Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 2 | MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP |
| 3 | M68000 Hi-Performance Microprocessor Division |
| 4 | M68060 Software Package |
| 5 | Production Release P1.00 -- October 10, 1994 |
| 6 | |
| 7 | M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. |
| 8 | |
| 9 | THE SOFTWARE is provided on an "AS IS" basis and without warranty. |
| 10 | To the maximum extent permitted by applicable law, |
| 11 | MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, |
| 12 | INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE |
| 13 | and any warranty against infringement with regard to the SOFTWARE |
| 14 | (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. |
| 15 | |
| 16 | To the maximum extent permitted by applicable law, |
| 17 | IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER |
| 18 | (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, |
| 19 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) |
| 20 | ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. |
| 21 | Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. |
| 22 | |
| 23 | You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE |
| 24 | so long as this entire notice is retained without alteration in any modified and/or |
| 25 | redistributed versions, and that such modified versions are clearly identified as such. |
| 26 | No licenses are granted by implication, estoppel or otherwise under any patents |
| 27 | or trademarks of Motorola, Inc. |
| 28 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 29 | # |
| 30 | # lfptop.s: |
| 31 | # This file is appended to the top of the 060ILSP package |
| 32 | # and contains the entry points into the package. The user, in |
| 33 | # effect, branches to one of the branch table entries located here. |
| 34 | # |
| 35 | |
| 36 | bra.l _facoss_ |
| 37 | short 0x0000 |
| 38 | bra.l _facosd_ |
| 39 | short 0x0000 |
| 40 | bra.l _facosx_ |
| 41 | short 0x0000 |
| 42 | |
| 43 | bra.l _fasins_ |
| 44 | short 0x0000 |
| 45 | bra.l _fasind_ |
| 46 | short 0x0000 |
| 47 | bra.l _fasinx_ |
| 48 | short 0x0000 |
| 49 | |
| 50 | bra.l _fatans_ |
| 51 | short 0x0000 |
| 52 | bra.l _fatand_ |
| 53 | short 0x0000 |
| 54 | bra.l _fatanx_ |
| 55 | short 0x0000 |
| 56 | |
| 57 | bra.l _fatanhs_ |
| 58 | short 0x0000 |
| 59 | bra.l _fatanhd_ |
| 60 | short 0x0000 |
| 61 | bra.l _fatanhx_ |
| 62 | short 0x0000 |
| 63 | |
| 64 | bra.l _fcoss_ |
| 65 | short 0x0000 |
| 66 | bra.l _fcosd_ |
| 67 | short 0x0000 |
| 68 | bra.l _fcosx_ |
| 69 | short 0x0000 |
| 70 | |
| 71 | bra.l _fcoshs_ |
| 72 | short 0x0000 |
| 73 | bra.l _fcoshd_ |
| 74 | short 0x0000 |
| 75 | bra.l _fcoshx_ |
| 76 | short 0x0000 |
| 77 | |
| 78 | bra.l _fetoxs_ |
| 79 | short 0x0000 |
| 80 | bra.l _fetoxd_ |
| 81 | short 0x0000 |
| 82 | bra.l _fetoxx_ |
| 83 | short 0x0000 |
| 84 | |
| 85 | bra.l _fetoxm1s_ |
| 86 | short 0x0000 |
| 87 | bra.l _fetoxm1d_ |
| 88 | short 0x0000 |
| 89 | bra.l _fetoxm1x_ |
| 90 | short 0x0000 |
| 91 | |
| 92 | bra.l _fgetexps_ |
| 93 | short 0x0000 |
| 94 | bra.l _fgetexpd_ |
| 95 | short 0x0000 |
| 96 | bra.l _fgetexpx_ |
| 97 | short 0x0000 |
| 98 | |
| 99 | bra.l _fgetmans_ |
| 100 | short 0x0000 |
| 101 | bra.l _fgetmand_ |
| 102 | short 0x0000 |
| 103 | bra.l _fgetmanx_ |
| 104 | short 0x0000 |
| 105 | |
| 106 | bra.l _flog10s_ |
| 107 | short 0x0000 |
| 108 | bra.l _flog10d_ |
| 109 | short 0x0000 |
| 110 | bra.l _flog10x_ |
| 111 | short 0x0000 |
| 112 | |
| 113 | bra.l _flog2s_ |
| 114 | short 0x0000 |
| 115 | bra.l _flog2d_ |
| 116 | short 0x0000 |
| 117 | bra.l _flog2x_ |
| 118 | short 0x0000 |
| 119 | |
| 120 | bra.l _flogns_ |
| 121 | short 0x0000 |
| 122 | bra.l _flognd_ |
| 123 | short 0x0000 |
| 124 | bra.l _flognx_ |
| 125 | short 0x0000 |
| 126 | |
| 127 | bra.l _flognp1s_ |
| 128 | short 0x0000 |
| 129 | bra.l _flognp1d_ |
| 130 | short 0x0000 |
| 131 | bra.l _flognp1x_ |
| 132 | short 0x0000 |
| 133 | |
| 134 | bra.l _fmods_ |
| 135 | short 0x0000 |
| 136 | bra.l _fmodd_ |
| 137 | short 0x0000 |
| 138 | bra.l _fmodx_ |
| 139 | short 0x0000 |
| 140 | |
| 141 | bra.l _frems_ |
| 142 | short 0x0000 |
| 143 | bra.l _fremd_ |
| 144 | short 0x0000 |
| 145 | bra.l _fremx_ |
| 146 | short 0x0000 |
| 147 | |
| 148 | bra.l _fscales_ |
| 149 | short 0x0000 |
| 150 | bra.l _fscaled_ |
| 151 | short 0x0000 |
| 152 | bra.l _fscalex_ |
| 153 | short 0x0000 |
| 154 | |
| 155 | bra.l _fsins_ |
| 156 | short 0x0000 |
| 157 | bra.l _fsind_ |
| 158 | short 0x0000 |
| 159 | bra.l _fsinx_ |
| 160 | short 0x0000 |
| 161 | |
| 162 | bra.l _fsincoss_ |
| 163 | short 0x0000 |
| 164 | bra.l _fsincosd_ |
| 165 | short 0x0000 |
| 166 | bra.l _fsincosx_ |
| 167 | short 0x0000 |
| 168 | |
| 169 | bra.l _fsinhs_ |
| 170 | short 0x0000 |
| 171 | bra.l _fsinhd_ |
| 172 | short 0x0000 |
| 173 | bra.l _fsinhx_ |
| 174 | short 0x0000 |
| 175 | |
| 176 | bra.l _ftans_ |
| 177 | short 0x0000 |
| 178 | bra.l _ftand_ |
| 179 | short 0x0000 |
| 180 | bra.l _ftanx_ |
| 181 | short 0x0000 |
| 182 | |
| 183 | bra.l _ftanhs_ |
| 184 | short 0x0000 |
| 185 | bra.l _ftanhd_ |
| 186 | short 0x0000 |
| 187 | bra.l _ftanhx_ |
| 188 | short 0x0000 |
| 189 | |
| 190 | bra.l _ftentoxs_ |
| 191 | short 0x0000 |
| 192 | bra.l _ftentoxd_ |
| 193 | short 0x0000 |
| 194 | bra.l _ftentoxx_ |
| 195 | short 0x0000 |
| 196 | |
| 197 | bra.l _ftwotoxs_ |
| 198 | short 0x0000 |
| 199 | bra.l _ftwotoxd_ |
| 200 | short 0x0000 |
| 201 | bra.l _ftwotoxx_ |
| 202 | short 0x0000 |
| 203 | |
| 204 | bra.l _fabss_ |
| 205 | short 0x0000 |
| 206 | bra.l _fabsd_ |
| 207 | short 0x0000 |
| 208 | bra.l _fabsx_ |
| 209 | short 0x0000 |
| 210 | |
| 211 | bra.l _fadds_ |
| 212 | short 0x0000 |
| 213 | bra.l _faddd_ |
| 214 | short 0x0000 |
| 215 | bra.l _faddx_ |
| 216 | short 0x0000 |
| 217 | |
| 218 | bra.l _fdivs_ |
| 219 | short 0x0000 |
| 220 | bra.l _fdivd_ |
| 221 | short 0x0000 |
| 222 | bra.l _fdivx_ |
| 223 | short 0x0000 |
| 224 | |
| 225 | bra.l _fints_ |
| 226 | short 0x0000 |
| 227 | bra.l _fintd_ |
| 228 | short 0x0000 |
| 229 | bra.l _fintx_ |
| 230 | short 0x0000 |
| 231 | |
| 232 | bra.l _fintrzs_ |
| 233 | short 0x0000 |
| 234 | bra.l _fintrzd_ |
| 235 | short 0x0000 |
| 236 | bra.l _fintrzx_ |
| 237 | short 0x0000 |
| 238 | |
| 239 | bra.l _fmuls_ |
| 240 | short 0x0000 |
| 241 | bra.l _fmuld_ |
| 242 | short 0x0000 |
| 243 | bra.l _fmulx_ |
| 244 | short 0x0000 |
| 245 | |
| 246 | bra.l _fnegs_ |
| 247 | short 0x0000 |
| 248 | bra.l _fnegd_ |
| 249 | short 0x0000 |
| 250 | bra.l _fnegx_ |
| 251 | short 0x0000 |
| 252 | |
| 253 | bra.l _fsqrts_ |
| 254 | short 0x0000 |
| 255 | bra.l _fsqrtd_ |
| 256 | short 0x0000 |
| 257 | bra.l _fsqrtx_ |
| 258 | short 0x0000 |
| 259 | |
| 260 | bra.l _fsubs_ |
| 261 | short 0x0000 |
| 262 | bra.l _fsubd_ |
| 263 | short 0x0000 |
| 264 | bra.l _fsubx_ |
| 265 | short 0x0000 |
| 266 | |
| 267 | # leave room for future possible additions |
| 268 | align 0x400 |
| 269 | |
| 270 | # |
| 271 | # This file contains a set of define statements for constants |
| 272 | # in order to promote readability within the corecode itself. |
| 273 | # |
| 274 | |
| 275 | set LOCAL_SIZE, 192 # stack frame size(bytes) |
| 276 | set LV, -LOCAL_SIZE # stack offset |
| 277 | |
| 278 | set EXC_SR, 0x4 # stack status register |
| 279 | set EXC_PC, 0x6 # stack pc |
| 280 | set EXC_VOFF, 0xa # stacked vector offset |
| 281 | set EXC_EA, 0xc # stacked <ea> |
| 282 | |
| 283 | set EXC_FP, 0x0 # frame pointer |
| 284 | |
| 285 | set EXC_AREGS, -68 # offset of all address regs |
| 286 | set EXC_DREGS, -100 # offset of all data regs |
| 287 | set EXC_FPREGS, -36 # offset of all fp regs |
| 288 | |
| 289 | set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 |
| 290 | set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 |
| 291 | set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 |
| 292 | set EXC_A5, EXC_AREGS+(5*4) |
| 293 | set EXC_A4, EXC_AREGS+(4*4) |
| 294 | set EXC_A3, EXC_AREGS+(3*4) |
| 295 | set EXC_A2, EXC_AREGS+(2*4) |
| 296 | set EXC_A1, EXC_AREGS+(1*4) |
| 297 | set EXC_A0, EXC_AREGS+(0*4) |
| 298 | set EXC_D7, EXC_DREGS+(7*4) |
| 299 | set EXC_D6, EXC_DREGS+(6*4) |
| 300 | set EXC_D5, EXC_DREGS+(5*4) |
| 301 | set EXC_D4, EXC_DREGS+(4*4) |
| 302 | set EXC_D3, EXC_DREGS+(3*4) |
| 303 | set EXC_D2, EXC_DREGS+(2*4) |
| 304 | set EXC_D1, EXC_DREGS+(1*4) |
| 305 | set EXC_D0, EXC_DREGS+(0*4) |
| 306 | |
| 307 | set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 |
| 308 | set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 |
| 309 | set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) |
| 310 | |
| 311 | set FP_SCR1, LV+80 # fp scratch 1 |
| 312 | set FP_SCR1_EX, FP_SCR1+0 |
| 313 | set FP_SCR1_SGN, FP_SCR1+2 |
| 314 | set FP_SCR1_HI, FP_SCR1+4 |
| 315 | set FP_SCR1_LO, FP_SCR1+8 |
| 316 | |
| 317 | set FP_SCR0, LV+68 # fp scratch 0 |
| 318 | set FP_SCR0_EX, FP_SCR0+0 |
| 319 | set FP_SCR0_SGN, FP_SCR0+2 |
| 320 | set FP_SCR0_HI, FP_SCR0+4 |
| 321 | set FP_SCR0_LO, FP_SCR0+8 |
| 322 | |
| 323 | set FP_DST, LV+56 # fp destination operand |
| 324 | set FP_DST_EX, FP_DST+0 |
| 325 | set FP_DST_SGN, FP_DST+2 |
| 326 | set FP_DST_HI, FP_DST+4 |
| 327 | set FP_DST_LO, FP_DST+8 |
| 328 | |
| 329 | set FP_SRC, LV+44 # fp source operand |
| 330 | set FP_SRC_EX, FP_SRC+0 |
| 331 | set FP_SRC_SGN, FP_SRC+2 |
| 332 | set FP_SRC_HI, FP_SRC+4 |
| 333 | set FP_SRC_LO, FP_SRC+8 |
| 334 | |
| 335 | set USER_FPIAR, LV+40 # FP instr address register |
| 336 | |
| 337 | set USER_FPSR, LV+36 # FP status register |
| 338 | set FPSR_CC, USER_FPSR+0 # FPSR condition codes |
| 339 | set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte |
| 340 | set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte |
| 341 | set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte |
| 342 | |
| 343 | set USER_FPCR, LV+32 # FP control register |
| 344 | set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable |
| 345 | set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control |
| 346 | |
| 347 | set L_SCR3, LV+28 # integer scratch 3 |
| 348 | set L_SCR2, LV+24 # integer scratch 2 |
| 349 | set L_SCR1, LV+20 # integer scratch 1 |
| 350 | |
| 351 | set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) |
| 352 | |
| 353 | set EXC_TEMP2, LV+24 # temporary space |
| 354 | set EXC_TEMP, LV+16 # temporary space |
| 355 | |
| 356 | set DTAG, LV+15 # destination operand type |
| 357 | set STAG, LV+14 # source operand type |
| 358 | |
| 359 | set SPCOND_FLG, LV+10 # flag: special case (see below) |
| 360 | |
| 361 | set EXC_CC, LV+8 # saved condition codes |
| 362 | set EXC_EXTWPTR, LV+4 # saved current PC (active) |
| 363 | set EXC_EXTWORD, LV+2 # saved extension word |
| 364 | set EXC_CMDREG, LV+2 # saved extension word |
| 365 | set EXC_OPWORD, LV+0 # saved operation word |
| 366 | |
| 367 | ################################ |
| 368 | |
| 369 | # Helpful macros |
| 370 | |
| 371 | set FTEMP, 0 # offsets within an |
| 372 | set FTEMP_EX, 0 # extended precision |
| 373 | set FTEMP_SGN, 2 # value saved in memory. |
| 374 | set FTEMP_HI, 4 |
| 375 | set FTEMP_LO, 8 |
| 376 | set FTEMP_GRS, 12 |
| 377 | |
| 378 | set LOCAL, 0 # offsets within an |
| 379 | set LOCAL_EX, 0 # extended precision |
| 380 | set LOCAL_SGN, 2 # value saved in memory. |
| 381 | set LOCAL_HI, 4 |
| 382 | set LOCAL_LO, 8 |
| 383 | set LOCAL_GRS, 12 |
| 384 | |
| 385 | set DST, 0 # offsets within an |
| 386 | set DST_EX, 0 # extended precision |
| 387 | set DST_HI, 4 # value saved in memory. |
| 388 | set DST_LO, 8 |
| 389 | |
| 390 | set SRC, 0 # offsets within an |
| 391 | set SRC_EX, 0 # extended precision |
| 392 | set SRC_HI, 4 # value saved in memory. |
| 393 | set SRC_LO, 8 |
| 394 | |
| 395 | set SGL_LO, 0x3f81 # min sgl prec exponent |
| 396 | set SGL_HI, 0x407e # max sgl prec exponent |
| 397 | set DBL_LO, 0x3c01 # min dbl prec exponent |
| 398 | set DBL_HI, 0x43fe # max dbl prec exponent |
| 399 | set EXT_LO, 0x0 # min ext prec exponent |
| 400 | set EXT_HI, 0x7ffe # max ext prec exponent |
| 401 | |
| 402 | set EXT_BIAS, 0x3fff # extended precision bias |
| 403 | set SGL_BIAS, 0x007f # single precision bias |
| 404 | set DBL_BIAS, 0x03ff # double precision bias |
| 405 | |
| 406 | set NORM, 0x00 # operand type for STAG/DTAG |
| 407 | set ZERO, 0x01 # operand type for STAG/DTAG |
| 408 | set INF, 0x02 # operand type for STAG/DTAG |
| 409 | set QNAN, 0x03 # operand type for STAG/DTAG |
| 410 | set DENORM, 0x04 # operand type for STAG/DTAG |
| 411 | set SNAN, 0x05 # operand type for STAG/DTAG |
| 412 | set UNNORM, 0x06 # operand type for STAG/DTAG |
| 413 | |
| 414 | ################## |
| 415 | # FPSR/FPCR bits # |
| 416 | ################## |
| 417 | set neg_bit, 0x3 # negative result |
| 418 | set z_bit, 0x2 # zero result |
| 419 | set inf_bit, 0x1 # infinite result |
| 420 | set nan_bit, 0x0 # NAN result |
| 421 | |
| 422 | set q_sn_bit, 0x7 # sign bit of quotient byte |
| 423 | |
| 424 | set bsun_bit, 7 # branch on unordered |
| 425 | set snan_bit, 6 # signalling NAN |
| 426 | set operr_bit, 5 # operand error |
| 427 | set ovfl_bit, 4 # overflow |
| 428 | set unfl_bit, 3 # underflow |
| 429 | set dz_bit, 2 # divide by zero |
| 430 | set inex2_bit, 1 # inexact result 2 |
| 431 | set inex1_bit, 0 # inexact result 1 |
| 432 | |
| 433 | set aiop_bit, 7 # accrued inexact operation bit |
| 434 | set aovfl_bit, 6 # accrued overflow bit |
| 435 | set aunfl_bit, 5 # accrued underflow bit |
| 436 | set adz_bit, 4 # accrued dz bit |
| 437 | set ainex_bit, 3 # accrued inexact bit |
| 438 | |
| 439 | ############################# |
| 440 | # FPSR individual bit masks # |
| 441 | ############################# |
| 442 | set neg_mask, 0x08000000 # negative bit mask (lw) |
| 443 | set inf_mask, 0x02000000 # infinity bit mask (lw) |
| 444 | set z_mask, 0x04000000 # zero bit mask (lw) |
| 445 | set nan_mask, 0x01000000 # nan bit mask (lw) |
| 446 | |
| 447 | set neg_bmask, 0x08 # negative bit mask (byte) |
| 448 | set inf_bmask, 0x02 # infinity bit mask (byte) |
| 449 | set z_bmask, 0x04 # zero bit mask (byte) |
| 450 | set nan_bmask, 0x01 # nan bit mask (byte) |
| 451 | |
| 452 | set bsun_mask, 0x00008000 # bsun exception mask |
| 453 | set snan_mask, 0x00004000 # snan exception mask |
| 454 | set operr_mask, 0x00002000 # operr exception mask |
| 455 | set ovfl_mask, 0x00001000 # overflow exception mask |
| 456 | set unfl_mask, 0x00000800 # underflow exception mask |
| 457 | set dz_mask, 0x00000400 # dz exception mask |
| 458 | set inex2_mask, 0x00000200 # inex2 exception mask |
| 459 | set inex1_mask, 0x00000100 # inex1 exception mask |
| 460 | |
| 461 | set aiop_mask, 0x00000080 # accrued illegal operation |
| 462 | set aovfl_mask, 0x00000040 # accrued overflow |
| 463 | set aunfl_mask, 0x00000020 # accrued underflow |
| 464 | set adz_mask, 0x00000010 # accrued divide by zero |
| 465 | set ainex_mask, 0x00000008 # accrued inexact |
| 466 | |
| 467 | ###################################### |
| 468 | # FPSR combinations used in the FPSP # |
| 469 | ###################################### |
| 470 | set dzinf_mask, inf_mask+dz_mask+adz_mask |
| 471 | set opnan_mask, nan_mask+operr_mask+aiop_mask |
| 472 | set nzi_mask, 0x01ffffff #clears N, Z, and I |
| 473 | set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask |
| 474 | set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask |
| 475 | set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask |
| 476 | set inx1a_mask, inex1_mask+ainex_mask |
| 477 | set inx2a_mask, inex2_mask+ainex_mask |
| 478 | set snaniop_mask, nan_mask+snan_mask+aiop_mask |
| 479 | set snaniop2_mask, snan_mask+aiop_mask |
| 480 | set naniop_mask, nan_mask+aiop_mask |
| 481 | set neginf_mask, neg_mask+inf_mask |
| 482 | set infaiop_mask, inf_mask+aiop_mask |
| 483 | set negz_mask, neg_mask+z_mask |
| 484 | set opaop_mask, operr_mask+aiop_mask |
| 485 | set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask |
| 486 | set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask |
| 487 | |
| 488 | ######### |
| 489 | # misc. # |
| 490 | ######### |
| 491 | set rnd_stky_bit, 29 # stky bit pos in longword |
| 492 | |
| 493 | set sign_bit, 0x7 # sign bit |
| 494 | set signan_bit, 0x6 # signalling nan bit |
| 495 | |
| 496 | set sgl_thresh, 0x3f81 # minimum sgl exponent |
| 497 | set dbl_thresh, 0x3c01 # minimum dbl exponent |
| 498 | |
| 499 | set x_mode, 0x0 # extended precision |
| 500 | set s_mode, 0x4 # single precision |
| 501 | set d_mode, 0x8 # double precision |
| 502 | |
| 503 | set rn_mode, 0x0 # round-to-nearest |
| 504 | set rz_mode, 0x1 # round-to-zero |
| 505 | set rm_mode, 0x2 # round-tp-minus-infinity |
| 506 | set rp_mode, 0x3 # round-to-plus-infinity |
| 507 | |
| 508 | set mantissalen, 64 # length of mantissa in bits |
| 509 | |
| 510 | set BYTE, 1 # len(byte) == 1 byte |
| 511 | set WORD, 2 # len(word) == 2 bytes |
| 512 | set LONG, 4 # len(longword) == 2 bytes |
| 513 | |
| 514 | set BSUN_VEC, 0xc0 # bsun vector offset |
| 515 | set INEX_VEC, 0xc4 # inexact vector offset |
| 516 | set DZ_VEC, 0xc8 # dz vector offset |
| 517 | set UNFL_VEC, 0xcc # unfl vector offset |
| 518 | set OPERR_VEC, 0xd0 # operr vector offset |
| 519 | set OVFL_VEC, 0xd4 # ovfl vector offset |
| 520 | set SNAN_VEC, 0xd8 # snan vector offset |
| 521 | |
| 522 | ########################### |
| 523 | # SPecial CONDition FLaGs # |
| 524 | ########################### |
| 525 | set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception |
| 526 | set fbsun_flg, 0x02 # flag bit: bsun exception |
| 527 | set mia7_flg, 0x04 # flag bit: (a7)+ <ea> |
| 528 | set mda7_flg, 0x08 # flag bit: -(a7) <ea> |
| 529 | set fmovm_flg, 0x40 # flag bit: fmovm instruction |
| 530 | set immed_flg, 0x80 # flag bit: &<data> <ea> |
| 531 | |
