
| 1236 | } |
| 1237 | } |
| 1238 | *prevp = NULL; |
| 1239 | return head; |
| 1240 | } |
| 1241 | EXPORT_SYMBOL(find_type_devices); |
| 1242 | |
| 1243 | /** |
| 1244 | * Returns all nodes linked together |
| 1245 | */ |
| 1246 | struct device_node * |
| 1247 | find_all_nodes(void) |
| 1248 | { |
| 1249 | struct device_node *head, **prevp, *np; |
| 1250 | |
| 1251 | prevp = &head; |
| 1252 | for (np = allnodes; np != 0; np = np->allnext) { |
| 1253 | *prevp = np; |
| 1254 | prevp = &np->next; |
| 1255 | } |
| 1256 | *prevp = NULL; |
| 1257 | return head; |
| 1258 | } |
| 1259 | EXPORT_SYMBOL(find_all_nodes); |
| 1260 | |
| 1261 | /** Checks if the given "compat" string matches one of the strings in |
| 1262 | * the device's "compatible" property |
| 1263 | */ |
| 1264 | int |
| 1265 | device_is_compatible(struct device_node *device, const char *compat) |
| 1266 | { |
| 1267 | const char* cp; |
| 1268 | int cplen, l; |
| 1269 | |
| 1270 | cp = (char *) get_property(device, "compatible", &cplen); |
| 1271 | if (cp == NULL) |
| 1272 | return 0; |
| 1273 | while (cplen > 0) { |
| 1274 | if (strncasecmp(cp, compat, strlen(compat)) == 0) |
| 1275 | return 1; |
| 1276 | l = strlen(cp) + 1; |
| 1277 | cp += l; |
| 1278 | cplen -= l; |
| 1279 | } |
| 1280 | |
| 1281 | return 0; |
| 1282 | } |
| 1283 | EXPORT_SYMBOL(device_is_compatible); |
| 1284 | |
| 1285 | |
| 1286 | /** |
| 1287 | * Indicates whether the root node has a given value in its |
| 1288 | * compatible property. |
| 1289 | */ |
| 1290 | int |
| 1291 | machine_is_compatible(const char *compat) |
| 1292 | { |
| 1293 | struct device_node *root; |
| 1294 | int rc = 0; |
| 1295 | |
| 1296 | root = of_find_node_by_path("/"); |
| 1297 | if (root) { |
| 1298 | rc = device_is_compatible(root, compat); |
| 1299 | of_node_put(root); |
| 1300 | } |
| 1301 | return rc; |
| 1302 | } |
| 1303 | EXPORT_SYMBOL(machine_is_compatible); |
| 1304 | |
| 1305 | /** |
| 1306 | * Construct and return a list of the device_nodes with a given type |
| 1307 | * and compatible property. |
| 1308 | */ |
| 1309 | struct device_node * |
| 1310 | find_compatible_devices(const char *type, const char *compat) |
| 1311 | { |
| 1312 | struct device_node *head, **prevp, *np; |
| 1313 | |
| 1314 | prevp = &head; |
| 1315 | for (np = allnodes; np != 0; np = np->allnext) { |
| 1316 | if (type != NULL |
| 1317 | && !(np->type != 0 && strcasecmp(np->type, type) == 0)) |
| 1318 | continue; |
| 1319 | if (device_is_compatible(np, compat)) { |
| 1320 | *prevp = np; |
| 1321 | prevp = &np->next; |
| 1322 | } |
| 1323 | } |
| 1324 | *prevp = NULL; |
| 1325 | return head; |
| 1326 | } |
| 1327 | EXPORT_SYMBOL(find_compatible_devices); |
| 1328 | |
| 1329 | /** |
| 1330 | * Find the device_node with a given full_name. |
| 1331 | */ |
| 1332 | struct device_node * |
| 1333 | find_path_device(const char *path) |
| 1334 | { |
| 1335 | struct device_node *np; |
| 1336 | |
| 1337 | for (np = allnodes; np != 0; np = np->allnext) |
| 1338 | if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) |
| 1339 | return np; |
| 1340 | return NULL; |
| 1341 | } |
| 1342 | EXPORT_SYMBOL(find_path_device); |
| 1343 | |
| 1344 | /******* |
| 1345 | * |
| 1346 | * New implementation of the OF "find" APIs, return a refcounted |