| 532 | set ftrapcc_bit, 0x0 |
| 533 | set fbsun_bit, 0x1 |
| 534 | set mia7_bit, 0x2 |
| 535 | set mda7_bit, 0x3 |
| 536 | set immed_bit, 0x7 |
| 537 | |
| 538 | ################################## |
| 539 | # TRANSCENDENTAL "LAST-OP" FLAGS # |
| 540 | ################################## |
| 541 | set FMUL_OP, 0x0 # fmul instr performed last |
| 542 | set FDIV_OP, 0x1 # fdiv performed last |
| 543 | set FADD_OP, 0x2 # fadd performed last |
| 544 | set FMOV_OP, 0x3 # fmov performed last |
| 545 | |
| 546 | ############# |
| 547 | # CONSTANTS # |
| 548 | ############# |
| 549 | T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD |
| 550 | T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL |
| 551 | |
| 552 | PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 |
| 553 | PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| 554 | |
| 555 | TWOBYPI: |
| 556 | long 0x3FE45F30,0x6DC9C883 |
| 557 | |
| 558 | ######################################################################### |
| 559 | # MONADIC TEMPLATE # |
| 560 | ######################################################################### |
| 561 | global _fsins_ |
| 562 | _fsins_: |
| 563 | link %a6,&-LOCAL_SIZE |
| 564 | |
| 565 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 566 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 567 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 568 | |
| 569 | fmov.l &0x0,%fpcr # zero FPCR |
| 570 | |
| 571 | # |
| 572 | # copy, convert, and tag input argument |
| 573 | # |
| 574 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 575 | fmov.x %fp0,FP_SRC(%a6) |
| 576 | lea FP_SRC(%a6),%a0 |
| 577 | bsr.l tag # fetch operand type |
| 578 | mov.b %d0,STAG(%a6) |
| 579 | mov.b %d0,%d1 |
| 580 | |
| 581 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 582 | |
| 583 | clr.l %d0 |
| 584 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 585 | |
| 586 | tst.b %d1 |
| 587 | bne.b _L0_2s |
| 588 | bsr.l ssin # operand is a NORM |
| 589 | bra.b _L0_6s |
| 590 | _L0_2s: |
| 591 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 592 | bne.b _L0_3s # no |
| 593 | bsr.l src_zero # yes |
| 594 | bra.b _L0_6s |
| 595 | _L0_3s: |
| 596 | cmpi.b %d1,&INF # is operand an INF? |
| 597 | bne.b _L0_4s # no |
| 598 | bsr.l t_operr # yes |
| 599 | bra.b _L0_6s |
| 600 | _L0_4s: |
| 601 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 602 | bne.b _L0_5s # no |
| 603 | bsr.l src_qnan # yes |
| 604 | bra.b _L0_6s |
| 605 | _L0_5s: |
| 606 | bsr.l ssind # operand is a DENORM |
| 607 | _L0_6s: |
| 608 | |
| 609 | # |
| 610 | # Result is now in FP0 |
| 611 | # |
| 612 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 613 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 614 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 615 | unlk %a6 |
| 616 | rts |
| 617 | |
| 618 | global _fsind_ |
| 619 | _fsind_: |
| 620 | link %a6,&-LOCAL_SIZE |
| 621 | |
| 622 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 623 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 624 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 625 | |
| 626 | fmov.l &0x0,%fpcr # zero FPCR |
| 627 | |
| 628 | # |
| 629 | # copy, convert, and tag input argument |
| 630 | # |
| 631 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 632 | fmov.x %fp0,FP_SRC(%a6) |
| 633 | lea FP_SRC(%a6),%a0 |
| 634 | bsr.l tag # fetch operand type |
| 635 | mov.b %d0,STAG(%a6) |
| 636 | mov.b %d0,%d1 |
| 637 | |
| 638 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 639 | |
| 640 | clr.l %d0 |
| 641 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 642 | |
| 643 | mov.b %d1,STAG(%a6) |
| 644 | tst.b %d1 |
| 645 | bne.b _L0_2d |
| 646 | bsr.l ssin # operand is a NORM |
| 647 | bra.b _L0_6d |
| 648 | _L0_2d: |
| 649 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 650 | bne.b _L0_3d # no |
| 651 | bsr.l src_zero # yes |
| 652 | bra.b _L0_6d |
| 653 | _L0_3d: |
| 654 | cmpi.b %d1,&INF # is operand an INF? |
| 655 | bne.b _L0_4d # no |
| 656 | bsr.l t_operr # yes |
| 657 | bra.b _L0_6d |
| 658 | _L0_4d: |
| 659 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 660 | bne.b _L0_5d # no |
| 661 | bsr.l src_qnan # yes |
| 662 | bra.b _L0_6d |
| 663 | _L0_5d: |
| 664 | bsr.l ssind # operand is a DENORM |
| 665 | _L0_6d: |
| 666 | |
| 667 | # |
| 668 | # Result is now in FP0 |
| 669 | # |
| 670 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 671 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 672 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 673 | unlk %a6 |
| 674 | rts |
| 675 | |
| 676 | global _fsinx_ |
| 677 | _fsinx_: |
| 678 | link %a6,&-LOCAL_SIZE |
| 679 | |
| 680 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 681 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 682 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 683 | |
| 684 | fmov.l &0x0,%fpcr # zero FPCR |
| 685 | |
| 686 | # |
| 687 | # copy, convert, and tag input argument |
| 688 | # |
| 689 | lea FP_SRC(%a6),%a0 |
| 690 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 691 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 692 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 693 | bsr.l tag # fetch operand type |
| 694 | mov.b %d0,STAG(%a6) |
| 695 | mov.b %d0,%d1 |
| 696 | |
| 697 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 698 | |
| 699 | clr.l %d0 |
| 700 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 701 | |
| 702 | tst.b %d1 |
| 703 | bne.b _L0_2x |
| 704 | bsr.l ssin # operand is a NORM |
| 705 | bra.b _L0_6x |
| 706 | _L0_2x: |
| 707 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 708 | bne.b _L0_3x # no |
| 709 | bsr.l src_zero # yes |
| 710 | bra.b _L0_6x |
| 711 | _L0_3x: |
| 712 | cmpi.b %d1,&INF # is operand an INF? |
| 713 | bne.b _L0_4x # no |
| 714 | bsr.l t_operr # yes |
| 715 | bra.b _L0_6x |
| 716 | _L0_4x: |
| 717 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 718 | bne.b _L0_5x # no |
| 719 | bsr.l src_qnan # yes |
| 720 | bra.b _L0_6x |
| 721 | _L0_5x: |
| 722 | bsr.l ssind # operand is a DENORM |
| 723 | _L0_6x: |
| 724 | |
| 725 | # |
| 726 | # Result is now in FP0 |
| 727 | # |
| 728 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 729 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 730 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 731 | unlk %a6 |
| 732 | rts |
| 733 | |
| 734 | |
| 735 | ######################################################################### |
| 736 | # MONADIC TEMPLATE # |
| 737 | ######################################################################### |
| 738 | global _fcoss_ |
| 739 | _fcoss_: |
| 740 | link %a6,&-LOCAL_SIZE |
| 741 | |
| 742 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 743 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 744 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 745 | |
| 746 | fmov.l &0x0,%fpcr # zero FPCR |
| 747 | |
| 748 | # |
| 749 | # copy, convert, and tag input argument |
| 750 | # |
| 751 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 752 | fmov.x %fp0,FP_SRC(%a6) |
| 753 | lea FP_SRC(%a6),%a0 |
| 754 | bsr.l tag # fetch operand type |
| 755 | mov.b %d0,STAG(%a6) |
| 756 | mov.b %d0,%d1 |
| 757 | |
| 758 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 759 | |
| 760 | clr.l %d0 |
| 761 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 762 | |
| 763 | tst.b %d1 |
| 764 | bne.b _L1_2s |
| 765 | bsr.l scos # operand is a NORM |
| 766 | bra.b _L1_6s |
| 767 | _L1_2s: |
| 768 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 769 | bne.b _L1_3s # no |
| 770 | bsr.l ld_pone # yes |
| 771 | bra.b _L1_6s |
| 772 | _L1_3s: |
| 773 | cmpi.b %d1,&INF # is operand an INF? |
| 774 | bne.b _L1_4s # no |
| 775 | bsr.l t_operr # yes |
| 776 | bra.b _L1_6s |
| 777 | _L1_4s: |
| 778 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 779 | bne.b _L1_5s # no |
| 780 | bsr.l src_qnan # yes |
| 781 | bra.b _L1_6s |
| 782 | _L1_5s: |
| 783 | bsr.l scosd # operand is a DENORM |
| 784 | _L1_6s: |
| 785 | |
| 786 | # |
| 787 | # Result is now in FP0 |
| 788 | # |
| 789 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 790 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 791 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 792 | unlk %a6 |
| 793 | rts |
| 794 | |
| 795 | global _fcosd_ |
| 796 | _fcosd_: |
| 797 | link %a6,&-LOCAL_SIZE |
| 798 | |
| 799 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 800 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 801 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 802 | |
| 803 | fmov.l &0x0,%fpcr # zero FPCR |
| 804 | |
| 805 | # |
| 806 | # copy, convert, and tag input argument |
| 807 | # |
| 808 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 809 | fmov.x %fp0,FP_SRC(%a6) |
| 810 | lea FP_SRC(%a6),%a0 |
| 811 | bsr.l tag # fetch operand type |
| 812 | mov.b %d0,STAG(%a6) |
| 813 | mov.b %d0,%d1 |
| 814 | |
| 815 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 816 | |
| 817 | clr.l %d0 |
| 818 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 819 | |
| 820 | mov.b %d1,STAG(%a6) |
| 821 | tst.b %d1 |
| 822 | bne.b _L1_2d |
| 823 | bsr.l scos # operand is a NORM |
| 824 | bra.b _L1_6d |
| 825 | _L1_2d: |
| 826 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 827 | bne.b _L1_3d # no |
| 828 | bsr.l ld_pone # yes |
| 829 | bra.b _L1_6d |
| 830 | _L1_3d: |
| 831 | cmpi.b %d1,&INF # is operand an INF? |
| 832 | bne.b _L1_4d # no |
| 833 | bsr.l t_operr # yes |
| 834 | bra.b _L1_6d |
| 835 | _L1_4d: |
| 836 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 837 | bne.b _L1_5d # no |
| 838 | bsr.l src_qnan # yes |
| 839 | bra.b _L1_6d |
| 840 | _L1_5d: |
| 841 | bsr.l scosd # operand is a DENORM |
| 842 | _L1_6d: |
| 843 | |
| 844 | # |
| 845 | # Result is now in FP0 |
| 846 | # |
| 847 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 848 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 849 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 850 | unlk %a6 |
| 851 | rts |
| 852 | |
| 853 | global _fcosx_ |
| 854 | _fcosx_: |
| 855 | link %a6,&-LOCAL_SIZE |
| 856 | |
| 857 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 858 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 859 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 860 | |
| 861 | fmov.l &0x0,%fpcr # zero FPCR |
| 862 | |
| 863 | # |
| 864 | # copy, convert, and tag input argument |
| 865 | # |
| 866 | lea FP_SRC(%a6),%a0 |
| 867 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 868 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 869 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 870 | bsr.l tag # fetch operand type |
| 871 | mov.b %d0,STAG(%a6) |
| 872 | mov.b %d0,%d1 |
| 873 | |
| 874 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 875 | |
| 876 | clr.l %d0 |
| 877 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 878 | |
| 879 | tst.b %d1 |
| 880 | bne.b _L1_2x |
| 881 | bsr.l scos # operand is a NORM |
| 882 | bra.b _L1_6x |
| 883 | _L1_2x: |
| 884 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 885 | bne.b _L1_3x # no |
| 886 | bsr.l ld_pone # yes |
| 887 | bra.b _L1_6x |
| 888 | _L1_3x: |
| 889 | cmpi.b %d1,&INF # is operand an INF? |
| 890 | bne.b _L1_4x # no |
| 891 | bsr.l t_operr # yes |
| 892 | bra.b _L1_6x |
| 893 | _L1_4x: |
| 894 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 895 | bne.b _L1_5x # no |
| 896 | bsr.l src_qnan # yes |
| 897 | bra.b _L1_6x |
| 898 | _L1_5x: |
| 899 | bsr.l scosd # operand is a DENORM |
| 900 | _L1_6x: |
| 901 | |
| 902 | # |
| 903 | # Result is now in FP0 |
| 904 | # |
| 905 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 906 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 907 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 908 | unlk %a6 |
| 909 | rts |
| 910 | |
| 911 | |
| 912 | ######################################################################### |
| 913 | # MONADIC TEMPLATE # |
| 914 | ######################################################################### |
| 915 | global _fsinhs_ |
| 916 | _fsinhs_: |
| 917 | link %a6,&-LOCAL_SIZE |
| 918 | |
| 919 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 920 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 921 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 922 | |
| 923 | fmov.l &0x0,%fpcr # zero FPCR |
| 924 | |
| 925 | # |
| 926 | # copy, convert, and tag input argument |
| 927 | # |
| 928 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 929 | fmov.x %fp0,FP_SRC(%a6) |
| 930 | lea FP_SRC(%a6),%a0 |
| 931 | bsr.l tag # fetch operand type |
| 932 | mov.b %d0,STAG(%a6) |
| 933 | mov.b %d0,%d1 |
| 934 | |
| 935 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 936 | |
| 937 | clr.l %d0 |
| 938 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 939 | |
| 940 | tst.b %d1 |
| 941 | bne.b _L2_2s |
| 942 | bsr.l ssinh # operand is a NORM |
| 943 | bra.b _L2_6s |
| 944 | _L2_2s: |
| 945 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 946 | bne.b _L2_3s # no |
| 947 | bsr.l src_zero # yes |
| 948 | bra.b _L2_6s |
| 949 | _L2_3s: |
| 950 | cmpi.b %d1,&INF # is operand an INF? |
| 951 | bne.b _L2_4s # no |
| 952 | bsr.l src_inf # yes |
| 953 | bra.b _L2_6s |
| 954 | _L2_4s: |
| 955 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 956 | bne.b _L2_5s # no |
| 957 | bsr.l src_qnan # yes |
| 958 | bra.b _L2_6s |
| 959 | _L2_5s: |
| 960 | bsr.l ssinhd # operand is a DENORM |
| 961 | _L2_6s: |
| 962 | |
| 963 | # |
| 964 | # Result is now in FP0 |
| 965 | # |
| 966 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 967 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 968 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 969 | unlk %a6 |
| 970 | rts |
| 971 | |
| 972 | global _fsinhd_ |
| 973 | _fsinhd_: |
| 974 | link %a6,&-LOCAL_SIZE |
| 975 | |
| 976 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 977 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 978 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 979 | |
| 980 | fmov.l &0x0,%fpcr # zero FPCR |
| 981 | |
| 982 | # |
| 983 | # copy, convert, and tag input argument |
| 984 | # |
| 985 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 986 | fmov.x %fp0,FP_SRC(%a6) |
| 987 | lea FP_SRC(%a6),%a0 |
| 988 | bsr.l tag # fetch operand type |
| 989 | mov.b %d0,STAG(%a6) |
| 990 | mov.b %d0,%d1 |
| 991 | |
| 992 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 993 | |
| 994 | clr.l %d0 |
| 995 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 996 | |
| 997 | mov.b %d1,STAG(%a6) |
| 998 | tst.b %d1 |
| 999 | bne.b _L2_2d |
| 1000 | bsr.l ssinh # operand is a NORM |
| 1001 | bra.b _L2_6d |
| 1002 | _L2_2d: |
| 1003 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1004 | bne.b _L2_3d # no |
| 1005 | bsr.l src_zero # yes |
| 1006 | bra.b _L2_6d |
| 1007 | _L2_3d: |
| 1008 | cmpi.b %d1,&INF # is operand an INF? |
| 1009 | bne.b _L2_4d # no |
| 1010 | bsr.l src_inf # yes |
| 1011 | bra.b _L2_6d |
| 1012 | _L2_4d: |
| 1013 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1014 | bne.b _L2_5d # no |
| 1015 | bsr.l src_qnan # yes |
| 1016 | bra.b _L2_6d |
| 1017 | _L2_5d: |
| 1018 | bsr.l ssinhd # operand is a DENORM |
| 1019 | _L2_6d: |
| 1020 | |
| 1021 | # |
| 1022 | # Result is now in FP0 |
| 1023 | # |
| 1024 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1025 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1026 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1027 | unlk %a6 |
| 1028 | rts |
| 1029 | |
| 1030 | global _fsinhx_ |
| 1031 | _fsinhx_: |
| 1032 | link %a6,&-LOCAL_SIZE |
| 1033 | |
| 1034 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1035 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1036 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1037 | |
| 1038 | fmov.l &0x0,%fpcr # zero FPCR |
| 1039 | |
| 1040 | # |
| 1041 | # copy, convert, and tag input argument |
| 1042 | # |
| 1043 | lea FP_SRC(%a6),%a0 |
| 1044 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 1045 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 1046 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 1047 | bsr.l tag # fetch operand type |
| 1048 | mov.b %d0,STAG(%a6) |
| 1049 | mov.b %d0,%d1 |
| 1050 | |
| 1051 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1052 | |
| 1053 | clr.l %d0 |
| 1054 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1055 | |
| 1056 | tst.b %d1 |
| 1057 | bne.b _L2_2x |
| 1058 | bsr.l ssinh # operand is a NORM |
| 1059 | bra.b _L2_6x |
| 1060 | _L2_2x: |
| 1061 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1062 | bne.b _L2_3x # no |
| 1063 | bsr.l src_zero # yes |
| 1064 | bra.b _L2_6x |
| 1065 | _L2_3x: |
| 1066 | cmpi.b %d1,&INF # is operand an INF? |
| 1067 | bne.b _L2_4x # no |
| 1068 | bsr.l src_inf # yes |
| 1069 | bra.b _L2_6x |
| 1070 | _L2_4x: |
| 1071 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1072 | bne.b _L2_5x # no |
| 1073 | bsr.l src_qnan # yes |
| 1074 | bra.b _L2_6x |
| 1075 | _L2_5x: |
| 1076 | bsr.l ssinhd # operand is a DENORM |
| 1077 | _L2_6x: |
| 1078 | |
| 1079 | # |
| 1080 | # Result is now in FP0 |
| 1081 | # |
| 1082 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1083 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1084 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1085 | unlk %a6 |
| 1086 | rts |
| 1087 | |
| 1088 | |
| 1089 | ######################################################################### |
| 1090 | # MONADIC TEMPLATE # |
| 1091 | ######################################################################### |
| 1092 | global _flognp1s_ |
| 1093 | _flognp1s_: |
| 1094 | link %a6,&-LOCAL_SIZE |
| 1095 | |
| 1096 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1097 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1098 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1099 | |
| 1100 | fmov.l &0x0,%fpcr # zero FPCR |
| 1101 | |
| 1102 | # |
| 1103 | # copy, convert, and tag input argument |
| 1104 | # |
| 1105 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 1106 | fmov.x %fp0,FP_SRC(%a6) |
| 1107 | lea FP_SRC(%a6),%a0 |
| 1108 | bsr.l tag # fetch operand type |
| 1109 | mov.b %d0,STAG(%a6) |
| 1110 | mov.b %d0,%d1 |
| 1111 | |
| 1112 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1113 | |
| 1114 | clr.l %d0 |
| 1115 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1116 | |
| 1117 | tst.b %d1 |
| 1118 | bne.b _L3_2s |
| 1119 | bsr.l slognp1 # operand is a NORM |
| 1120 | bra.b _L3_6s |
| 1121 | _L3_2s: |
| 1122 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1123 | bne.b _L3_3s # no |
| 1124 | bsr.l src_zero # yes |
| 1125 | bra.b _L3_6s |
| 1126 | _L3_3s: |
| 1127 | cmpi.b %d1,&INF # is operand an INF? |
| 1128 | bne.b _L3_4s # no |
| 1129 | bsr.l sopr_inf # yes |
| 1130 | bra.b _L3_6s |
| 1131 | _L3_4s: |
| 1132 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1133 | bne.b _L3_5s # no |
| 1134 | bsr.l src_qnan # yes |
| 1135 | bra.b _L3_6s |
| 1136 | _L3_5s: |
| 1137 | bsr.l slognp1d # operand is a DENORM |
| 1138 | _L3_6s: |
| 1139 | |
| 1140 | # |
| 1141 | # Result is now in FP0 |
| 1142 | # |
| 1143 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1144 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1145 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1146 | unlk %a6 |
| 1147 | rts |
| 1148 | |
| 1149 | global _flognp1d_ |
| 1150 | _flognp1d_: |
| 1151 | link %a6,&-LOCAL_SIZE |
| 1152 | |
| 1153 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1154 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1155 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1156 | |
| 1157 | fmov.l &0x0,%fpcr # zero FPCR |
| 1158 | |
| 1159 | # |
| 1160 | # copy, convert, and tag input argument |
| 1161 | # |
| 1162 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 1163 | fmov.x %fp0,FP_SRC(%a6) |
| 1164 | lea FP_SRC(%a6),%a0 |
| 1165 | bsr.l tag # fetch operand type |
| 1166 | mov.b %d0,STAG(%a6) |
| 1167 | mov.b %d0,%d1 |
| 1168 | |
| 1169 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1170 | |
| 1171 | clr.l %d0 |
| 1172 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1173 | |
| 1174 | mov.b %d1,STAG(%a6) |
| 1175 | tst.b %d1 |
| 1176 | bne.b _L3_2d |
| 1177 | bsr.l slognp1 # operand is a NORM |
| 1178 | bra.b _L3_6d |
| 1179 | _L3_2d: |
| 1180 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1181 | bne.b _L3_3d # no |
| 1182 | bsr.l src_zero # yes |
| 1183 | bra.b _L3_6d |
| 1184 | _L3_3d: |
| 1185 | cmpi.b %d1,&INF # is operand an INF? |
| 1186 | bne.b _L3_4d # no |
| 1187 | bsr.l sopr_inf # yes |
| 1188 | bra.b _L3_6d |
| 1189 | _L3_4d: |
| 1190 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1191 | bne.b _L3_5d # no |
| 1192 | bsr.l src_qnan # yes |
| 1193 | bra.b _L3_6d |
| 1194 | _L3_5d: |
| 1195 | bsr.l slognp1d # operand is a DENORM |
| 1196 | _L3_6d: |
| 1197 | |
| 1198 | # |
| 1199 | # Result is now in FP0 |
| 1200 | # |
| 1201 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1202 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1203 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1204 | unlk %a6 |
| 1205 | rts |
| 1206 | |
| 1207 | global _flognp1x_ |
| 1208 | _flognp1x_: |
| 1209 | link %a6,&-LOCAL_SIZE |
| 1210 | |
| 1211 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1212 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1213 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1214 | |
| 1215 | fmov.l &0x0,%fpcr # zero FPCR |
| 1216 | |
| 1217 | # |
| 1218 | # copy, convert, and tag input argument |
| 1219 | # |
| 1220 | lea FP_SRC(%a6),%a0 |
| 1221 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 1222 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 1223 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 1224 | bsr.l tag # fetch operand type |
| 1225 | mov.b %d0,STAG(%a6) |
| 1226 | mov.b %d0,%d1 |
| 1227 | |
| 1228 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1229 | |
| 1230 | clr.l %d0 |
| 1231 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1232 | |
| 1233 | tst.b %d1 |
| 1234 | bne.b _L3_2x |
| 1235 | bsr.l slognp1 # operand is a NORM |
| 1236 | bra.b _L3_6x |
| 1237 | _L3_2x: |
| 1238 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1239 | bne.b _L3_3x # no |
| 1240 | bsr.l src_zero # yes |
| 1241 | bra.b _L3_6x |
| 1242 | _L3_3x: |
| 1243 | cmpi.b %d1,&INF # is operand an INF? |
| 1244 | bne.b _L3_4x # no |
| 1245 | bsr.l sopr_inf # yes |
| 1246 | bra.b _L3_6x |
| 1247 | _L3_4x: |
| 1248 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1249 | bne.b _L3_5x # no |
| 1250 | bsr.l src_qnan # yes |
| 1251 | bra.b _L3_6x |
| 1252 | _L3_5x: |
| 1253 | bsr.l slognp1d # operand is a DENORM |
| 1254 | _L3_6x: |
| 1255 | |
| 1256 | # |
| 1257 | # Result is now in FP0 |
| 1258 | # |
| 1259 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1260 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1261 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1262 | unlk %a6 |
| 1263 | rts |
| 1264 | |
| 1265 | |
| 1266 | ######################################################################### |
| 1267 | # MONADIC TEMPLATE # |
| 1268 | ######################################################################### |
| 1269 | global _fetoxm1s_ |
| 1270 | _fetoxm1s_: |
| 1271 | link %a6,&-LOCAL_SIZE |
| 1272 | |
| 1273 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1274 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1275 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1276 | |
| 1277 | fmov.l &0x0,%fpcr # zero FPCR |
| 1278 | |
| 1279 | # |
| 1280 | # copy, convert, and tag input argument |
| 1281 | # |
| 1282 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 1283 | fmov.x %fp0,FP_SRC(%a6) |
| 1284 | lea FP_SRC(%a6),%a0 |
| 1285 | bsr.l tag # fetch operand type |
| 1286 | mov.b %d0,STAG(%a6) |
| 1287 | mov.b %d0,%d1 |
| 1288 | |
| 1289 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1290 | |
| 1291 | clr.l %d0 |
| 1292 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1293 | |
| 1294 | tst.b %d1 |
| 1295 | bne.b _L4_2s |
| 1296 | bsr.l setoxm1 # operand is a NORM |
| 1297 | bra.b _L4_6s |
| 1298 | _L4_2s: |
| 1299 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1300 | bne.b _L4_3s # no |
| 1301 | bsr.l src_zero # yes |
| 1302 | bra.b _L4_6s |
| 1303 | _L4_3s: |
| 1304 | cmpi.b %d1,&INF # is operand an INF? |
| 1305 | bne.b _L4_4s # no |
| 1306 | bsr.l setoxm1i # yes |
| 1307 | bra.b _L4_6s |
| 1308 | _L4_4s: |
| 1309 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1310 | bne.b _L4_5s # no |
| 1311 | bsr.l src_qnan # yes |
| 1312 | bra.b _L4_6s |
| 1313 | _L4_5s: |
| 1314 | bsr.l setoxm1d # operand is a DENORM |
| 1315 | _L4_6s: |
| 1316 | |
| 1317 | # |
| 1318 | # Result is now in FP0 |
| 1319 | # |
| 1320 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1321 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1322 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1323 | unlk %a6 |
| 1324 | rts |
| 1325 | |
| 1326 | global _fetoxm1d_ |
| 1327 | _fetoxm1d_: |
| 1328 | link %a6,&-LOCAL_SIZE |
| 1329 | |
| 1330 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1331 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1332 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1333 | |
| 1334 | fmov.l &0x0,%fpcr # zero FPCR |
| 1335 | |
| 1336 | # |
| 1337 | # copy, convert, and tag input argument |
| 1338 | # |
| 1339 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 1340 | fmov.x %fp0,FP_SRC(%a6) |
| 1341 | lea FP_SRC(%a6),%a0 |
| 1342 | bsr.l tag # fetch operand type |
| 1343 | mov.b %d0,STAG(%a6) |
| 1344 | mov.b %d0,%d1 |
| 1345 | |
| 1346 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1347 | |
| 1348 | clr.l %d0 |
| 1349 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1350 | |
| 1351 | mov.b %d1,STAG(%a6) |
| 1352 | tst.b %d1 |
| 1353 | bne.b _L4_2d |
| 1354 | bsr.l setoxm1 # operand is a NORM |
| 1355 | bra.b _L4_6d |
| 1356 | _L4_2d: |
| 1357 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1358 | bne.b _L4_3d # no |
| 1359 | bsr.l src_zero # yes |
| 1360 | bra.b _L4_6d |
| 1361 | _L4_3d: |
| 1362 | cmpi.b %d1,&INF # is operand an INF? |
| 1363 | bne.b _L4_4d # no |
| 1364 | bsr.l setoxm1i # yes |
| 1365 | bra.b _L4_6d |
| 1366 | _L4_4d: |
| 1367 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1368 | bne.b _L4_5d # no |
| 1369 | bsr.l src_qnan # yes |
| 1370 | bra.b _L4_6d |
| 1371 | _L4_5d: |
| 1372 | bsr.l setoxm1d # operand is a DENORM |
| 1373 | _L4_6d: |
| 1374 | |
| 1375 | # |
| 1376 | # Result is now in FP0 |
| 1377 | # |
| 1378 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1379 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1380 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1381 | unlk %a6 |
| 1382 | rts |
| 1383 | |
| 1384 | global _fetoxm1x_ |
| 1385 | _fetoxm1x_: |
| 1386 | link %a6,&-LOCAL_SIZE |
| 1387 | |
| 1388 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1389 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1390 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1391 | |
| 1392 | fmov.l &0x0,%fpcr # zero FPCR |
| 1393 | |
| 1394 | # |
| 1395 | # copy, convert, and tag input argument |
| 1396 | # |
| 1397 | lea FP_SRC(%a6),%a0 |
| 1398 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 1399 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 1400 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 1401 | bsr.l tag # fetch operand type |
| 1402 | mov.b %d0,STAG(%a6) |
| 1403 | mov.b %d0,%d1 |
| 1404 | |
| 1405 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1406 | |
| 1407 | clr.l %d0 |
| 1408 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1409 | |
| 1410 | tst.b %d1 |
| 1411 | bne.b _L4_2x |
| 1412 | bsr.l setoxm1 # operand is a NORM |
| 1413 | bra.b _L4_6x |
| 1414 | _L4_2x: |
| 1415 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1416 | bne.b _L4_3x # no |
| 1417 | bsr.l src_zero # yes |
| 1418 | bra.b _L4_6x |
| 1419 | _L4_3x: |
| 1420 | cmpi.b %d1,&INF # is operand an INF? |
| 1421 | bne.b _L4_4x # no |
| 1422 | bsr.l setoxm1i # yes |
| 1423 | bra.b _L4_6x |
| 1424 | _L4_4x: |
| 1425 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1426 | bne.b _L4_5x # no |
| 1427 | bsr.l src_qnan # yes |
| 1428 | bra.b _L4_6x |
| 1429 | _L4_5x: |
| 1430 | bsr.l setoxm1d # operand is a DENORM |
| 1431 | _L4_6x: |
| 1432 | |
| 1433 | # |
| 1434 | # Result is now in FP0 |
| 1435 | # |
| 1436 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1437 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1438 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1439 | unlk %a6 |
| 1440 | rts |
| 1441 | |
| 1442 | |
| 1443 | ######################################################################### |
| 1444 | # MONADIC TEMPLATE # |
| 1445 | ######################################################################### |
| 1446 | global _ftanhs_ |
| 1447 | _ftanhs_: |
| 1448 | link %a6,&-LOCAL_SIZE |
| 1449 | |
| 1450 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1451 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1452 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1453 | |
| 1454 | fmov.l &0x0,%fpcr # zero FPCR |
| 1455 | |
| 1456 | # |
| 1457 | # copy, convert, and tag input argument |
| 1458 | # |
| 1459 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 1460 | fmov.x %fp0,FP_SRC(%a6) |
| 1461 | lea FP_SRC(%a6),%a0 |
| 1462 | bsr.l tag # fetch operand type |
| 1463 | mov.b %d0,STAG(%a6) |
| 1464 | mov.b %d0,%d1 |
| 1465 | |
| 1466 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1467 | |
| 1468 | clr.l %d0 |
| 1469 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1470 | |
| 1471 | tst.b %d1 |
| 1472 | bne.b _L5_2s |
| 1473 | bsr.l stanh # operand is a NORM |
| 1474 | bra.b _L5_6s |
| 1475 | _L5_2s: |
| 1476 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1477 | bne.b _L5_3s # no |
| 1478 | bsr.l src_zero # yes |
| 1479 | bra.b _L5_6s |
| 1480 | _L5_3s: |
| 1481 | cmpi.b %d1,&INF # is operand an INF? |
| 1482 | bne.b _L5_4s # no |
| 1483 | bsr.l src_one # yes |
| 1484 | bra.b _L5_6s |
| 1485 | _L5_4s: |
| 1486 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1487 | bne.b _L5_5s # no |
| 1488 | bsr.l src_qnan # yes |
| 1489 | bra.b _L5_6s |
| 1490 | _L5_5s: |
| 1491 | bsr.l stanhd # operand is a DENORM |
| 1492 | _L5_6s: |
| 1493 | |
| 1494 | # |
| 1495 | # Result is now in FP0 |
| 1496 | # |
| 1497 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1498 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1499 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1500 | unlk %a6 |
| 1501 | rts |
| 1502 | |
| 1503 | global _ftanhd_ |
| 1504 | _ftanhd_: |
| 1505 | link %a6,&-LOCAL_SIZE |
| 1506 | |
| 1507 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1508 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1509 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1510 | |
| 1511 | fmov.l &0x0,%fpcr # zero FPCR |
| 1512 | |
| 1513 | # |
| 1514 | # copy, convert, and tag input argument |
| 1515 | # |
| 1516 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 1517 | fmov.x %fp0,FP_SRC(%a6) |
| 1518 | lea FP_SRC(%a6),%a0 |
| 1519 | bsr.l tag # fetch operand type |
| 1520 | mov.b %d0,STAG(%a6) |
| 1521 | mov.b %d0,%d1 |
| 1522 | |
| 1523 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1524 | |
| 1525 | clr.l %d0 |
| 1526 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1527 | |
| 1528 | mov.b %d1,STAG(%a6) |
| 1529 | tst.b %d1 |
| 1530 | bne.b _L5_2d |
| 1531 | bsr.l stanh # operand is a NORM |
| 1532 | bra.b _L5_6d |
| 1533 | _L5_2d: |
| 1534 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1535 | bne.b _L5_3d # no |
| 1536 | bsr.l src_zero # yes |
| 1537 | bra.b _L5_6d |
| 1538 | _L5_3d: |
| 1539 | cmpi.b %d1,&INF # is operand an INF? |
| 1540 | bne.b _L5_4d # no |
| 1541 | bsr.l src_one # yes |
| 1542 | bra.b _L5_6d |
| 1543 | _L5_4d: |
| 1544 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1545 | bne.b _L5_5d # no |
| 1546 | bsr.l src_qnan # yes |
| 1547 | bra.b _L5_6d |
| 1548 | _L5_5d: |
| 1549 | bsr.l stanhd # operand is a DENORM |
| 1550 | _L5_6d: |
| 1551 | |
| 1552 | # |
| 1553 | # Result is now in FP0 |
| 1554 | # |
| 1555 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1556 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1557 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1558 | unlk %a6 |
| 1559 | rts |
| 1560 | |
| 1561 | global _ftanhx_ |
| 1562 | _ftanhx_: |
| 1563 | link %a6,&-LOCAL_SIZE |
| 1564 | |
| 1565 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1566 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1567 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1568 | |
| 1569 | fmov.l &0x0,%fpcr # zero FPCR |
| 1570 | |
| 1571 | # |
| 1572 | # copy, convert, and tag input argument |
| 1573 | # |
| 1574 | lea FP_SRC(%a6),%a0 |
| 1575 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 1576 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 1577 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 1578 | bsr.l tag # fetch operand type |
| 1579 | mov.b %d0,STAG(%a6) |
| 1580 | mov.b %d0,%d1 |
| 1581 | |
| 1582 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1583 | |
| 1584 | clr.l %d0 |
| 1585 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1586 | |
| 1587 | tst.b %d1 |
| 1588 | bne.b _L5_2x |
| 1589 | bsr.l stanh # operand is a NORM |
| 1590 | bra.b _L5_6x |
| 1591 | _L5_2x: |
| 1592 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1593 | bne.b _L5_3x # no |
| 1594 | bsr.l src_zero # yes |
| 1595 | bra.b _L5_6x |
| 1596 | _L5_3x: |
| 1597 | cmpi.b %d1,&INF # is operand an INF? |
| 1598 | bne.b _L5_4x # no |
| 1599 | bsr.l src_one # yes |
| 1600 | bra.b _L5_6x |
| 1601 | _L5_4x: |
| 1602 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1603 | bne.b _L5_5x # no |
| 1604 | bsr.l src_qnan # yes |
| 1605 | bra.b _L5_6x |
| 1606 | _L5_5x: |
| 1607 | bsr.l stanhd # operand is a DENORM |
| 1608 | _L5_6x: |
| 1609 | |
| 1610 | # |
| 1611 | # Result is now in FP0 |
| 1612 | # |
| 1613 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1614 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1615 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1616 | unlk %a6 |
| 1617 | rts |
| 1618 | |
| 1619 | |
| 1620 | ######################################################################### |
| 1621 | # MONADIC TEMPLATE # |
| 1622 | ######################################################################### |
| 1623 | global _fatans_ |
| 1624 | _fatans_: |
| 1625 | link %a6,&-LOCAL_SIZE |
| 1626 | |
| 1627 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1628 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1629 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1630 | |
| 1631 | fmov.l &0x0,%fpcr # zero FPCR |
| 1632 | |
| 1633 | # |
| 1634 | # copy, convert, and tag input argument |
| 1635 | # |
| 1636 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 1637 | fmov.x %fp0,FP_SRC(%a6) |
| 1638 | lea FP_SRC(%a6),%a0 |
| 1639 | bsr.l tag # fetch operand type |
| 1640 | mov.b %d0,STAG(%a6) |
| 1641 | mov.b %d0,%d1 |
| 1642 | |
| 1643 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1644 | |
| 1645 | clr.l %d0 |
| 1646 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1647 | |
| 1648 | tst.b %d1 |
| 1649 | bne.b _L6_2s |
| 1650 | bsr.l satan # operand is a NORM |
| 1651 | bra.b _L6_6s |
| 1652 | _L6_2s: |
| 1653 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1654 | bne.b _L6_3s # no |
| 1655 | bsr.l src_zero # yes |
| 1656 | bra.b _L6_6s |
| 1657 | _L6_3s: |
| 1658 | cmpi.b %d1,&INF # is operand an INF? |