| 1347 | * object, call of_node_put() when done. The device tree and list |
| 1348 | * are protected by a rw_lock. |
| 1349 | * |
| 1350 | * Note that property management will need some locking as well, |
| 1351 | * this isn't dealt with yet. |
| 1352 | * |
| 1353 | *******/ |
| 1354 | |
| 1355 | /** |
| 1356 | * of_find_node_by_name - Find a node by its "name" property |
| 1357 | * @from: The node to start searching from or NULL, the node |
| 1358 | * you pass will not be searched, only the next one |
| 1359 | * will; typically, you pass what the previous call |
| 1360 | * returned. of_node_put() will be called on it |
| 1361 | * @name: The name string to match against |
| 1362 | * |
| 1363 | * Returns a node pointer with refcount incremented, use |
| 1364 | * of_node_put() on it when done. |
| 1365 | */ |
| 1366 | struct device_node *of_find_node_by_name(struct device_node *from, |
| 1367 | const char *name) |
| 1368 | { |
| 1369 | struct device_node *np; |
| 1370 | |
| 1371 | read_lock(&devtree_lock); |
| 1372 | np = from ? from->allnext : allnodes; |
| 1373 | for (; np != 0; np = np->allnext) |
| 1374 | if (np->name != 0 && strcasecmp(np->name, name) == 0 |
| 1375 | && of_node_get(np)) |
| 1376 | break; |
| 1377 | if (from) |
| 1378 | of_node_put(from); |
| 1379 | read_unlock(&devtree_lock); |
| 1380 | return np; |
| 1381 | } |
| 1382 | EXPORT_SYMBOL(of_find_node_by_name); |
| 1383 | |
| 1384 | /** |
| 1385 | * of_find_node_by_type - Find a node by its "device_type" property |
| 1386 | * @from: The node to start searching from or NULL, the node |
| 1387 | * you pass will not be searched, only the next one |
| 1388 | * will; typically, you pass what the previous call |
| 1389 | * returned. of_node_put() will be called on it |
| 1390 | * @name: The type string to match against |
| 1391 | * |
| 1392 | * Returns a node pointer with refcount incremented, use |
| 1393 | * of_node_put() on it when done. |
| 1394 | */ |
| 1395 | struct device_node *of_find_node_by_type(struct device_node *from, |
| 1396 | const char *type) |
| 1397 | { |
| 1398 | struct device_node *np; |
| 1399 | |
| 1400 | read_lock(&devtree_lock); |
| 1401 | np = from ? from->allnext : allnodes; |
| 1402 | for (; np != 0; np = np->allnext) |
| 1403 | if (np->type != 0 && strcasecmp(np->type, type) == 0 |
| 1404 | && of_node_get(np)) |
| 1405 | break; |
| 1406 | if (from) |
| 1407 | of_node_put(from); |
| 1408 | read_unlock(&devtree_lock); |
| 1409 | return np; |
| 1410 | } |
| 1411 | EXPORT_SYMBOL(of_find_node_by_type); |
| 1412 | |
| 1413 | /** |
| 1414 | * of_find_compatible_node - Find a node based on type and one of the |
| 1415 | * tokens in its "compatible" property |
| 1416 | * @from: The node to start searching from or NULL, the node |
| 1417 | * you pass will not be searched, only the next one |
| 1418 | * will; typically, you pass what the previous call |
| 1419 | * returned. of_node_put() will be called on it |
| 1420 | * @type: The type string to match "device_type" or NULL to ignore |
| 1421 | * @compatible: The string to match to one of the tokens in the device |
| 1422 | * "compatible" list. |
| 1423 | * |
| 1424 | * Returns a node pointer with refcount incremented, use |