| 1659 | bne.b _L6_4s # no |
| 1660 | bsr.l spi_2 # yes |
| 1661 | bra.b _L6_6s |
| 1662 | _L6_4s: |
| 1663 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1664 | bne.b _L6_5s # no |
| 1665 | bsr.l src_qnan # yes |
| 1666 | bra.b _L6_6s |
| 1667 | _L6_5s: |
| 1668 | bsr.l satand # operand is a DENORM |
| 1669 | _L6_6s: |
| 1670 | |
| 1671 | # |
| 1672 | # Result is now in FP0 |
| 1673 | # |
| 1674 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1675 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1676 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1677 | unlk %a6 |
| 1678 | rts |
| 1679 | |
| 1680 | global _fatand_ |
| 1681 | _fatand_: |
| 1682 | link %a6,&-LOCAL_SIZE |
| 1683 | |
| 1684 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1685 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1686 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1687 | |
| 1688 | fmov.l &0x0,%fpcr # zero FPCR |
| 1689 | |
| 1690 | # |
| 1691 | # copy, convert, and tag input argument |
| 1692 | # |
| 1693 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 1694 | fmov.x %fp0,FP_SRC(%a6) |
| 1695 | lea FP_SRC(%a6),%a0 |
| 1696 | bsr.l tag # fetch operand type |
| 1697 | mov.b %d0,STAG(%a6) |
| 1698 | mov.b %d0,%d1 |
| 1699 | |
| 1700 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1701 | |
| 1702 | clr.l %d0 |
| 1703 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1704 | |
| 1705 | mov.b %d1,STAG(%a6) |
| 1706 | tst.b %d1 |
| 1707 | bne.b _L6_2d |
| 1708 | bsr.l satan # operand is a NORM |
| 1709 | bra.b _L6_6d |
| 1710 | _L6_2d: |
| 1711 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1712 | bne.b _L6_3d # no |
| 1713 | bsr.l src_zero # yes |
| 1714 | bra.b _L6_6d |
| 1715 | _L6_3d: |
| 1716 | cmpi.b %d1,&INF # is operand an INF? |
| 1717 | bne.b _L6_4d # no |
| 1718 | bsr.l spi_2 # yes |
| 1719 | bra.b _L6_6d |
| 1720 | _L6_4d: |
| 1721 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1722 | bne.b _L6_5d # no |
| 1723 | bsr.l src_qnan # yes |
| 1724 | bra.b _L6_6d |
| 1725 | _L6_5d: |
| 1726 | bsr.l satand # operand is a DENORM |
| 1727 | _L6_6d: |
| 1728 | |
| 1729 | # |
| 1730 | # Result is now in FP0 |
| 1731 | # |
| 1732 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1733 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1734 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1735 | unlk %a6 |
| 1736 | rts |
| 1737 | |
| 1738 | global _fatanx_ |
| 1739 | _fatanx_: |
| 1740 | link %a6,&-LOCAL_SIZE |
| 1741 | |
| 1742 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1743 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1744 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1745 | |
| 1746 | fmov.l &0x0,%fpcr # zero FPCR |
| 1747 | |
| 1748 | # |
| 1749 | # copy, convert, and tag input argument |
| 1750 | # |
| 1751 | lea FP_SRC(%a6),%a0 |
| 1752 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 1753 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 1754 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 1755 | bsr.l tag # fetch operand type |
| 1756 | mov.b %d0,STAG(%a6) |
| 1757 | mov.b %d0,%d1 |
| 1758 | |
| 1759 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1760 | |
| 1761 | clr.l %d0 |
| 1762 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1763 | |
| 1764 | tst.b %d1 |
| 1765 | bne.b _L6_2x |
| 1766 | bsr.l satan # operand is a NORM |
| 1767 | bra.b _L6_6x |
| 1768 | _L6_2x: |
| 1769 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1770 | bne.b _L6_3x # no |
| 1771 | bsr.l src_zero # yes |
| 1772 | bra.b _L6_6x |
| 1773 | _L6_3x: |
| 1774 | cmpi.b %d1,&INF # is operand an INF? |
| 1775 | bne.b _L6_4x # no |
| 1776 | bsr.l spi_2 # yes |
| 1777 | bra.b _L6_6x |
| 1778 | _L6_4x: |
| 1779 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1780 | bne.b _L6_5x # no |
| 1781 | bsr.l src_qnan # yes |
| 1782 | bra.b _L6_6x |
| 1783 | _L6_5x: |
| 1784 | bsr.l satand # operand is a DENORM |
| 1785 | _L6_6x: |
| 1786 | |
| 1787 | # |
| 1788 | # Result is now in FP0 |
| 1789 | # |
| 1790 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1791 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1792 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1793 | unlk %a6 |
| 1794 | rts |
| 1795 | |
| 1796 | |
| 1797 | ######################################################################### |
| 1798 | # MONADIC TEMPLATE # |
| 1799 | ######################################################################### |
| 1800 | global _fasins_ |
| 1801 | _fasins_: |
| 1802 | link %a6,&-LOCAL_SIZE |
| 1803 | |
| 1804 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1805 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1806 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1807 | |
| 1808 | fmov.l &0x0,%fpcr # zero FPCR |
| 1809 | |
| 1810 | # |
| 1811 | # copy, convert, and tag input argument |
| 1812 | # |
| 1813 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 1814 | fmov.x %fp0,FP_SRC(%a6) |
| 1815 | lea FP_SRC(%a6),%a0 |
| 1816 | bsr.l tag # fetch operand type |
| 1817 | mov.b %d0,STAG(%a6) |
| 1818 | mov.b %d0,%d1 |
| 1819 | |
| 1820 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1821 | |
| 1822 | clr.l %d0 |
| 1823 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1824 | |
| 1825 | tst.b %d1 |
| 1826 | bne.b _L7_2s |
| 1827 | bsr.l sasin # operand is a NORM |
| 1828 | bra.b _L7_6s |
| 1829 | _L7_2s: |
| 1830 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1831 | bne.b _L7_3s # no |
| 1832 | bsr.l src_zero # yes |
| 1833 | bra.b _L7_6s |
| 1834 | _L7_3s: |
| 1835 | cmpi.b %d1,&INF # is operand an INF? |
| 1836 | bne.b _L7_4s # no |
| 1837 | bsr.l t_operr # yes |
| 1838 | bra.b _L7_6s |
| 1839 | _L7_4s: |
| 1840 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1841 | bne.b _L7_5s # no |
| 1842 | bsr.l src_qnan # yes |
| 1843 | bra.b _L7_6s |
| 1844 | _L7_5s: |
| 1845 | bsr.l sasind # operand is a DENORM |
| 1846 | _L7_6s: |
| 1847 | |
| 1848 | # |
| 1849 | # Result is now in FP0 |
| 1850 | # |
| 1851 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1852 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1853 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1854 | unlk %a6 |
| 1855 | rts |
| 1856 | |
| 1857 | global _fasind_ |
| 1858 | _fasind_: |
| 1859 | link %a6,&-LOCAL_SIZE |
| 1860 | |
| 1861 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1862 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1863 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1864 | |
| 1865 | fmov.l &0x0,%fpcr # zero FPCR |
| 1866 | |
| 1867 | # |
| 1868 | # copy, convert, and tag input argument |
| 1869 | # |
| 1870 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 1871 | fmov.x %fp0,FP_SRC(%a6) |
| 1872 | lea FP_SRC(%a6),%a0 |
| 1873 | bsr.l tag # fetch operand type |
| 1874 | mov.b %d0,STAG(%a6) |
| 1875 | mov.b %d0,%d1 |
| 1876 | |
| 1877 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1878 | |
| 1879 | clr.l %d0 |
| 1880 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1881 | |
| 1882 | mov.b %d1,STAG(%a6) |
| 1883 | tst.b %d1 |
| 1884 | bne.b _L7_2d |
| 1885 | bsr.l sasin # operand is a NORM |
| 1886 | bra.b _L7_6d |
| 1887 | _L7_2d: |
| 1888 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1889 | bne.b _L7_3d # no |
| 1890 | bsr.l src_zero # yes |
| 1891 | bra.b _L7_6d |
| 1892 | _L7_3d: |
| 1893 | cmpi.b %d1,&INF # is operand an INF? |
| 1894 | bne.b _L7_4d # no |
| 1895 | bsr.l t_operr # yes |
| 1896 | bra.b _L7_6d |
| 1897 | _L7_4d: |
| 1898 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1899 | bne.b _L7_5d # no |
| 1900 | bsr.l src_qnan # yes |
| 1901 | bra.b _L7_6d |
| 1902 | _L7_5d: |
| 1903 | bsr.l sasind # operand is a DENORM |
| 1904 | _L7_6d: |
| 1905 | |
| 1906 | # |
| 1907 | # Result is now in FP0 |
| 1908 | # |
| 1909 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1910 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1911 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1912 | unlk %a6 |
| 1913 | rts |
| 1914 | |
| 1915 | global _fasinx_ |
| 1916 | _fasinx_: |
| 1917 | link %a6,&-LOCAL_SIZE |
| 1918 | |
| 1919 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1920 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1921 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1922 | |
| 1923 | fmov.l &0x0,%fpcr # zero FPCR |
| 1924 | |
| 1925 | # |
| 1926 | # copy, convert, and tag input argument |
| 1927 | # |
| 1928 | lea FP_SRC(%a6),%a0 |
| 1929 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 1930 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 1931 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 1932 | bsr.l tag # fetch operand type |
| 1933 | mov.b %d0,STAG(%a6) |
| 1934 | mov.b %d0,%d1 |
| 1935 | |
| 1936 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1937 | |
| 1938 | clr.l %d0 |
| 1939 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 1940 | |
| 1941 | tst.b %d1 |
| 1942 | bne.b _L7_2x |
| 1943 | bsr.l sasin # operand is a NORM |
| 1944 | bra.b _L7_6x |
| 1945 | _L7_2x: |
| 1946 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 1947 | bne.b _L7_3x # no |
| 1948 | bsr.l src_zero # yes |
| 1949 | bra.b _L7_6x |
| 1950 | _L7_3x: |
| 1951 | cmpi.b %d1,&INF # is operand an INF? |
| 1952 | bne.b _L7_4x # no |
| 1953 | bsr.l t_operr # yes |
| 1954 | bra.b _L7_6x |
| 1955 | _L7_4x: |
| 1956 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 1957 | bne.b _L7_5x # no |
| 1958 | bsr.l src_qnan # yes |
| 1959 | bra.b _L7_6x |
| 1960 | _L7_5x: |
| 1961 | bsr.l sasind # operand is a DENORM |
| 1962 | _L7_6x: |
| 1963 | |
| 1964 | # |
| 1965 | # Result is now in FP0 |
| 1966 | # |
| 1967 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1968 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 1969 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 1970 | unlk %a6 |
| 1971 | rts |
| 1972 | |
| 1973 | |
| 1974 | ######################################################################### |
| 1975 | # MONADIC TEMPLATE # |
| 1976 | ######################################################################### |
| 1977 | global _fatanhs_ |
| 1978 | _fatanhs_: |
| 1979 | link %a6,&-LOCAL_SIZE |
| 1980 | |
| 1981 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1982 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 1983 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 1984 | |
| 1985 | fmov.l &0x0,%fpcr # zero FPCR |
| 1986 | |
| 1987 | # |
| 1988 | # copy, convert, and tag input argument |
| 1989 | # |
| 1990 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 1991 | fmov.x %fp0,FP_SRC(%a6) |
| 1992 | lea FP_SRC(%a6),%a0 |
| 1993 | bsr.l tag # fetch operand type |
| 1994 | mov.b %d0,STAG(%a6) |
| 1995 | mov.b %d0,%d1 |
| 1996 | |
| 1997 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 1998 | |
| 1999 | clr.l %d0 |
| 2000 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2001 | |
| 2002 | tst.b %d1 |
| 2003 | bne.b _L8_2s |
| 2004 | bsr.l satanh # operand is a NORM |
| 2005 | bra.b _L8_6s |
| 2006 | _L8_2s: |
| 2007 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2008 | bne.b _L8_3s # no |
| 2009 | bsr.l src_zero # yes |
| 2010 | bra.b _L8_6s |
| 2011 | _L8_3s: |
| 2012 | cmpi.b %d1,&INF # is operand an INF? |
| 2013 | bne.b _L8_4s # no |
| 2014 | bsr.l t_operr # yes |
| 2015 | bra.b _L8_6s |
| 2016 | _L8_4s: |
| 2017 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2018 | bne.b _L8_5s # no |
| 2019 | bsr.l src_qnan # yes |
| 2020 | bra.b _L8_6s |
| 2021 | _L8_5s: |
| 2022 | bsr.l satanhd # operand is a DENORM |
| 2023 | _L8_6s: |
| 2024 | |
| 2025 | # |
| 2026 | # Result is now in FP0 |
| 2027 | # |
| 2028 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2029 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2030 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2031 | unlk %a6 |
| 2032 | rts |
| 2033 | |
| 2034 | global _fatanhd_ |
| 2035 | _fatanhd_: |
| 2036 | link %a6,&-LOCAL_SIZE |
| 2037 | |
| 2038 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2039 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2040 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2041 | |
| 2042 | fmov.l &0x0,%fpcr # zero FPCR |
| 2043 | |
| 2044 | # |
| 2045 | # copy, convert, and tag input argument |
| 2046 | # |
| 2047 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 2048 | fmov.x %fp0,FP_SRC(%a6) |
| 2049 | lea FP_SRC(%a6),%a0 |
| 2050 | bsr.l tag # fetch operand type |
| 2051 | mov.b %d0,STAG(%a6) |
| 2052 | mov.b %d0,%d1 |
| 2053 | |
| 2054 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2055 | |
| 2056 | clr.l %d0 |
| 2057 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2058 | |
| 2059 | mov.b %d1,STAG(%a6) |
| 2060 | tst.b %d1 |
| 2061 | bne.b _L8_2d |
| 2062 | bsr.l satanh # operand is a NORM |
| 2063 | bra.b _L8_6d |
| 2064 | _L8_2d: |
| 2065 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2066 | bne.b _L8_3d # no |
| 2067 | bsr.l src_zero # yes |
| 2068 | bra.b _L8_6d |
| 2069 | _L8_3d: |
| 2070 | cmpi.b %d1,&INF # is operand an INF? |
| 2071 | bne.b _L8_4d # no |
| 2072 | bsr.l t_operr # yes |
| 2073 | bra.b _L8_6d |
| 2074 | _L8_4d: |
| 2075 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2076 | bne.b _L8_5d # no |
| 2077 | bsr.l src_qnan # yes |
| 2078 | bra.b _L8_6d |
| 2079 | _L8_5d: |
| 2080 | bsr.l satanhd # operand is a DENORM |
| 2081 | _L8_6d: |
| 2082 | |
| 2083 | # |
| 2084 | # Result is now in FP0 |
| 2085 | # |
| 2086 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2087 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2088 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2089 | unlk %a6 |
| 2090 | rts |
| 2091 | |
| 2092 | global _fatanhx_ |
| 2093 | _fatanhx_: |
| 2094 | link %a6,&-LOCAL_SIZE |
| 2095 | |
| 2096 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2097 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2098 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2099 | |
| 2100 | fmov.l &0x0,%fpcr # zero FPCR |
| 2101 | |
| 2102 | # |
| 2103 | # copy, convert, and tag input argument |
| 2104 | # |
| 2105 | lea FP_SRC(%a6),%a0 |
| 2106 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 2107 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 2108 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 2109 | bsr.l tag # fetch operand type |
| 2110 | mov.b %d0,STAG(%a6) |
| 2111 | mov.b %d0,%d1 |
| 2112 | |
| 2113 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2114 | |
| 2115 | clr.l %d0 |
| 2116 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2117 | |
| 2118 | tst.b %d1 |
| 2119 | bne.b _L8_2x |
| 2120 | bsr.l satanh # operand is a NORM |
| 2121 | bra.b _L8_6x |
| 2122 | _L8_2x: |
| 2123 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2124 | bne.b _L8_3x # no |
| 2125 | bsr.l src_zero # yes |
| 2126 | bra.b _L8_6x |
| 2127 | _L8_3x: |
| 2128 | cmpi.b %d1,&INF # is operand an INF? |
| 2129 | bne.b _L8_4x # no |
| 2130 | bsr.l t_operr # yes |
| 2131 | bra.b _L8_6x |
| 2132 | _L8_4x: |
| 2133 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2134 | bne.b _L8_5x # no |
| 2135 | bsr.l src_qnan # yes |
| 2136 | bra.b _L8_6x |
| 2137 | _L8_5x: |
| 2138 | bsr.l satanhd # operand is a DENORM |
| 2139 | _L8_6x: |
| 2140 | |
| 2141 | # |
| 2142 | # Result is now in FP0 |
| 2143 | # |
| 2144 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2145 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2146 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2147 | unlk %a6 |
| 2148 | rts |
| 2149 | |
| 2150 | |
| 2151 | ######################################################################### |
| 2152 | # MONADIC TEMPLATE # |
| 2153 | ######################################################################### |
| 2154 | global _ftans_ |
| 2155 | _ftans_: |
| 2156 | link %a6,&-LOCAL_SIZE |
| 2157 | |
| 2158 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2159 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2160 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2161 | |
| 2162 | fmov.l &0x0,%fpcr # zero FPCR |
| 2163 | |
| 2164 | # |
| 2165 | # copy, convert, and tag input argument |
| 2166 | # |
| 2167 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 2168 | fmov.x %fp0,FP_SRC(%a6) |
| 2169 | lea FP_SRC(%a6),%a0 |
| 2170 | bsr.l tag # fetch operand type |
| 2171 | mov.b %d0,STAG(%a6) |
| 2172 | mov.b %d0,%d1 |
| 2173 | |
| 2174 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2175 | |
| 2176 | clr.l %d0 |
| 2177 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2178 | |
| 2179 | tst.b %d1 |
| 2180 | bne.b _L9_2s |
| 2181 | bsr.l stan # operand is a NORM |
| 2182 | bra.b _L9_6s |
| 2183 | _L9_2s: |
| 2184 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2185 | bne.b _L9_3s # no |
| 2186 | bsr.l src_zero # yes |
| 2187 | bra.b _L9_6s |
| 2188 | _L9_3s: |
| 2189 | cmpi.b %d1,&INF # is operand an INF? |
| 2190 | bne.b _L9_4s # no |
| 2191 | bsr.l t_operr # yes |
| 2192 | bra.b _L9_6s |
| 2193 | _L9_4s: |
| 2194 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2195 | bne.b _L9_5s # no |
| 2196 | bsr.l src_qnan # yes |
| 2197 | bra.b _L9_6s |
| 2198 | _L9_5s: |
| 2199 | bsr.l stand # operand is a DENORM |
| 2200 | _L9_6s: |
| 2201 | |
| 2202 | # |
| 2203 | # Result is now in FP0 |
| 2204 | # |
| 2205 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2206 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2207 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2208 | unlk %a6 |
| 2209 | rts |
| 2210 | |
| 2211 | global _ftand_ |
| 2212 | _ftand_: |
| 2213 | link %a6,&-LOCAL_SIZE |
| 2214 | |
| 2215 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2216 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2217 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2218 | |
| 2219 | fmov.l &0x0,%fpcr # zero FPCR |
| 2220 | |
| 2221 | # |
| 2222 | # copy, convert, and tag input argument |
| 2223 | # |
| 2224 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 2225 | fmov.x %fp0,FP_SRC(%a6) |
| 2226 | lea FP_SRC(%a6),%a0 |
| 2227 | bsr.l tag # fetch operand type |
| 2228 | mov.b %d0,STAG(%a6) |
| 2229 | mov.b %d0,%d1 |
| 2230 | |
| 2231 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2232 | |
| 2233 | clr.l %d0 |
| 2234 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2235 | |
| 2236 | mov.b %d1,STAG(%a6) |
| 2237 | tst.b %d1 |
| 2238 | bne.b _L9_2d |
| 2239 | bsr.l stan # operand is a NORM |
| 2240 | bra.b _L9_6d |
| 2241 | _L9_2d: |
| 2242 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2243 | bne.b _L9_3d # no |
| 2244 | bsr.l src_zero # yes |
| 2245 | bra.b _L9_6d |
| 2246 | _L9_3d: |
| 2247 | cmpi.b %d1,&INF # is operand an INF? |
| 2248 | bne.b _L9_4d # no |
| 2249 | bsr.l t_operr # yes |
| 2250 | bra.b _L9_6d |
| 2251 | _L9_4d: |
| 2252 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2253 | bne.b _L9_5d # no |
| 2254 | bsr.l src_qnan # yes |
| 2255 | bra.b _L9_6d |
| 2256 | _L9_5d: |
| 2257 | bsr.l stand # operand is a DENORM |
| 2258 | _L9_6d: |
| 2259 | |
| 2260 | # |
| 2261 | # Result is now in FP0 |
| 2262 | # |
| 2263 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2264 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2265 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2266 | unlk %a6 |
| 2267 | rts |
| 2268 | |
| 2269 | global _ftanx_ |
| 2270 | _ftanx_: |
| 2271 | link %a6,&-LOCAL_SIZE |
| 2272 | |
| 2273 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2274 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2275 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2276 | |
| 2277 | fmov.l &0x0,%fpcr # zero FPCR |
| 2278 | |
| 2279 | # |
| 2280 | # copy, convert, and tag input argument |
| 2281 | # |
| 2282 | lea FP_SRC(%a6),%a0 |
| 2283 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 2284 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 2285 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 2286 | bsr.l tag # fetch operand type |
| 2287 | mov.b %d0,STAG(%a6) |
| 2288 | mov.b %d0,%d1 |
| 2289 | |
| 2290 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2291 | |
| 2292 | clr.l %d0 |
| 2293 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2294 | |
| 2295 | tst.b %d1 |
| 2296 | bne.b _L9_2x |
| 2297 | bsr.l stan # operand is a NORM |
| 2298 | bra.b _L9_6x |
| 2299 | _L9_2x: |
| 2300 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2301 | bne.b _L9_3x # no |
| 2302 | bsr.l src_zero # yes |
| 2303 | bra.b _L9_6x |
| 2304 | _L9_3x: |
| 2305 | cmpi.b %d1,&INF # is operand an INF? |
| 2306 | bne.b _L9_4x # no |
| 2307 | bsr.l t_operr # yes |
| 2308 | bra.b _L9_6x |
| 2309 | _L9_4x: |
| 2310 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2311 | bne.b _L9_5x # no |
| 2312 | bsr.l src_qnan # yes |
| 2313 | bra.b _L9_6x |
| 2314 | _L9_5x: |
| 2315 | bsr.l stand # operand is a DENORM |
| 2316 | _L9_6x: |
| 2317 | |
| 2318 | # |
| 2319 | # Result is now in FP0 |
| 2320 | # |
| 2321 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2322 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2323 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2324 | unlk %a6 |
| 2325 | rts |
| 2326 | |
| 2327 | |
| 2328 | ######################################################################### |
| 2329 | # MONADIC TEMPLATE # |
| 2330 | ######################################################################### |
| 2331 | global _fetoxs_ |
| 2332 | _fetoxs_: |
| 2333 | link %a6,&-LOCAL_SIZE |
| 2334 | |
| 2335 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2336 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2337 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2338 | |
| 2339 | fmov.l &0x0,%fpcr # zero FPCR |
| 2340 | |
| 2341 | # |
| 2342 | # copy, convert, and tag input argument |
| 2343 | # |
| 2344 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 2345 | fmov.x %fp0,FP_SRC(%a6) |
| 2346 | lea FP_SRC(%a6),%a0 |
| 2347 | bsr.l tag # fetch operand type |
| 2348 | mov.b %d0,STAG(%a6) |
| 2349 | mov.b %d0,%d1 |
| 2350 | |
| 2351 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2352 | |
| 2353 | clr.l %d0 |
| 2354 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2355 | |
| 2356 | tst.b %d1 |
| 2357 | bne.b _L10_2s |
| 2358 | bsr.l setox # operand is a NORM |
| 2359 | bra.b _L10_6s |
| 2360 | _L10_2s: |
| 2361 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2362 | bne.b _L10_3s # no |
| 2363 | bsr.l ld_pone # yes |
| 2364 | bra.b _L10_6s |
| 2365 | _L10_3s: |
| 2366 | cmpi.b %d1,&INF # is operand an INF? |
| 2367 | bne.b _L10_4s # no |
| 2368 | bsr.l szr_inf # yes |
| 2369 | bra.b _L10_6s |
| 2370 | _L10_4s: |
| 2371 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2372 | bne.b _L10_5s # no |
| 2373 | bsr.l src_qnan # yes |
| 2374 | bra.b _L10_6s |
| 2375 | _L10_5s: |
| 2376 | bsr.l setoxd # operand is a DENORM |
| 2377 | _L10_6s: |
| 2378 | |
| 2379 | # |
| 2380 | # Result is now in FP0 |
| 2381 | # |
| 2382 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2383 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2384 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2385 | unlk %a6 |
| 2386 | rts |
| 2387 | |
| 2388 | global _fetoxd_ |
| 2389 | _fetoxd_: |
| 2390 | link %a6,&-LOCAL_SIZE |
| 2391 | |
| 2392 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2393 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2394 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2395 | |
| 2396 | fmov.l &0x0,%fpcr # zero FPCR |
| 2397 | |
| 2398 | # |
| 2399 | # copy, convert, and tag input argument |
| 2400 | # |
| 2401 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 2402 | fmov.x %fp0,FP_SRC(%a6) |
| 2403 | lea FP_SRC(%a6),%a0 |
| 2404 | bsr.l tag # fetch operand type |
| 2405 | mov.b %d0,STAG(%a6) |
| 2406 | mov.b %d0,%d1 |
| 2407 | |
| 2408 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2409 | |
| 2410 | clr.l %d0 |
| 2411 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2412 | |
| 2413 | mov.b %d1,STAG(%a6) |
| 2414 | tst.b %d1 |
| 2415 | bne.b _L10_2d |
| 2416 | bsr.l setox # operand is a NORM |
| 2417 | bra.b _L10_6d |
| 2418 | _L10_2d: |
| 2419 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2420 | bne.b _L10_3d # no |
| 2421 | bsr.l ld_pone # yes |
| 2422 | bra.b _L10_6d |
| 2423 | _L10_3d: |
| 2424 | cmpi.b %d1,&INF # is operand an INF? |
| 2425 | bne.b _L10_4d # no |
| 2426 | bsr.l szr_inf # yes |
| 2427 | bra.b _L10_6d |
| 2428 | _L10_4d: |
| 2429 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2430 | bne.b _L10_5d # no |
| 2431 | bsr.l src_qnan # yes |
| 2432 | bra.b _L10_6d |
| 2433 | _L10_5d: |
| 2434 | bsr.l setoxd # operand is a DENORM |
| 2435 | _L10_6d: |
| 2436 | |
| 2437 | # |
| 2438 | # Result is now in FP0 |
| 2439 | # |
| 2440 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2441 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2442 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2443 | unlk %a6 |
| 2444 | rts |
| 2445 | |
| 2446 | global _fetoxx_ |
| 2447 | _fetoxx_: |
| 2448 | link %a6,&-LOCAL_SIZE |
| 2449 | |
| 2450 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2451 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2452 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2453 | |
| 2454 | fmov.l &0x0,%fpcr # zero FPCR |
| 2455 | |
| 2456 | # |
| 2457 | # copy, convert, and tag input argument |
| 2458 | # |
| 2459 | lea FP_SRC(%a6),%a0 |
| 2460 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 2461 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 2462 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 2463 | bsr.l tag # fetch operand type |
| 2464 | mov.b %d0,STAG(%a6) |
| 2465 | mov.b %d0,%d1 |
| 2466 | |
| 2467 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2468 | |
| 2469 | clr.l %d0 |
| 2470 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2471 | |
| 2472 | tst.b %d1 |
| 2473 | bne.b _L10_2x |
| 2474 | bsr.l setox # operand is a NORM |
| 2475 | bra.b _L10_6x |
| 2476 | _L10_2x: |
| 2477 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2478 | bne.b _L10_3x # no |
| 2479 | bsr.l ld_pone # yes |
| 2480 | bra.b _L10_6x |
| 2481 | _L10_3x: |
| 2482 | cmpi.b %d1,&INF # is operand an INF? |
| 2483 | bne.b _L10_4x # no |
| 2484 | bsr.l szr_inf # yes |
| 2485 | bra.b _L10_6x |
| 2486 | _L10_4x: |
| 2487 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2488 | bne.b _L10_5x # no |
| 2489 | bsr.l src_qnan # yes |
| 2490 | bra.b _L10_6x |
| 2491 | _L10_5x: |
| 2492 | bsr.l setoxd # operand is a DENORM |
| 2493 | _L10_6x: |
| 2494 | |
| 2495 | # |
| 2496 | # Result is now in FP0 |
| 2497 | # |
| 2498 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2499 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2500 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2501 | unlk %a6 |
| 2502 | rts |
| 2503 | |
| 2504 | |
| 2505 | ######################################################################### |
| 2506 | # MONADIC TEMPLATE # |
| 2507 | ######################################################################### |
| 2508 | global _ftwotoxs_ |
| 2509 | _ftwotoxs_: |
| 2510 | link %a6,&-LOCAL_SIZE |
| 2511 | |
| 2512 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2513 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2514 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2515 | |
| 2516 | fmov.l &0x0,%fpcr # zero FPCR |
| 2517 | |
| 2518 | # |
| 2519 | # copy, convert, and tag input argument |
| 2520 | # |
| 2521 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 2522 | fmov.x %fp0,FP_SRC(%a6) |
| 2523 | lea FP_SRC(%a6),%a0 |
| 2524 | bsr.l tag # fetch operand type |
| 2525 | mov.b %d0,STAG(%a6) |
| 2526 | mov.b %d0,%d1 |
| 2527 | |
| 2528 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2529 | |
| 2530 | clr.l %d0 |
| 2531 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2532 | |
| 2533 | tst.b %d1 |
| 2534 | bne.b _L11_2s |
| 2535 | bsr.l stwotox # operand is a NORM |
| 2536 | bra.b _L11_6s |
| 2537 | _L11_2s: |
| 2538 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2539 | bne.b _L11_3s # no |
| 2540 | bsr.l ld_pone # yes |
| 2541 | bra.b _L11_6s |
| 2542 | _L11_3s: |
| 2543 | cmpi.b %d1,&INF # is operand an INF? |
| 2544 | bne.b _L11_4s # no |
| 2545 | bsr.l szr_inf # yes |
| 2546 | bra.b _L11_6s |
| 2547 | _L11_4s: |
| 2548 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2549 | bne.b _L11_5s # no |
| 2550 | bsr.l src_qnan # yes |
| 2551 | bra.b _L11_6s |
| 2552 | _L11_5s: |
| 2553 | bsr.l stwotoxd # operand is a DENORM |
| 2554 | _L11_6s: |
| 2555 | |
| 2556 | # |
| 2557 | # Result is now in FP0 |
| 2558 | # |
| 2559 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2560 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2561 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2562 | unlk %a6 |
| 2563 | rts |
| 2564 | |
| 2565 | global _ftwotoxd_ |
| 2566 | _ftwotoxd_: |
| 2567 | link %a6,&-LOCAL_SIZE |
| 2568 | |
| 2569 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2570 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2571 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2572 | |
| 2573 | fmov.l &0x0,%fpcr # zero FPCR |
| 2574 | |
| 2575 | # |
| 2576 | # copy, convert, and tag input argument |
| 2577 | # |
| 2578 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 2579 | fmov.x %fp0,FP_SRC(%a6) |
| 2580 | lea FP_SRC(%a6),%a0 |
| 2581 | bsr.l tag # fetch operand type |
| 2582 | mov.b %d0,STAG(%a6) |
| 2583 | mov.b %d0,%d1 |
| 2584 | |
| 2585 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2586 | |
| 2587 | clr.l %d0 |
| 2588 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2589 | |
| 2590 | mov.b %d1,STAG(%a6) |
| 2591 | tst.b %d1 |
| 2592 | bne.b _L11_2d |
| 2593 | bsr.l stwotox # operand is a NORM |
| 2594 | bra.b _L11_6d |
| 2595 | _L11_2d: |
| 2596 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2597 | bne.b _L11_3d # no |
| 2598 | bsr.l ld_pone # yes |
| 2599 | bra.b _L11_6d |
| 2600 | _L11_3d: |
| 2601 | cmpi.b %d1,&INF # is operand an INF? |
| 2602 | bne.b _L11_4d # no |
| 2603 | bsr.l szr_inf # yes |
| 2604 | bra.b _L11_6d |
| 2605 | _L11_4d: |
| 2606 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2607 | bne.b _L11_5d # no |
| 2608 | bsr.l src_qnan # yes |
| 2609 | bra.b _L11_6d |
| 2610 | _L11_5d: |
| 2611 | bsr.l stwotoxd # operand is a DENORM |
| 2612 | _L11_6d: |
| 2613 | |
| 2614 | # |
| 2615 | # Result is now in FP0 |
| 2616 | # |
| 2617 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2618 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2619 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2620 | unlk %a6 |
| 2621 | rts |
| 2622 | |
| 2623 | global _ftwotoxx_ |
| 2624 | _ftwotoxx_: |
| 2625 | link %a6,&-LOCAL_SIZE |
| 2626 | |
| 2627 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2628 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2629 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2630 | |
| 2631 | fmov.l &0x0,%fpcr # zero FPCR |
| 2632 | |
| 2633 | # |
| 2634 | # copy, convert, and tag input argument |
| 2635 | # |
| 2636 | lea FP_SRC(%a6),%a0 |
| 2637 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 2638 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 2639 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 2640 | bsr.l tag # fetch operand type |
| 2641 | mov.b %d0,STAG(%a6) |
| 2642 | mov.b %d0,%d1 |
| 2643 | |
| 2644 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2645 | |
| 2646 | clr.l %d0 |
| 2647 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2648 | |
| 2649 | tst.b %d1 |
| 2650 | bne.b _L11_2x |
| 2651 | bsr.l stwotox # operand is a NORM |
| 2652 | bra.b _L11_6x |
| 2653 | _L11_2x: |
| 2654 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2655 | bne.b _L11_3x # no |
| 2656 | bsr.l ld_pone # yes |
| 2657 | bra.b _L11_6x |
| 2658 | _L11_3x: |
| 2659 | cmpi.b %d1,&INF # is operand an INF? |
| 2660 | bne.b _L11_4x # no |
| 2661 | bsr.l szr_inf # yes |
| 2662 | bra.b _L11_6x |
| 2663 | _L11_4x: |
| 2664 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2665 | bne.b _L11_5x # no |
| 2666 | bsr.l src_qnan # yes |
| 2667 | bra.b _L11_6x |
| 2668 | _L11_5x: |
| 2669 | bsr.l stwotoxd # operand is a DENORM |
| 2670 | _L11_6x: |
| 2671 | |
| 2672 | # |
| 2673 | # Result is now in FP0 |
| 2674 | # |
| 2675 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2676 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2677 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2678 | unlk %a6 |
| 2679 | rts |
| 2680 | |
| 2681 | |
| 2682 | ######################################################################### |
| 2683 | # MONADIC TEMPLATE # |
| 2684 | ######################################################################### |
| 2685 | global _ftentoxs_ |
| 2686 | _ftentoxs_: |
| 2687 | link %a6,&-LOCAL_SIZE |
| 2688 | |
| 2689 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2690 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2691 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2692 | |
| 2693 | fmov.l &0x0,%fpcr # zero FPCR |
| 2694 | |
| 2695 | # |
| 2696 | # copy, convert, and tag input argument |
| 2697 | # |
| 2698 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 2699 | fmov.x %fp0,FP_SRC(%a6) |
| 2700 | lea FP_SRC(%a6),%a0 |
| 2701 | bsr.l tag # fetch operand type |
| 2702 | mov.b %d0,STAG(%a6) |
| 2703 | mov.b %d0,%d1 |
| 2704 | |
| 2705 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2706 | |
| 2707 | clr.l %d0 |
| 2708 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2709 | |
| 2710 | tst.b %d1 |
| 2711 | bne.b _L12_2s |
| 2712 | bsr.l stentox # operand is a NORM |
| 2713 | bra.b _L12_6s |
| 2714 | _L12_2s: |
| 2715 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2716 | bne.b _L12_3s # no |
| 2717 | bsr.l ld_pone # yes |
| 2718 | bra.b _L12_6s |
| 2719 | _L12_3s: |
| 2720 | cmpi.b %d1,&INF # is operand an INF? |
| 2721 | bne.b _L12_4s # no |
| 2722 | bsr.l szr_inf # yes |
| 2723 | bra.b _L12_6s |
| 2724 | _L12_4s: |
| 2725 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2726 | bne.b _L12_5s # no |
| 2727 | bsr.l src_qnan # yes |
| 2728 | bra.b _L12_6s |
| 2729 | _L12_5s: |
| 2730 | bsr.l stentoxd # operand is a DENORM |
| 2731 | _L12_6s: |
| 2732 | |
| 2733 | # |
| 2734 | # Result is now in FP0 |
| 2735 | # |
| 2736 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2737 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2738 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2739 | unlk %a6 |
| 2740 | rts |
| 2741 | |
| 2742 | global _ftentoxd_ |
| 2743 | _ftentoxd_: |
| 2744 | link %a6,&-LOCAL_SIZE |
| 2745 | |
| 2746 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2747 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2748 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2749 | |
| 2750 | fmov.l &0x0,%fpcr # zero FPCR |
| 2751 | |
| 2752 | # |
| 2753 | # copy, convert, and tag input argument |
| 2754 | # |
| 2755 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 2756 | fmov.x %fp0,FP_SRC(%a6) |
| 2757 | lea FP_SRC(%a6),%a0 |
| 2758 | bsr.l tag # fetch operand type |
| 2759 | mov.b %d0,STAG(%a6) |
| 2760 | mov.b %d0,%d1 |
| 2761 | |
| 2762 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2763 | |
| 2764 | clr.l %d0 |
| 2765 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2766 | |
| 2767 | mov.b %d1,STAG(%a6) |
| 2768 | tst.b %d1 |
| 2769 | bne.b _L12_2d |
| 2770 | bsr.l stentox # operand is a NORM |
| 2771 | bra.b _L12_6d |
| 2772 | _L12_2d: |
| 2773 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2774 | bne.b _L12_3d # no |
| 2775 | bsr.l ld_pone # yes |
| 2776 | bra.b _L12_6d |
| 2777 | _L12_3d: |
| 2778 | cmpi.b %d1,&INF # is operand an INF? |
| 2779 | bne.b _L12_4d # no |