| 1425 | * of_node_put() on it when done. |
| 1426 | */ |
| 1427 | struct device_node *of_find_compatible_node(struct device_node *from, |
| 1428 | const char *type, const char *compatible) |
| 1429 | { |
| 1430 | struct device_node *np; |
| 1431 | |
| 1432 | read_lock(&devtree_lock); |
| 1433 | np = from ? from->allnext : allnodes; |
| 1434 | for (; np != 0; np = np->allnext) { |
| 1435 | if (type != NULL |
| 1436 | && !(np->type != 0 && strcasecmp(np->type, type) == 0)) |
| 1437 | continue; |
| 1438 | if (device_is_compatible(np, compatible) && of_node_get(np)) |
| 1439 | break; |
| 1440 | } |
| 1441 | if (from) |
| 1442 | of_node_put(from); |
| 1443 | read_unlock(&devtree_lock); |
| 1444 | return np; |
| 1445 | } |
| 1446 | EXPORT_SYMBOL(of_find_compatible_node); |
| 1447 | |
| 1448 | /** |
| 1449 | * of_find_node_by_path - Find a node matching a full OF path |
| 1450 | * @path: The full path to match |
| 1451 | * |
| 1452 | * Returns a node pointer with refcount incremented, use |
| 1453 | * of_node_put() on it when done. |
| 1454 | */ |
| 1455 | struct device_node *of_find_node_by_path(const char *path) |
| 1456 | { |
| 1457 | struct device_node *np = allnodes; |
| 1458 | |
| 1459 | read_lock(&devtree_lock); |
| 1460 | for (; np != 0; np = np->allnext) |
| 1461 | if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0 |
| 1462 | && of_node_get(np)) |
| 1463 | break; |
| 1464 | read_unlock(&devtree_lock); |
| 1465 | return np; |
| 1466 | } |
| 1467 | EXPORT_SYMBOL(of_find_node_by_path); |
| 1468 | |
| 1469 | /** |
| 1470 | * of_find_node_by_phandle - Find a node given a phandle |
| 1471 | * @handle: phandle of the node to find |
| 1472 | * |
| 1473 | * Returns a node pointer with refcount incremented, use |
| 1474 | * of_node_put() on it when done. |
| 1475 | */ |
| 1476 | struct device_node *of_find_node_by_phandle(phandle handle) |
| 1477 | { |
| 1478 | struct device_node *np; |
| 1479 | |
| 1480 | read_lock(&devtree_lock); |
| 1481 | for (np = allnodes; np != 0; np = np->allnext) |
| 1482 | if (np->linux_phandle == handle) |
| 1483 | break; |
| 1484 | if (np) |
| 1485 | of_node_get(np); |
| 1486 | read_unlock(&devtree_lock); |
| 1487 | return np; |
| 1488 | } |
| 1489 | EXPORT_SYMBOL(of_find_node_by_phandle); |
| 1490 | |
| 1491 | /** |
| 1492 | * of_find_all_nodes - Get next node in global list |
| 1493 | * @prev: Previous node or NULL to start iteration |
| 1494 | * of_node_put() will be called on it |
| 1495 | * |
| 1496 | * Returns a node pointer with refcount incremented, use |
| 1497 | * of_node_put() on it when done. |
| 1498 | */ |
| 1499 | struct device_node *of_find_all_nodes(struct device_node *prev) |
| 1500 | { |
| 1501 | struct device_node *np; |
| 1502 | |
| 1503 | read_lock(&devtree_lock); |
| 1504 | np = prev ? prev->allnext : allnodes; |
| 1505 | for (; np != 0; np = np->allnext) |
| 1506 | if (of_node_get(np)) |
| 1507 | break; |
| 1508 | if (prev) |
| 1509 | of_node_put(prev); |
| 1510 | read_unlock(&devtree_lock); |
| 1511 | return np; |
| 1512 | } |
| 1513 | EXPORT_SYMBOL(of_find_all_nodes); |
| 1514 | |
| 1515 | /** |
| 1516 | * of_get_parent - Get a node's parent if any |
| 1517 | * @node: Node to get parent |
| 1518 | * |
| 1519 | * Returns a node pointer with refcount incremented, use |