| 2780 | bsr.l szr_inf # yes |
| 2781 | bra.b _L12_6d |
| 2782 | _L12_4d: |
| 2783 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2784 | bne.b _L12_5d # no |
| 2785 | bsr.l src_qnan # yes |
| 2786 | bra.b _L12_6d |
| 2787 | _L12_5d: |
| 2788 | bsr.l stentoxd # operand is a DENORM |
| 2789 | _L12_6d: |
| 2790 | |
| 2791 | # |
| 2792 | # Result is now in FP0 |
| 2793 | # |
| 2794 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2795 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2796 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2797 | unlk %a6 |
| 2798 | rts |
| 2799 | |
| 2800 | global _ftentoxx_ |
| 2801 | _ftentoxx_: |
| 2802 | link %a6,&-LOCAL_SIZE |
| 2803 | |
| 2804 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2805 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2806 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2807 | |
| 2808 | fmov.l &0x0,%fpcr # zero FPCR |
| 2809 | |
| 2810 | # |
| 2811 | # copy, convert, and tag input argument |
| 2812 | # |
| 2813 | lea FP_SRC(%a6),%a0 |
| 2814 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 2815 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 2816 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 2817 | bsr.l tag # fetch operand type |
| 2818 | mov.b %d0,STAG(%a6) |
| 2819 | mov.b %d0,%d1 |
| 2820 | |
| 2821 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2822 | |
| 2823 | clr.l %d0 |
| 2824 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2825 | |
| 2826 | tst.b %d1 |
| 2827 | bne.b _L12_2x |
| 2828 | bsr.l stentox # operand is a NORM |
| 2829 | bra.b _L12_6x |
| 2830 | _L12_2x: |
| 2831 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2832 | bne.b _L12_3x # no |
| 2833 | bsr.l ld_pone # yes |
| 2834 | bra.b _L12_6x |
| 2835 | _L12_3x: |
| 2836 | cmpi.b %d1,&INF # is operand an INF? |
| 2837 | bne.b _L12_4x # no |
| 2838 | bsr.l szr_inf # yes |
| 2839 | bra.b _L12_6x |
| 2840 | _L12_4x: |
| 2841 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2842 | bne.b _L12_5x # no |
| 2843 | bsr.l src_qnan # yes |
| 2844 | bra.b _L12_6x |
| 2845 | _L12_5x: |
| 2846 | bsr.l stentoxd # operand is a DENORM |
| 2847 | _L12_6x: |
| 2848 | |
| 2849 | # |
| 2850 | # Result is now in FP0 |
| 2851 | # |
| 2852 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2853 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2854 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2855 | unlk %a6 |
| 2856 | rts |
| 2857 | |
| 2858 | |
| 2859 | ######################################################################### |
| 2860 | # MONADIC TEMPLATE # |
| 2861 | ######################################################################### |
| 2862 | global _flogns_ |
| 2863 | _flogns_: |
| 2864 | link %a6,&-LOCAL_SIZE |
| 2865 | |
| 2866 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2867 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2868 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2869 | |
| 2870 | fmov.l &0x0,%fpcr # zero FPCR |
| 2871 | |
| 2872 | # |
| 2873 | # copy, convert, and tag input argument |
| 2874 | # |
| 2875 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 2876 | fmov.x %fp0,FP_SRC(%a6) |
| 2877 | lea FP_SRC(%a6),%a0 |
| 2878 | bsr.l tag # fetch operand type |
| 2879 | mov.b %d0,STAG(%a6) |
| 2880 | mov.b %d0,%d1 |
| 2881 | |
| 2882 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2883 | |
| 2884 | clr.l %d0 |
| 2885 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2886 | |
| 2887 | tst.b %d1 |
| 2888 | bne.b _L13_2s |
| 2889 | bsr.l slogn # operand is a NORM |
| 2890 | bra.b _L13_6s |
| 2891 | _L13_2s: |
| 2892 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2893 | bne.b _L13_3s # no |
| 2894 | bsr.l t_dz2 # yes |
| 2895 | bra.b _L13_6s |
| 2896 | _L13_3s: |
| 2897 | cmpi.b %d1,&INF # is operand an INF? |
| 2898 | bne.b _L13_4s # no |
| 2899 | bsr.l sopr_inf # yes |
| 2900 | bra.b _L13_6s |
| 2901 | _L13_4s: |
| 2902 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2903 | bne.b _L13_5s # no |
| 2904 | bsr.l src_qnan # yes |
| 2905 | bra.b _L13_6s |
| 2906 | _L13_5s: |
| 2907 | bsr.l slognd # operand is a DENORM |
| 2908 | _L13_6s: |
| 2909 | |
| 2910 | # |
| 2911 | # Result is now in FP0 |
| 2912 | # |
| 2913 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2914 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2915 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2916 | unlk %a6 |
| 2917 | rts |
| 2918 | |
| 2919 | global _flognd_ |
| 2920 | _flognd_: |
| 2921 | link %a6,&-LOCAL_SIZE |
| 2922 | |
| 2923 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2924 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2925 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2926 | |
| 2927 | fmov.l &0x0,%fpcr # zero FPCR |
| 2928 | |
| 2929 | # |
| 2930 | # copy, convert, and tag input argument |
| 2931 | # |
| 2932 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 2933 | fmov.x %fp0,FP_SRC(%a6) |
| 2934 | lea FP_SRC(%a6),%a0 |
| 2935 | bsr.l tag # fetch operand type |
| 2936 | mov.b %d0,STAG(%a6) |
| 2937 | mov.b %d0,%d1 |
| 2938 | |
| 2939 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2940 | |
| 2941 | clr.l %d0 |
| 2942 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 2943 | |
| 2944 | mov.b %d1,STAG(%a6) |
| 2945 | tst.b %d1 |
| 2946 | bne.b _L13_2d |
| 2947 | bsr.l slogn # operand is a NORM |
| 2948 | bra.b _L13_6d |
| 2949 | _L13_2d: |
| 2950 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 2951 | bne.b _L13_3d # no |
| 2952 | bsr.l t_dz2 # yes |
| 2953 | bra.b _L13_6d |
| 2954 | _L13_3d: |
| 2955 | cmpi.b %d1,&INF # is operand an INF? |
| 2956 | bne.b _L13_4d # no |
| 2957 | bsr.l sopr_inf # yes |
| 2958 | bra.b _L13_6d |
| 2959 | _L13_4d: |
| 2960 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 2961 | bne.b _L13_5d # no |
| 2962 | bsr.l src_qnan # yes |
| 2963 | bra.b _L13_6d |
| 2964 | _L13_5d: |
| 2965 | bsr.l slognd # operand is a DENORM |
| 2966 | _L13_6d: |
| 2967 | |
| 2968 | # |
| 2969 | # Result is now in FP0 |
| 2970 | # |
| 2971 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2972 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 2973 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 2974 | unlk %a6 |
| 2975 | rts |
| 2976 | |
| 2977 | global _flognx_ |
| 2978 | _flognx_: |
| 2979 | link %a6,&-LOCAL_SIZE |
| 2980 | |
| 2981 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2982 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 2983 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 2984 | |
| 2985 | fmov.l &0x0,%fpcr # zero FPCR |
| 2986 | |
| 2987 | # |
| 2988 | # copy, convert, and tag input argument |
| 2989 | # |
| 2990 | lea FP_SRC(%a6),%a0 |
| 2991 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 2992 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 2993 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 2994 | bsr.l tag # fetch operand type |
| 2995 | mov.b %d0,STAG(%a6) |
| 2996 | mov.b %d0,%d1 |
| 2997 | |
| 2998 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2999 | |
| 3000 | clr.l %d0 |
| 3001 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3002 | |
| 3003 | tst.b %d1 |
| 3004 | bne.b _L13_2x |
| 3005 | bsr.l slogn # operand is a NORM |
| 3006 | bra.b _L13_6x |
| 3007 | _L13_2x: |
| 3008 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3009 | bne.b _L13_3x # no |
| 3010 | bsr.l t_dz2 # yes |
| 3011 | bra.b _L13_6x |
| 3012 | _L13_3x: |
| 3013 | cmpi.b %d1,&INF # is operand an INF? |
| 3014 | bne.b _L13_4x # no |
| 3015 | bsr.l sopr_inf # yes |
| 3016 | bra.b _L13_6x |
| 3017 | _L13_4x: |
| 3018 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3019 | bne.b _L13_5x # no |
| 3020 | bsr.l src_qnan # yes |
| 3021 | bra.b _L13_6x |
| 3022 | _L13_5x: |
| 3023 | bsr.l slognd # operand is a DENORM |
| 3024 | _L13_6x: |
| 3025 | |
| 3026 | # |
| 3027 | # Result is now in FP0 |
| 3028 | # |
| 3029 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3030 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3031 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3032 | unlk %a6 |
| 3033 | rts |
| 3034 | |
| 3035 | |
| 3036 | ######################################################################### |
| 3037 | # MONADIC TEMPLATE # |
| 3038 | ######################################################################### |
| 3039 | global _flog10s_ |
| 3040 | _flog10s_: |
| 3041 | link %a6,&-LOCAL_SIZE |
| 3042 | |
| 3043 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3044 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3045 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3046 | |
| 3047 | fmov.l &0x0,%fpcr # zero FPCR |
| 3048 | |
| 3049 | # |
| 3050 | # copy, convert, and tag input argument |
| 3051 | # |
| 3052 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 3053 | fmov.x %fp0,FP_SRC(%a6) |
| 3054 | lea FP_SRC(%a6),%a0 |
| 3055 | bsr.l tag # fetch operand type |
| 3056 | mov.b %d0,STAG(%a6) |
| 3057 | mov.b %d0,%d1 |
| 3058 | |
| 3059 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3060 | |
| 3061 | clr.l %d0 |
| 3062 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3063 | |
| 3064 | tst.b %d1 |
| 3065 | bne.b _L14_2s |
| 3066 | bsr.l slog10 # operand is a NORM |
| 3067 | bra.b _L14_6s |
| 3068 | _L14_2s: |
| 3069 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3070 | bne.b _L14_3s # no |
| 3071 | bsr.l t_dz2 # yes |
| 3072 | bra.b _L14_6s |
| 3073 | _L14_3s: |
| 3074 | cmpi.b %d1,&INF # is operand an INF? |
| 3075 | bne.b _L14_4s # no |
| 3076 | bsr.l sopr_inf # yes |
| 3077 | bra.b _L14_6s |
| 3078 | _L14_4s: |
| 3079 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3080 | bne.b _L14_5s # no |
| 3081 | bsr.l src_qnan # yes |
| 3082 | bra.b _L14_6s |
| 3083 | _L14_5s: |
| 3084 | bsr.l slog10d # operand is a DENORM |
| 3085 | _L14_6s: |
| 3086 | |
| 3087 | # |
| 3088 | # Result is now in FP0 |
| 3089 | # |
| 3090 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3091 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3092 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3093 | unlk %a6 |
| 3094 | rts |
| 3095 | |
| 3096 | global _flog10d_ |
| 3097 | _flog10d_: |
| 3098 | link %a6,&-LOCAL_SIZE |
| 3099 | |
| 3100 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3101 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3102 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3103 | |
| 3104 | fmov.l &0x0,%fpcr # zero FPCR |
| 3105 | |
| 3106 | # |
| 3107 | # copy, convert, and tag input argument |
| 3108 | # |
| 3109 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 3110 | fmov.x %fp0,FP_SRC(%a6) |
| 3111 | lea FP_SRC(%a6),%a0 |
| 3112 | bsr.l tag # fetch operand type |
| 3113 | mov.b %d0,STAG(%a6) |
| 3114 | mov.b %d0,%d1 |
| 3115 | |
| 3116 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3117 | |
| 3118 | clr.l %d0 |
| 3119 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3120 | |
| 3121 | mov.b %d1,STAG(%a6) |
| 3122 | tst.b %d1 |
| 3123 | bne.b _L14_2d |
| 3124 | bsr.l slog10 # operand is a NORM |
| 3125 | bra.b _L14_6d |
| 3126 | _L14_2d: |
| 3127 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3128 | bne.b _L14_3d # no |
| 3129 | bsr.l t_dz2 # yes |
| 3130 | bra.b _L14_6d |
| 3131 | _L14_3d: |
| 3132 | cmpi.b %d1,&INF # is operand an INF? |
| 3133 | bne.b _L14_4d # no |
| 3134 | bsr.l sopr_inf # yes |
| 3135 | bra.b _L14_6d |
| 3136 | _L14_4d: |
| 3137 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3138 | bne.b _L14_5d # no |
| 3139 | bsr.l src_qnan # yes |
| 3140 | bra.b _L14_6d |
| 3141 | _L14_5d: |
| 3142 | bsr.l slog10d # operand is a DENORM |
| 3143 | _L14_6d: |
| 3144 | |
| 3145 | # |
| 3146 | # Result is now in FP0 |
| 3147 | # |
| 3148 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3149 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3150 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3151 | unlk %a6 |
| 3152 | rts |
| 3153 | |
| 3154 | global _flog10x_ |
| 3155 | _flog10x_: |
| 3156 | link %a6,&-LOCAL_SIZE |
| 3157 | |
| 3158 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3159 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3160 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3161 | |
| 3162 | fmov.l &0x0,%fpcr # zero FPCR |
| 3163 | |
| 3164 | # |
| 3165 | # copy, convert, and tag input argument |
| 3166 | # |
| 3167 | lea FP_SRC(%a6),%a0 |
| 3168 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 3169 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 3170 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 3171 | bsr.l tag # fetch operand type |
| 3172 | mov.b %d0,STAG(%a6) |
| 3173 | mov.b %d0,%d1 |
| 3174 | |
| 3175 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3176 | |
| 3177 | clr.l %d0 |
| 3178 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3179 | |
| 3180 | tst.b %d1 |
| 3181 | bne.b _L14_2x |
| 3182 | bsr.l slog10 # operand is a NORM |
| 3183 | bra.b _L14_6x |
| 3184 | _L14_2x: |
| 3185 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3186 | bne.b _L14_3x # no |
| 3187 | bsr.l t_dz2 # yes |
| 3188 | bra.b _L14_6x |
| 3189 | _L14_3x: |
| 3190 | cmpi.b %d1,&INF # is operand an INF? |
| 3191 | bne.b _L14_4x # no |
| 3192 | bsr.l sopr_inf # yes |
| 3193 | bra.b _L14_6x |
| 3194 | _L14_4x: |
| 3195 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3196 | bne.b _L14_5x # no |
| 3197 | bsr.l src_qnan # yes |
| 3198 | bra.b _L14_6x |
| 3199 | _L14_5x: |
| 3200 | bsr.l slog10d # operand is a DENORM |
| 3201 | _L14_6x: |
| 3202 | |
| 3203 | # |
| 3204 | # Result is now in FP0 |
| 3205 | # |
| 3206 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3207 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3208 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3209 | unlk %a6 |
| 3210 | rts |
| 3211 | |
| 3212 | |
| 3213 | ######################################################################### |
| 3214 | # MONADIC TEMPLATE # |
| 3215 | ######################################################################### |
| 3216 | global _flog2s_ |
| 3217 | _flog2s_: |
| 3218 | link %a6,&-LOCAL_SIZE |
| 3219 | |
| 3220 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3221 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3222 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3223 | |
| 3224 | fmov.l &0x0,%fpcr # zero FPCR |
| 3225 | |
| 3226 | # |
| 3227 | # copy, convert, and tag input argument |
| 3228 | # |
| 3229 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 3230 | fmov.x %fp0,FP_SRC(%a6) |
| 3231 | lea FP_SRC(%a6),%a0 |
| 3232 | bsr.l tag # fetch operand type |
| 3233 | mov.b %d0,STAG(%a6) |
| 3234 | mov.b %d0,%d1 |
| 3235 | |
| 3236 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3237 | |
| 3238 | clr.l %d0 |
| 3239 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3240 | |
| 3241 | tst.b %d1 |
| 3242 | bne.b _L15_2s |
| 3243 | bsr.l slog2 # operand is a NORM |
| 3244 | bra.b _L15_6s |
| 3245 | _L15_2s: |
| 3246 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3247 | bne.b _L15_3s # no |
| 3248 | bsr.l t_dz2 # yes |
| 3249 | bra.b _L15_6s |
| 3250 | _L15_3s: |
| 3251 | cmpi.b %d1,&INF # is operand an INF? |
| 3252 | bne.b _L15_4s # no |
| 3253 | bsr.l sopr_inf # yes |
| 3254 | bra.b _L15_6s |
| 3255 | _L15_4s: |
| 3256 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3257 | bne.b _L15_5s # no |
| 3258 | bsr.l src_qnan # yes |
| 3259 | bra.b _L15_6s |
| 3260 | _L15_5s: |
| 3261 | bsr.l slog2d # operand is a DENORM |
| 3262 | _L15_6s: |
| 3263 | |
| 3264 | # |
| 3265 | # Result is now in FP0 |
| 3266 | # |
| 3267 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3268 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3269 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3270 | unlk %a6 |
| 3271 | rts |
| 3272 | |
| 3273 | global _flog2d_ |
| 3274 | _flog2d_: |
| 3275 | link %a6,&-LOCAL_SIZE |
| 3276 | |
| 3277 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3278 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3279 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3280 | |
| 3281 | fmov.l &0x0,%fpcr # zero FPCR |
| 3282 | |
| 3283 | # |
| 3284 | # copy, convert, and tag input argument |
| 3285 | # |
| 3286 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 3287 | fmov.x %fp0,FP_SRC(%a6) |
| 3288 | lea FP_SRC(%a6),%a0 |
| 3289 | bsr.l tag # fetch operand type |
| 3290 | mov.b %d0,STAG(%a6) |
| 3291 | mov.b %d0,%d1 |
| 3292 | |
| 3293 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3294 | |
| 3295 | clr.l %d0 |
| 3296 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3297 | |
| 3298 | mov.b %d1,STAG(%a6) |
| 3299 | tst.b %d1 |
| 3300 | bne.b _L15_2d |
| 3301 | bsr.l slog2 # operand is a NORM |
| 3302 | bra.b _L15_6d |
| 3303 | _L15_2d: |
| 3304 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3305 | bne.b _L15_3d # no |
| 3306 | bsr.l t_dz2 # yes |
| 3307 | bra.b _L15_6d |
| 3308 | _L15_3d: |
| 3309 | cmpi.b %d1,&INF # is operand an INF? |
| 3310 | bne.b _L15_4d # no |
| 3311 | bsr.l sopr_inf # yes |
| 3312 | bra.b _L15_6d |
| 3313 | _L15_4d: |
| 3314 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3315 | bne.b _L15_5d # no |
| 3316 | bsr.l src_qnan # yes |
| 3317 | bra.b _L15_6d |
| 3318 | _L15_5d: |
| 3319 | bsr.l slog2d # operand is a DENORM |
| 3320 | _L15_6d: |
| 3321 | |
| 3322 | # |
| 3323 | # Result is now in FP0 |
| 3324 | # |
| 3325 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3326 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3327 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3328 | unlk %a6 |
| 3329 | rts |
| 3330 | |
| 3331 | global _flog2x_ |
| 3332 | _flog2x_: |
| 3333 | link %a6,&-LOCAL_SIZE |
| 3334 | |
| 3335 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3336 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3337 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3338 | |