| 1520 | * of_node_put() on it when done. |
| 1521 | */ |
| 1522 | struct device_node *of_get_parent(const struct device_node *node) |
| 1523 | { |
| 1524 | struct device_node *np; |
| 1525 | |
| 1526 | if (!node) |
| 1527 | return NULL; |
| 1528 | |
| 1529 | read_lock(&devtree_lock); |
| 1530 | np = of_node_get(node->parent); |
| 1531 | read_unlock(&devtree_lock); |
| 1532 | return np; |
| 1533 | } |
| 1534 | EXPORT_SYMBOL(of_get_parent); |
| 1535 | |
| 1536 | /** |
| 1537 | * of_get_next_child - Iterate a node childs |
| 1538 | * @node: parent node |
| 1539 | * @prev: previous child of the parent node, or NULL to get first |
| 1540 | * |
| 1541 | * Returns a node pointer with refcount incremented, use |
| 1542 | * of_node_put() on it when done. |
| 1543 | */ |
| 1544 | struct device_node *of_get_next_child(const struct device_node *node, |
| 1545 | struct device_node *prev) |
| 1546 | { |
| 1547 | struct device_node *next; |
| 1548 | |
| 1549 | read_lock(&devtree_lock); |
| 1550 | next = prev ? prev->sibling : node->child; |
| 1551 | for (; next != 0; next = next->sibling) |
| 1552 | if (of_node_get(next)) |
| 1553 | break; |
| 1554 | if (prev) |
| 1555 | of_node_put(prev); |
| 1556 | read_unlock(&devtree_lock); |
| 1557 | return next; |
| 1558 | } |
| 1559 | EXPORT_SYMBOL(of_get_next_child); |
| 1560 | |
| 1561 | /** |
| 1562 | * of_node_get - Increment refcount of a node |
| 1563 | * @node: Node to inc refcount, NULL is supported to |
| 1564 | * simplify writing of callers |
| 1565 | * |
| 1566 | * Returns node. |
| 1567 | */ |
| 1568 | struct device_node *of_node_get(struct device_node *node) |
| 1569 | { |
| 1570 | if (node) |
| 1571 | kref_get(&node->kref); |
| 1572 | return node; |
| 1573 | } |
| 1574 | EXPORT_SYMBOL(of_node_get); |
| 1575 | |
| 1576 | static inline struct device_node * kref_to_device_node(struct kref *kref) |
| 1577 | { |
| 1578 | return container_of(kref, struct device_node, kref); |
| 1579 | } |
| 1580 | |
| 1581 | /** |
| 1582 | * of_node_release - release a dynamically allocated node |
| 1583 | * @kref: kref element of the node to be released |
| 1584 | * |
| 1585 | * In of_node_put() this function is passed to kref_put() |
| 1586 | * as the destructor. |
| 1587 | */ |
| 1588 | static void of_node_release(struct kref *kref) |
| 1589 | { |
| 1590 | struct device_node *node = kref_to_device_node(kref); |
| 1591 | struct property *prop = node->properties; |
| 1592 | |
| 1593 | if (!OF_IS_DYNAMIC(node)) |
| 1594 | return; |
| 1595 | while (prop) { |
| 1596 | struct property *next = prop->next; |
| 1597 | kfree(prop->name); |
| 1598 | kfree(prop->value); |
| 1599 | kfree(prop); |
| 1600 | prop = next; |
| 1601 | } |
| 1602 | kfree(node->intrs); |
| 1603 | kfree(node->addrs); |
| 1604 | kfree(node->full_name); |
| 1605 | kfree(node); |
| 1606 | } |
| 1607 | |
| 1608 | /** |
| 1609 | * of_node_put - Decrement refcount of a node |
| 1610 | * @node: Node to dec refcount, NULL is supported to |
| 1611 | * simplify writing of callers |
| 1612 | * |
| 1613 | */ |
| 1614 | void of_node_put(struct device_node *node) |
| 1615 | { |
| 1616 | if (node) |
| 1617 | kref_put(&node->kref, of_node_release); |
| 1618 | } |
| 1619 | EXPORT_SYMBOL(of_node_put); |
| 1620 | |
| 1621 | /* |