| 3339 | fmov.l &0x0,%fpcr # zero FPCR |
| 3340 | |
| 3341 | # |
| 3342 | # copy, convert, and tag input argument |
| 3343 | # |
| 3344 | lea FP_SRC(%a6),%a0 |
| 3345 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 3346 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 3347 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 3348 | bsr.l tag # fetch operand type |
| 3349 | mov.b %d0,STAG(%a6) |
| 3350 | mov.b %d0,%d1 |
| 3351 | |
| 3352 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3353 | |
| 3354 | clr.l %d0 |
| 3355 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3356 | |
| 3357 | tst.b %d1 |
| 3358 | bne.b _L15_2x |
| 3359 | bsr.l slog2 # operand is a NORM |
| 3360 | bra.b _L15_6x |
| 3361 | _L15_2x: |
| 3362 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3363 | bne.b _L15_3x # no |
| 3364 | bsr.l t_dz2 # yes |
| 3365 | bra.b _L15_6x |
| 3366 | _L15_3x: |
| 3367 | cmpi.b %d1,&INF # is operand an INF? |
| 3368 | bne.b _L15_4x # no |
| 3369 | bsr.l sopr_inf # yes |
| 3370 | bra.b _L15_6x |
| 3371 | _L15_4x: |
| 3372 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3373 | bne.b _L15_5x # no |
| 3374 | bsr.l src_qnan # yes |
| 3375 | bra.b _L15_6x |
| 3376 | _L15_5x: |
| 3377 | bsr.l slog2d # operand is a DENORM |
| 3378 | _L15_6x: |
| 3379 | |
| 3380 | # |
| 3381 | # Result is now in FP0 |
| 3382 | # |
| 3383 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3384 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3385 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3386 | unlk %a6 |
| 3387 | rts |
| 3388 | |
| 3389 | |
| 3390 | ######################################################################### |
| 3391 | # MONADIC TEMPLATE # |
| 3392 | ######################################################################### |
| 3393 | global _fcoshs_ |
| 3394 | _fcoshs_: |
| 3395 | link %a6,&-LOCAL_SIZE |
| 3396 | |
| 3397 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3398 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3399 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3400 | |
| 3401 | fmov.l &0x0,%fpcr # zero FPCR |
| 3402 | |
| 3403 | # |
| 3404 | # copy, convert, and tag input argument |
| 3405 | # |
| 3406 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 3407 | fmov.x %fp0,FP_SRC(%a6) |
| 3408 | lea FP_SRC(%a6),%a0 |
| 3409 | bsr.l tag # fetch operand type |
| 3410 | mov.b %d0,STAG(%a6) |
| 3411 | mov.b %d0,%d1 |
| 3412 | |
| 3413 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3414 | |
| 3415 | clr.l %d0 |
| 3416 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3417 | |
| 3418 | tst.b %d1 |
| 3419 | bne.b _L16_2s |
| 3420 | bsr.l scosh # operand is a NORM |
| 3421 | bra.b _L16_6s |
| 3422 | _L16_2s: |
| 3423 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3424 | bne.b _L16_3s # no |
| 3425 | bsr.l ld_pone # yes |
| 3426 | bra.b _L16_6s |
| 3427 | _L16_3s: |
| 3428 | cmpi.b %d1,&INF # is operand an INF? |
| 3429 | bne.b _L16_4s # no |
| 3430 | bsr.l ld_pinf # yes |
| 3431 | bra.b _L16_6s |
| 3432 | _L16_4s: |
| 3433 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3434 | bne.b _L16_5s # no |
| 3435 | bsr.l src_qnan # yes |
| 3436 | bra.b _L16_6s |
| 3437 | _L16_5s: |
| 3438 | bsr.l scoshd # operand is a DENORM |
| 3439 | _L16_6s: |
| 3440 | |
| 3441 | # |
| 3442 | # Result is now in FP0 |
| 3443 | # |
| 3444 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3445 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3446 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3447 | unlk %a6 |
| 3448 | rts |
| 3449 | |
| 3450 | global _fcoshd_ |
| 3451 | _fcoshd_: |
| 3452 | link %a6,&-LOCAL_SIZE |
| 3453 | |
| 3454 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3455 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3456 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3457 | |
| 3458 | fmov.l &0x0,%fpcr # zero FPCR |
| 3459 | |
| 3460 | # |
| 3461 | # copy, convert, and tag input argument |
| 3462 | # |
| 3463 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 3464 | fmov.x %fp0,FP_SRC(%a6) |
| 3465 | lea FP_SRC(%a6),%a0 |
| 3466 | bsr.l tag # fetch operand type |
| 3467 | mov.b %d0,STAG(%a6) |
| 3468 | mov.b %d0,%d1 |
| 3469 | |
| 3470 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3471 | |
| 3472 | clr.l %d0 |
| 3473 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3474 | |
| 3475 | mov.b %d1,STAG(%a6) |
| 3476 | tst.b %d1 |
| 3477 | bne.b _L16_2d |
| 3478 | bsr.l scosh # operand is a NORM |
| 3479 | bra.b _L16_6d |
| 3480 | _L16_2d: |
| 3481 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3482 | bne.b _L16_3d # no |
| 3483 | bsr.l ld_pone # yes |
| 3484 | bra.b _L16_6d |
| 3485 | _L16_3d: |
| 3486 | cmpi.b %d1,&INF # is operand an INF? |
| 3487 | bne.b _L16_4d # no |
| 3488 | bsr.l ld_pinf # yes |
| 3489 | bra.b _L16_6d |
| 3490 | _L16_4d: |
| 3491 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3492 | bne.b _L16_5d # no |
| 3493 | bsr.l src_qnan # yes |
| 3494 | bra.b _L16_6d |
| 3495 | _L16_5d: |
| 3496 | bsr.l scoshd # operand is a DENORM |
| 3497 | _L16_6d: |
| 3498 | |
| 3499 | # |
| 3500 | # Result is now in FP0 |
| 3501 | # |
| 3502 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3503 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3504 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3505 | unlk %a6 |
| 3506 | rts |
| 3507 | |
| 3508 | global _fcoshx_ |
| 3509 | _fcoshx_: |
| 3510 | link %a6,&-LOCAL_SIZE |
| 3511 | |
| 3512 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3513 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3514 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3515 | |
| 3516 | fmov.l &0x0,%fpcr # zero FPCR |
| 3517 | |
| 3518 | # |
| 3519 | # copy, convert, and tag input argument |
| 3520 | # |
| 3521 | lea FP_SRC(%a6),%a0 |
| 3522 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 3523 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 3524 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 3525 | bsr.l tag # fetch operand type |
| 3526 | mov.b %d0,STAG(%a6) |
| 3527 | mov.b %d0,%d1 |
| 3528 | |
| 3529 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3530 | |
| 3531 | clr.l %d0 |
| 3532 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3533 | |
| 3534 | tst.b %d1 |
| 3535 | bne.b _L16_2x |
| 3536 | bsr.l scosh # operand is a NORM |
| 3537 | bra.b _L16_6x |
| 3538 | _L16_2x: |
| 3539 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3540 | bne.b _L16_3x # no |
| 3541 | bsr.l ld_pone # yes |
| 3542 | bra.b _L16_6x |
| 3543 | _L16_3x: |
| 3544 | cmpi.b %d1,&INF # is operand an INF? |
| 3545 | bne.b _L16_4x # no |
| 3546 | bsr.l ld_pinf # yes |
| 3547 | bra.b _L16_6x |
| 3548 | _L16_4x: |
| 3549 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3550 | bne.b _L16_5x # no |
| 3551 | bsr.l src_qnan # yes |
| 3552 | bra.b _L16_6x |
| 3553 | _L16_5x: |
| 3554 | bsr.l scoshd # operand is a DENORM |
| 3555 | _L16_6x: |
| 3556 | |
| 3557 | # |
| 3558 | # Result is now in FP0 |
| 3559 | # |
| 3560 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3561 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3562 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3563 | unlk %a6 |
| 3564 | rts |
| 3565 | |
| 3566 | |
| 3567 | ######################################################################### |
| 3568 | # MONADIC TEMPLATE # |
| 3569 | ######################################################################### |
| 3570 | global _facoss_ |
| 3571 | _facoss_: |
| 3572 | link %a6,&-LOCAL_SIZE |
| 3573 | |
| 3574 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3575 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3576 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3577 | |
| 3578 | fmov.l &0x0,%fpcr # zero FPCR |
| 3579 | |
| 3580 | # |
| 3581 | # copy, convert, and tag input argument |
| 3582 | # |
| 3583 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 3584 | fmov.x %fp0,FP_SRC(%a6) |
| 3585 | lea FP_SRC(%a6),%a0 |
| 3586 | bsr.l tag # fetch operand type |
| 3587 | mov.b %d0,STAG(%a6) |
| 3588 | mov.b %d0,%d1 |
| 3589 | |
| 3590 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3591 | |
| 3592 | clr.l %d0 |
| 3593 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3594 | |
| 3595 | tst.b %d1 |
| 3596 | bne.b _L17_2s |
| 3597 | bsr.l sacos # operand is a NORM |
| 3598 | bra.b _L17_6s |
| 3599 | _L17_2s: |
| 3600 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3601 | bne.b _L17_3s # no |
| 3602 | bsr.l ld_ppi2 # yes |
| 3603 | bra.b _L17_6s |
| 3604 | _L17_3s: |
| 3605 | cmpi.b %d1,&INF # is operand an INF? |
| 3606 | bne.b _L17_4s # no |
| 3607 | bsr.l t_operr # yes |
| 3608 | bra.b _L17_6s |
| 3609 | _L17_4s: |
| 3610 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3611 | bne.b _L17_5s # no |
| 3612 | bsr.l src_qnan # yes |
| 3613 | bra.b _L17_6s |
| 3614 | _L17_5s: |
| 3615 | bsr.l sacosd # operand is a DENORM |
| 3616 | _L17_6s: |
| 3617 | |
| 3618 | # |
| 3619 | # Result is now in FP0 |
| 3620 | # |
| 3621 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3622 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3623 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3624 | unlk %a6 |
| 3625 | rts |
| 3626 | |
| 3627 | global _facosd_ |
| 3628 | _facosd_: |
| 3629 | link %a6,&-LOCAL_SIZE |
| 3630 | |
| 3631 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3632 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3633 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3634 | |
| 3635 | fmov.l &0x0,%fpcr # zero FPCR |
| 3636 | |
| 3637 | # |
| 3638 | # copy, convert, and tag input argument |
| 3639 | # |
| 3640 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 3641 | fmov.x %fp0,FP_SRC(%a6) |
| 3642 | lea FP_SRC(%a6),%a0 |
| 3643 | bsr.l tag # fetch operand type |
| 3644 | mov.b %d0,STAG(%a6) |
| 3645 | mov.b %d0,%d1 |
| 3646 | |
| 3647 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3648 | |
| 3649 | clr.l %d0 |
| 3650 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3651 | |
| 3652 | mov.b %d1,STAG(%a6) |
| 3653 | tst.b %d1 |
| 3654 | bne.b _L17_2d |
| 3655 | bsr.l sacos # operand is a NORM |
| 3656 | bra.b _L17_6d |
| 3657 | _L17_2d: |
| 3658 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3659 | bne.b _L17_3d # no |
| 3660 | bsr.l ld_ppi2 # yes |
| 3661 | bra.b _L17_6d |
| 3662 | _L17_3d: |
| 3663 | cmpi.b %d1,&INF # is operand an INF? |
| 3664 | bne.b _L17_4d # no |
| 3665 | bsr.l t_operr # yes |
| 3666 | bra.b _L17_6d |
| 3667 | _L17_4d: |
| 3668 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3669 | bne.b _L17_5d # no |
| 3670 | bsr.l src_qnan # yes |
| 3671 | bra.b _L17_6d |
| 3672 | _L17_5d: |
| 3673 | bsr.l sacosd # operand is a DENORM |
| 3674 | _L17_6d: |
| 3675 | |
| 3676 | # |
| 3677 | # Result is now in FP0 |
| 3678 | # |
| 3679 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3680 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3681 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3682 | unlk %a6 |
| 3683 | rts |
| 3684 | |
| 3685 | global _facosx_ |
| 3686 | _facosx_: |
| 3687 | link %a6,&-LOCAL_SIZE |
| 3688 | |
| 3689 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3690 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3691 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3692 | |
| 3693 | fmov.l &0x0,%fpcr # zero FPCR |
| 3694 | |
| 3695 | # |
| 3696 | # copy, convert, and tag input argument |
| 3697 | # |
| 3698 | lea FP_SRC(%a6),%a0 |
| 3699 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 3700 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 3701 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 3702 | bsr.l tag # fetch operand type |
| 3703 | mov.b %d0,STAG(%a6) |
| 3704 | mov.b %d0,%d1 |
| 3705 | |
| 3706 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3707 | |
| 3708 | clr.l %d0 |
| 3709 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3710 | |
| 3711 | tst.b %d1 |
| 3712 | bne.b _L17_2x |
| 3713 | bsr.l sacos # operand is a NORM |
| 3714 | bra.b _L17_6x |
| 3715 | _L17_2x: |
| 3716 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3717 | bne.b _L17_3x # no |
| 3718 | bsr.l ld_ppi2 # yes |
| 3719 | bra.b _L17_6x |
| 3720 | _L17_3x: |
| 3721 | cmpi.b %d1,&INF # is operand an INF? |
| 3722 | bne.b _L17_4x # no |
| 3723 | bsr.l t_operr # yes |
| 3724 | bra.b _L17_6x |
| 3725 | _L17_4x: |
| 3726 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3727 | bne.b _L17_5x # no |
| 3728 | bsr.l src_qnan # yes |
| 3729 | bra.b _L17_6x |
| 3730 | _L17_5x: |
| 3731 | bsr.l sacosd # operand is a DENORM |
| 3732 | _L17_6x: |
| 3733 | |
| 3734 | # |
| 3735 | # Result is now in FP0 |
| 3736 | # |
| 3737 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3738 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3739 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3740 | unlk %a6 |
| 3741 | rts |
| 3742 | |
| 3743 | |
| 3744 | ######################################################################### |
| 3745 | # MONADIC TEMPLATE # |
| 3746 | ######################################################################### |
| 3747 | global _fgetexps_ |
| 3748 | _fgetexps_: |
| 3749 | link %a6,&-LOCAL_SIZE |
| 3750 | |
| 3751 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3752 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3753 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3754 | |
| 3755 | fmov.l &0x0,%fpcr # zero FPCR |
| 3756 | |
| 3757 | # |
| 3758 | # copy, convert, and tag input argument |
| 3759 | # |
| 3760 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 3761 | fmov.x %fp0,FP_SRC(%a6) |
| 3762 | lea FP_SRC(%a6),%a0 |
| 3763 | bsr.l tag # fetch operand type |
| 3764 | mov.b %d0,STAG(%a6) |
| 3765 | mov.b %d0,%d1 |
| 3766 | |
| 3767 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3768 | |
| 3769 | clr.l %d0 |
| 3770 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3771 | |
| 3772 | tst.b %d1 |
| 3773 | bne.b _L18_2s |
| 3774 | bsr.l sgetexp # operand is a NORM |
| 3775 | bra.b _L18_6s |
| 3776 | _L18_2s: |
| 3777 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3778 | bne.b _L18_3s # no |
| 3779 | bsr.l src_zero # yes |
| 3780 | bra.b _L18_6s |
| 3781 | _L18_3s: |
| 3782 | cmpi.b %d1,&INF # is operand an INF? |
| 3783 | bne.b _L18_4s # no |
| 3784 | bsr.l t_operr # yes |
| 3785 | bra.b _L18_6s |
| 3786 | _L18_4s: |
| 3787 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3788 | bne.b _L18_5s # no |
| 3789 | bsr.l src_qnan # yes |
| 3790 | bra.b _L18_6s |
| 3791 | _L18_5s: |
| 3792 | bsr.l sgetexpd # operand is a DENORM |
| 3793 | _L18_6s: |
| 3794 | |
| 3795 | # |
| 3796 | # Result is now in FP0 |
| 3797 | # |
| 3798 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3799 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3800 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3801 | unlk %a6 |
| 3802 | rts |
| 3803 | |
| 3804 | global _fgetexpd_ |
| 3805 | _fgetexpd_: |
| 3806 | link %a6,&-LOCAL_SIZE |
| 3807 | |
| 3808 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3809 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3810 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3811 | |
| 3812 | fmov.l &0x0,%fpcr # zero FPCR |
| 3813 | |
| 3814 | # |
| 3815 | # copy, convert, and tag input argument |
| 3816 | # |
| 3817 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 3818 | fmov.x %fp0,FP_SRC(%a6) |
| 3819 | lea FP_SRC(%a6),%a0 |
| 3820 | bsr.l tag # fetch operand type |
| 3821 | mov.b %d0,STAG(%a6) |
| 3822 | mov.b %d0,%d1 |
| 3823 | |
| 3824 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3825 | |
| 3826 | clr.l %d0 |
| 3827 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3828 | |
| 3829 | mov.b %d1,STAG(%a6) |
| 3830 | tst.b %d1 |
| 3831 | bne.b _L18_2d |
| 3832 | bsr.l sgetexp # operand is a NORM |
| 3833 | bra.b _L18_6d |
| 3834 | _L18_2d: |
| 3835 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3836 | bne.b _L18_3d # no |
| 3837 | bsr.l src_zero # yes |
| 3838 | bra.b _L18_6d |
| 3839 | _L18_3d: |
| 3840 | cmpi.b %d1,&INF # is operand an INF? |
| 3841 | bne.b _L18_4d # no |
| 3842 | bsr.l t_operr # yes |
| 3843 | bra.b _L18_6d |
| 3844 | _L18_4d: |
| 3845 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3846 | bne.b _L18_5d # no |
| 3847 | bsr.l src_qnan # yes |
| 3848 | bra.b _L18_6d |
| 3849 | _L18_5d: |
| 3850 | bsr.l sgetexpd # operand is a DENORM |
| 3851 | _L18_6d: |
| 3852 | |
| 3853 | # |
| 3854 | # Result is now in FP0 |
| 3855 | # |
| 3856 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3857 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3858 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3859 | unlk %a6 |
| 3860 | rts |
| 3861 | |
| 3862 | global _fgetexpx_ |
| 3863 | _fgetexpx_: |
| 3864 | link %a6,&-LOCAL_SIZE |
| 3865 | |
| 3866 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3867 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3868 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3869 | |
| 3870 | fmov.l &0x0,%fpcr # zero FPCR |
| 3871 | |
| 3872 | # |
| 3873 | # copy, convert, and tag input argument |
| 3874 | # |
| 3875 | lea FP_SRC(%a6),%a0 |
| 3876 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 3877 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 3878 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 3879 | bsr.l tag # fetch operand type |
| 3880 | mov.b %d0,STAG(%a6) |
| 3881 | mov.b %d0,%d1 |
| 3882 | |
| 3883 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3884 | |
| 3885 | clr.l %d0 |
| 3886 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3887 | |
| 3888 | tst.b %d1 |
| 3889 | bne.b _L18_2x |
| 3890 | bsr.l sgetexp # operand is a NORM |
| 3891 | bra.b _L18_6x |
| 3892 | _L18_2x: |