| 1622 | * Fix up the uninitialized fields in a new device node: |
| 1623 | * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields |
| 1624 | * |
| 1625 | * A lot of boot-time code is duplicated here, because functions such |
| 1626 | * as finish_node_interrupts, interpret_pci_props, etc. cannot use the |
| 1627 | * slab allocator. |
| 1628 | * |
| 1629 | * This should probably be split up into smaller chunks. |
| 1630 | */ |
| 1631 | |
| 1632 | static int of_finish_dynamic_node(struct device_node *node, |
| 1633 | unsigned long *unused1, int unused2, |
| 1634 | int unused3, int unused4) |
| 1635 | { |
| 1636 | struct device_node *parent = of_get_parent(node); |
| 1637 | int err = 0; |
| 1638 | phandle *ibm_phandle; |
| 1639 | |
| 1640 | node->name = get_property(node, "name", NULL); |
| 1641 | node->type = get_property(node, "device_type", NULL); |
| 1642 | |
| 1643 | if (!parent) { |
| 1644 | err = -ENODEV; |
| 1645 | goto out; |
| 1646 | } |
| 1647 | |
| 1648 | /* We don't support that function on PowerMac, at least |
| 1649 | * not yet |
| 1650 | */ |
| 1651 | if (systemcfg->platform == PLATFORM_POWERMAC) |
| 1652 | return -ENODEV; |
| 1653 | |
| 1654 | /* fix up new node's linux_phandle field */ |
| 1655 | if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL))) |
| 1656 | node->linux_phandle = *ibm_phandle; |
| 1657 | |
| 1658 | out: |
| 1659 | of_node_put(parent); |
| 1660 | return err; |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * Plug a device node into the tree and global list. |
| 1665 | */ |
| 1666 | void of_attach_node(struct device_node *np) |
| 1667 | { |
| 1668 | write_lock(&devtree_lock); |
| 1669 | np->sibling = np->parent->child; |
| 1670 | np->allnext = allnodes; |
| 1671 | np->parent->child = np; |
| 1672 | allnodes = np; |
| 1673 | write_unlock(&devtree_lock); |
| 1674 | } |
| 1675 | |
| 1676 | /* |
| 1677 | * "Unplug" a node from the device tree. The caller must hold |
| 1678 | * a reference to the node. The memory associated with the node |
| 1679 | * is not freed until its refcount goes to zero. |
| 1680 | */ |
| 1681 | void of_detach_node(const struct device_node *np) |
| 1682 | { |
| 1683 | struct device_node *parent; |
| 1684 | |
| 1685 | write_lock(&devtree_lock); |
| 1686 | |
| 1687 | parent = np->parent; |
| 1688 | |
| 1689 | if (allnodes == np) |
| 1690 | allnodes = np->allnext; |
| 1691 | else { |
| 1692 | struct device_node *prev; |
| 1693 | for (prev = allnodes; |
| 1694 | prev->allnext != np; |
| 1695 | prev = prev->allnext) |
| 1696 | ; |
| 1697 | prev->allnext = np->allnext; |
| 1698 | } |
| 1699 | |
| 1700 | if (parent->child == np) |
| 1701 | parent->child = np->sibling; |
| 1702 | else { |
| 1703 | struct device_node *prevsib; |
| 1704 | for (prevsib = np->parent->child; |
| 1705 | prevsib->sibling != np; |
| 1706 | prevsib = prevsib->sibling) |
| 1707 | ; |
| 1708 | prevsib->sibling = np->sibling; |
| 1709 | } |
| 1710 | |
| 1711 | write_unlock(&devtree_lock); |
| 1712 | } |
| 1713 | |
| 1714 | static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) |
| 1715 | { |
| 1716 | int err; |
| 1717 | |
| 1718 | switch (action) { |
| 1719 | case PSERIES_RECONFIG_ADD: |
| 1720 | err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0); |
| 1721 | if (err < 0) { |
| 1722 | printk(KERN_ERR "finish_node returned %d\n", err); |
| 1723 | err = NOTIFY_BAD; |
| 1724 | } |
| 1725 | break; |
| 1726 | default: |
| 1727 | err = NOTIFY_DONE; |
| 1728 | break; |
| 1729 | } |
| 1730 | return err; |
| 1731 | } |
| 1732 | |
| 1733 | static struct notifier_block prom_reconfig_nb = { |
| 1734 | .notifier_call = prom_reconfig_notifier, |
| 1735 | .priority = 10, /* This one needs to run first */ |
| 1736 | }; |
| 1737 | |
| 1738 | static int __init prom_reconfig_setup(void) |
| 1739 | { |
| 1740 | return pSeries_reconfig_notifier_register(&prom_reconfig_nb); |
| 1741 | } |
| 1742 | __initcall(prom_reconfig_setup); |
| 1743 | |
| 1744 | /* |
| 1745 | * Find a property with a given name for a given node |
| 1746 | * and return the value. |
| 1747 | */ |
| 1748 | unsigned char * |
| 1749 | get_property(struct device_node *np, const char *name, int *lenp) |
| 1750 | { |
| 1751 | struct property *pp; |
| 1752 | |
| 1753 | for (pp = np->properties; pp != 0; pp = pp->next) |
| 1754 | if (strcmp(pp->name, name) == 0) { |
| 1755 | if (lenp != 0) |
| 1756 | *lenp = pp->length; |
| 1757 | return pp->value; |
| 1758 | } |
| 1759 | return NULL; |
| 1760 | } |
| 1761 | EXPORT_SYMBOL(get_property); |
| 1762 | |
| 1763 | /* |
| 1764 | * Add a property to a node |
| 1765 | */ |
| 1766 | void |
| 1767 | prom_add_property(struct device_node* np, struct property* prop) |
| 1768 | { |
| 1769 | struct property **next = &np->properties; |
| 1770 | |
| 1771 | prop->next = NULL; |
| 1772 | while (*next) |
| 1773 | next = &(*next)->next; |
| 1774 | *next = prop; |
| 1775 | } |
| 1776 | |
| 1777 | #if 0 |
| 1778 | void |
| 1779 | print_properties(struct device_node *np) |
| 1780 | { |
| 1781 | struct property *pp; |
| 1782 | char *cp; |
| 1783 | int i, n; |
| 1784 | |
| 1785 | for (pp = np->properties; pp != 0; pp = pp->next) { |
| 1786 | printk(KERN_INFO "%s", pp->name); |
| 1787 | for (i = strlen(pp->name); i < 16; ++i) |
| 1788 | printk(" "); |
| 1789 | cp = (char *) pp->value; |
| 1790 | for (i = pp->length; i > 0; --i, ++cp) |
| 1791 | if ((i > 1 && (*cp < 0x20 || *cp > 0x7e)) |
| 1792 | || (i == 1 && *cp != 0)) |
| 1793 | break; |
| 1794 | if (i == 0 && pp->length > 1) { |
| 1795 | /* looks like a string */ |
| 1796 | printk(" %s\n", (char *) pp->value); |
| 1797 | } else { |
| 1798 | /* dump it in hex */ |
| 1799 | n = pp->length; |
| 1800 | if (n > 64) |
| 1801 | n = 64; |
| 1802 | if (pp->length % 4 == 0) { |
| 1803 | unsigned int *p = (unsigned int *) pp->value; |
| 1804 | |
| 1805 | n /= 4; |
| 1806 | for (i = 0; i < n; ++i) { |
| 1807 | if (i != 0 && (i % 4) == 0) |
| 1808 | printk("\n "); |
| 1809 | printk(" %08x", *p++); |
| 1810 | } |
| 1811 | } else { |
| 1812 | unsigned char *bp = pp->value; |
| 1813 | |
| 1814 | for (i = 0; i < n; ++i) { |
| 1815 | if (i != 0 && (i % 16) == 0) |
| 1816 | printk("\n "); |
| 1817 | printk(" %02x", *bp++); |
| 1818 | } |
| 1819 | } |
| 1820 | printk("\n"); |
| 1821 | if (pp->length > 64) |
| 1822 | printk(" ... (length = %d)\n", |
| 1823 | pp->length); |
| 1824 | } |
| 1825 | } |
| 1826 | } |
| 1827 | #endif |
| 1828 | |
| 1829 | |
| 1830 | |
| 1831 | |
| 1832 | |
| 1833 | |
| 1834 | |
| 1835 | |
| 1836 | |
| 1837 | |