| 3893 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3894 | bne.b _L18_3x # no |
| 3895 | bsr.l src_zero # yes |
| 3896 | bra.b _L18_6x |
| 3897 | _L18_3x: |
| 3898 | cmpi.b %d1,&INF # is operand an INF? |
| 3899 | bne.b _L18_4x # no |
| 3900 | bsr.l t_operr # yes |
| 3901 | bra.b _L18_6x |
| 3902 | _L18_4x: |
| 3903 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3904 | bne.b _L18_5x # no |
| 3905 | bsr.l src_qnan # yes |
| 3906 | bra.b _L18_6x |
| 3907 | _L18_5x: |
| 3908 | bsr.l sgetexpd # operand is a DENORM |
| 3909 | _L18_6x: |
| 3910 | |
| 3911 | # |
| 3912 | # Result is now in FP0 |
| 3913 | # |
| 3914 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3915 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3916 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3917 | unlk %a6 |
| 3918 | rts |
| 3919 | |
| 3920 | |
| 3921 | ######################################################################### |
| 3922 | # MONADIC TEMPLATE # |
| 3923 | ######################################################################### |
| 3924 | global _fgetmans_ |
| 3925 | _fgetmans_: |
| 3926 | link %a6,&-LOCAL_SIZE |
| 3927 | |
| 3928 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3929 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3930 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3931 | |
| 3932 | fmov.l &0x0,%fpcr # zero FPCR |
| 3933 | |
| 3934 | # |
| 3935 | # copy, convert, and tag input argument |
| 3936 | # |
| 3937 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 3938 | fmov.x %fp0,FP_SRC(%a6) |
| 3939 | lea FP_SRC(%a6),%a0 |
| 3940 | bsr.l tag # fetch operand type |
| 3941 | mov.b %d0,STAG(%a6) |
| 3942 | mov.b %d0,%d1 |
| 3943 | |
| 3944 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 3945 | |
| 3946 | clr.l %d0 |
| 3947 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 3948 | |
| 3949 | tst.b %d1 |
| 3950 | bne.b _L19_2s |
| 3951 | bsr.l sgetman # operand is a NORM |
| 3952 | bra.b _L19_6s |
| 3953 | _L19_2s: |
| 3954 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 3955 | bne.b _L19_3s # no |
| 3956 | bsr.l src_zero # yes |
| 3957 | bra.b _L19_6s |
| 3958 | _L19_3s: |
| 3959 | cmpi.b %d1,&INF # is operand an INF? |
| 3960 | bne.b _L19_4s # no |
| 3961 | bsr.l t_operr # yes |
| 3962 | bra.b _L19_6s |
| 3963 | _L19_4s: |
| 3964 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 3965 | bne.b _L19_5s # no |
| 3966 | bsr.l src_qnan # yes |
| 3967 | bra.b _L19_6s |
| 3968 | _L19_5s: |
| 3969 | bsr.l sgetmand # operand is a DENORM |
| 3970 | _L19_6s: |
| 3971 | |
| 3972 | # |
| 3973 | # Result is now in FP0 |
| 3974 | # |
| 3975 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3976 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 3977 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 3978 | unlk %a6 |
| 3979 | rts |
| 3980 | |
| 3981 | global _fgetmand_ |
| 3982 | _fgetmand_: |
| 3983 | link %a6,&-LOCAL_SIZE |
| 3984 | |
| 3985 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3986 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 3987 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 3988 | |
| 3989 | fmov.l &0x0,%fpcr # zero FPCR |
| 3990 | |
| 3991 | # |
| 3992 | # copy, convert, and tag input argument |
| 3993 | # |
| 3994 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 3995 | fmov.x %fp0,FP_SRC(%a6) |
| 3996 | lea FP_SRC(%a6),%a0 |
| 3997 | bsr.l tag # fetch operand type |
| 3998 | mov.b %d0,STAG(%a6) |
| 3999 | mov.b %d0,%d1 |
| 4000 | |
| 4001 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4002 | |
| 4003 | clr.l %d0 |
| 4004 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4005 | |
| 4006 | mov.b %d1,STAG(%a6) |
| 4007 | tst.b %d1 |
| 4008 | bne.b _L19_2d |
| 4009 | bsr.l sgetman # operand is a NORM |
| 4010 | bra.b _L19_6d |
| 4011 | _L19_2d: |
| 4012 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4013 | bne.b _L19_3d # no |
| 4014 | bsr.l src_zero # yes |
| 4015 | bra.b _L19_6d |
| 4016 | _L19_3d: |
| 4017 | cmpi.b %d1,&INF # is operand an INF? |
| 4018 | bne.b _L19_4d # no |
| 4019 | bsr.l t_operr # yes |
| 4020 | bra.b _L19_6d |
| 4021 | _L19_4d: |
| 4022 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4023 | bne.b _L19_5d # no |
| 4024 | bsr.l src_qnan # yes |
| 4025 | bra.b _L19_6d |
| 4026 | _L19_5d: |
| 4027 | bsr.l sgetmand # operand is a DENORM |
| 4028 | _L19_6d: |
| 4029 | |
| 4030 | # |
| 4031 | # Result is now in FP0 |
| 4032 | # |
| 4033 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4034 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4035 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4036 | unlk %a6 |
| 4037 | rts |
| 4038 | |
| 4039 | global _fgetmanx_ |
| 4040 | _fgetmanx_: |
| 4041 | link %a6,&-LOCAL_SIZE |
| 4042 | |
| 4043 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4044 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4045 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4046 | |
| 4047 | fmov.l &0x0,%fpcr # zero FPCR |
| 4048 | |
| 4049 | # |
| 4050 | # copy, convert, and tag input argument |
| 4051 | # |
| 4052 | lea FP_SRC(%a6),%a0 |
| 4053 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 4054 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 4055 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 4056 | bsr.l tag # fetch operand type |
| 4057 | mov.b %d0,STAG(%a6) |
| 4058 | mov.b %d0,%d1 |
| 4059 | |
| 4060 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4061 | |
| 4062 | clr.l %d0 |
| 4063 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4064 | |
| 4065 | tst.b %d1 |
| 4066 | bne.b _L19_2x |
| 4067 | bsr.l sgetman # operand is a NORM |
| 4068 | bra.b _L19_6x |
| 4069 | _L19_2x: |
| 4070 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4071 | bne.b _L19_3x # no |
| 4072 | bsr.l src_zero # yes |
| 4073 | bra.b _L19_6x |
| 4074 | _L19_3x: |
| 4075 | cmpi.b %d1,&INF # is operand an INF? |
| 4076 | bne.b _L19_4x # no |
| 4077 | bsr.l t_operr # yes |
| 4078 | bra.b _L19_6x |
| 4079 | _L19_4x: |
| 4080 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4081 | bne.b _L19_5x # no |
| 4082 | bsr.l src_qnan # yes |
| 4083 | bra.b _L19_6x |
| 4084 | _L19_5x: |
| 4085 | bsr.l sgetmand # operand is a DENORM |
| 4086 | _L19_6x: |
| 4087 | |
| 4088 | # |
| 4089 | # Result is now in FP0 |
| 4090 | # |
| 4091 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4092 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4093 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4094 | unlk %a6 |
| 4095 | rts |
| 4096 | |
| 4097 | |
| 4098 | ######################################################################### |
| 4099 | # MONADIC TEMPLATE # |
| 4100 | ######################################################################### |
| 4101 | global _fsincoss_ |
| 4102 | _fsincoss_: |
| 4103 | link %a6,&-LOCAL_SIZE |
| 4104 | |
| 4105 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4106 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4107 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4108 | |
| 4109 | fmov.l &0x0,%fpcr # zero FPCR |
| 4110 | |
| 4111 | # |
| 4112 | # copy, convert, and tag input argument |
| 4113 | # |
| 4114 | fmov.s 0x8(%a6),%fp0 # load sgl input |
| 4115 | fmov.x %fp0,FP_SRC(%a6) |
| 4116 | lea FP_SRC(%a6),%a0 |
| 4117 | bsr.l tag # fetch operand type |
| 4118 | mov.b %d0,STAG(%a6) |
| 4119 | mov.b %d0,%d1 |
| 4120 | |
| 4121 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4122 | |
| 4123 | clr.l %d0 |
| 4124 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4125 | |
| 4126 | tst.b %d1 |
| 4127 | bne.b _L20_2s |
| 4128 | bsr.l ssincos # operand is a NORM |
| 4129 | bra.b _L20_6s |
| 4130 | _L20_2s: |
| 4131 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4132 | bne.b _L20_3s # no |
| 4133 | bsr.l ssincosz # yes |
| 4134 | bra.b _L20_6s |
| 4135 | _L20_3s: |
| 4136 | cmpi.b %d1,&INF # is operand an INF? |
| 4137 | bne.b _L20_4s # no |
| 4138 | bsr.l ssincosi # yes |
| 4139 | bra.b _L20_6s |
| 4140 | _L20_4s: |
| 4141 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4142 | bne.b _L20_5s # no |
| 4143 | bsr.l ssincosqnan # yes |
| 4144 | bra.b _L20_6s |
| 4145 | _L20_5s: |
| 4146 | bsr.l ssincosd # operand is a DENORM |
| 4147 | _L20_6s: |
| 4148 | |
| 4149 | # |
| 4150 | # Result is now in FP0 |
| 4151 | # |
| 4152 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4153 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4154 | fmovm.x &0x03,-(%sp) # store off fp0/fp1 |
| 4155 | fmovm.x (%sp)+,&0x40 # fp0 now in fp1 |
| 4156 | fmovm.x (%sp)+,&0x80 # fp1 now in fp0 |
| 4157 | unlk %a6 |
| 4158 | rts |
| 4159 | |
| 4160 | global _fsincosd_ |
| 4161 | _fsincosd_: |
| 4162 | link %a6,&-LOCAL_SIZE |
| 4163 | |
| 4164 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4165 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4166 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4167 | |
| 4168 | fmov.l &0x0,%fpcr # zero FPCR |
| 4169 | |
| 4170 | # |
| 4171 | # copy, convert, and tag input argument |
| 4172 | # |
| 4173 | fmov.d 0x8(%a6),%fp0 # load dbl input |
| 4174 | fmov.x %fp0,FP_SRC(%a6) |
| 4175 | lea FP_SRC(%a6),%a0 |
| 4176 | bsr.l tag # fetch operand type |
| 4177 | mov.b %d0,STAG(%a6) |
| 4178 | mov.b %d0,%d1 |
| 4179 | |
| 4180 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4181 | |
| 4182 | clr.l %d0 |
| 4183 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4184 | |
| 4185 | mov.b %d1,STAG(%a6) |
| 4186 | tst.b %d1 |
| 4187 | bne.b _L20_2d |
| 4188 | bsr.l ssincos # operand is a NORM |
| 4189 | bra.b _L20_6d |
| 4190 | _L20_2d: |
| 4191 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4192 | bne.b _L20_3d # no |
| 4193 | bsr.l ssincosz # yes |
| 4194 | bra.b _L20_6d |
| 4195 | _L20_3d: |
| 4196 | cmpi.b %d1,&INF # is operand an INF? |
| 4197 | bne.b _L20_4d # no |
| 4198 | bsr.l ssincosi # yes |
| 4199 | bra.b _L20_6d |
| 4200 | _L20_4d: |
| 4201 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4202 | bne.b _L20_5d # no |
| 4203 | bsr.l ssincosqnan # yes |
| 4204 | bra.b _L20_6d |
| 4205 | _L20_5d: |
| 4206 | bsr.l ssincosd # operand is a DENORM |
| 4207 | _L20_6d: |
| 4208 | |
| 4209 | # |
| 4210 | # Result is now in FP0 |
| 4211 | # |
| 4212 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4213 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4214 | fmovm.x &0x03,-(%sp) # store off fp0/fp1 |
| 4215 | fmovm.x (%sp)+,&0x40 # fp0 now in fp1 |
| 4216 | fmovm.x (%sp)+,&0x80 # fp1 now in fp0 |
| 4217 | unlk %a6 |
| 4218 | rts |
| 4219 | |
| 4220 | global _fsincosx_ |
| 4221 | _fsincosx_: |
| 4222 | link %a6,&-LOCAL_SIZE |
| 4223 | |
| 4224 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4225 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4226 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4227 | |
| 4228 | fmov.l &0x0,%fpcr # zero FPCR |
| 4229 | |
| 4230 | # |
| 4231 | # copy, convert, and tag input argument |
| 4232 | # |
| 4233 | lea FP_SRC(%a6),%a0 |
| 4234 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input |
| 4235 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 4236 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 4237 | bsr.l tag # fetch operand type |
| 4238 | mov.b %d0,STAG(%a6) |
| 4239 | mov.b %d0,%d1 |
| 4240 | |
| 4241 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4242 | |
| 4243 | clr.l %d0 |
| 4244 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4245 | |
| 4246 | tst.b %d1 |
| 4247 | bne.b _L20_2x |
| 4248 | bsr.l ssincos # operand is a NORM |
| 4249 | bra.b _L20_6x |
| 4250 | _L20_2x: |
| 4251 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4252 | bne.b _L20_3x # no |
| 4253 | bsr.l ssincosz # yes |
| 4254 | bra.b _L20_6x |
| 4255 | _L20_3x: |
| 4256 | cmpi.b %d1,&INF # is operand an INF? |
| 4257 | bne.b _L20_4x # no |
| 4258 | bsr.l ssincosi # yes |
| 4259 | bra.b _L20_6x |
| 4260 | _L20_4x: |
| 4261 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4262 | bne.b _L20_5x # no |
| 4263 | bsr.l ssincosqnan # yes |
| 4264 | bra.b _L20_6x |
| 4265 | _L20_5x: |
| 4266 | bsr.l ssincosd # operand is a DENORM |
| 4267 | _L20_6x: |
| 4268 | |
| 4269 | # |
| 4270 | # Result is now in FP0 |
| 4271 | # |
| 4272 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4273 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4274 | fmovm.x &0x03,-(%sp) # store off fp0/fp1 |
| 4275 | fmovm.x (%sp)+,&0x40 # fp0 now in fp1 |
| 4276 | fmovm.x (%sp)+,&0x80 # fp1 now in fp0 |
| 4277 | unlk %a6 |
| 4278 | rts |
| 4279 | |
| 4280 | |
| 4281 | ######################################################################### |
| 4282 | # DYADIC TEMPLATE # |
| 4283 | ######################################################################### |
| 4284 | global _frems_ |
| 4285 | _frems_: |
| 4286 | link %a6,&-LOCAL_SIZE |
| 4287 | |
| 4288 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4289 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4290 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4291 | |
| 4292 | fmov.l &0x0,%fpcr # zero FPCR |
| 4293 | |
| 4294 | # |
| 4295 | # copy, convert, and tag input argument |
| 4296 | # |
| 4297 | fmov.s 0x8(%a6),%fp0 # load sgl dst |
| 4298 | fmov.x %fp0,FP_DST(%a6) |
| 4299 | lea FP_DST(%a6),%a0 |
| 4300 | bsr.l tag # fetch operand type |
| 4301 | mov.b %d0,DTAG(%a6) |
| 4302 | |
| 4303 | fmov.s 0xc(%a6),%fp0 # load sgl src |
| 4304 | fmov.x %fp0,FP_SRC(%a6) |
| 4305 | lea FP_SRC(%a6),%a0 |
| 4306 | bsr.l tag # fetch operand type |
| 4307 | mov.b %d0,STAG(%a6) |
| 4308 | mov.l %d0,%d1 |
| 4309 | |
| 4310 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4311 | |
| 4312 | clr.l %d0 |
| 4313 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4314 | |
| 4315 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4316 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4317 | |
| 4318 | tst.b %d1 |
| 4319 | bne.b _L21_2s |
| 4320 | bsr.l srem_snorm # operand is a NORM |
| 4321 | bra.b _L21_6s |
| 4322 | _L21_2s: |
| 4323 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4324 | bne.b _L21_3s # no |
| 4325 | bsr.l srem_szero # yes |
| 4326 | bra.b _L21_6s |
| 4327 | _L21_3s: |
| 4328 | cmpi.b %d1,&INF # is operand an INF? |
| 4329 | bne.b _L21_4s # no |
| 4330 | bsr.l srem_sinf # yes |
| 4331 | bra.b _L21_6s |
| 4332 | _L21_4s: |
| 4333 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4334 | bne.b _L21_5s # no |
| 4335 | bsr.l sop_sqnan # yes |
| 4336 | bra.b _L21_6s |
| 4337 | _L21_5s: |
| 4338 | bsr.l srem_sdnrm # operand is a DENORM |
| 4339 | _L21_6s: |
| 4340 | |
| 4341 | # |
| 4342 | # Result is now in FP0 |
| 4343 | # |
| 4344 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4345 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4346 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4347 | unlk %a6 |
| 4348 | rts |
| 4349 | |
| 4350 | global _fremd_ |
| 4351 | _fremd_: |
| 4352 | link %a6,&-LOCAL_SIZE |
| 4353 | |
| 4354 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4355 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4356 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4357 | |
| 4358 | fmov.l &0x0,%fpcr # zero FPCR |
| 4359 | |
| 4360 | # |
| 4361 | # copy, convert, and tag input argument |
| 4362 | # |
| 4363 | fmov.d 0x8(%a6),%fp0 # load dbl dst |
| 4364 | fmov.x %fp0,FP_DST(%a6) |
| 4365 | lea FP_DST(%a6),%a0 |
| 4366 | bsr.l tag # fetch operand type |
| 4367 | mov.b %d0,DTAG(%a6) |
| 4368 | |
| 4369 | fmov.d 0x10(%a6),%fp0 # load dbl src |
| 4370 | fmov.x %fp0,FP_SRC(%a6) |
| 4371 | lea FP_SRC(%a6),%a0 |
| 4372 | bsr.l tag # fetch operand type |
| 4373 | mov.b %d0,STAG(%a6) |
| 4374 | mov.l %d0,%d1 |
| 4375 | |
| 4376 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4377 | |
| 4378 | clr.l %d0 |
| 4379 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4380 | |
| 4381 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4382 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4383 | |
| 4384 | tst.b %d1 |
| 4385 | bne.b _L21_2d |
| 4386 | bsr.l srem_snorm # operand is a NORM |
| 4387 | bra.b _L21_6d |
| 4388 | _L21_2d: |
| 4389 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4390 | bne.b _L21_3d # no |
| 4391 | bsr.l srem_szero # yes |
| 4392 | bra.b _L21_6d |
| 4393 | _L21_3d: |
| 4394 | cmpi.b %d1,&INF # is operand an INF? |
| 4395 | bne.b _L21_4d # no |
| 4396 | bsr.l srem_sinf # yes |
| 4397 | bra.b _L21_6d |
| 4398 | _L21_4d: |
| 4399 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4400 | bne.b _L21_5d # no |
| 4401 | bsr.l sop_sqnan # yes |
| 4402 | bra.b _L21_6d |
| 4403 | _L21_5d: |
| 4404 | bsr.l srem_sdnrm # operand is a DENORM |
| 4405 | _L21_6d: |
| 4406 | |
| 4407 | # |
| 4408 | # Result is now in FP0 |
| 4409 | # |
| 4410 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4411 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4412 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4413 | unlk %a6 |
| 4414 | rts |
| 4415 | |
| 4416 | global _fremx_ |
| 4417 | _fremx_: |
| 4418 | link %a6,&-LOCAL_SIZE |
| 4419 | |
| 4420 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4421 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4422 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4423 | |
| 4424 | fmov.l &0x0,%fpcr # zero FPCR |
| 4425 | |
| 4426 | # |
| 4427 | # copy, convert, and tag input argument |
| 4428 | # |
| 4429 | lea FP_DST(%a6),%a0 |
| 4430 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst |
| 4431 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 4432 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 4433 | bsr.l tag # fetch operand type |
| 4434 | mov.b %d0,DTAG(%a6) |
| 4435 | |
| 4436 | lea FP_SRC(%a6),%a0 |
| 4437 | mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src |
| 4438 | mov.l 0x14+0x4(%a6),0x4(%a0) |
| 4439 | mov.l 0x14+0x8(%a6),0x8(%a0) |
| 4440 | bsr.l tag # fetch operand type |
| 4441 | mov.b %d0,STAG(%a6) |
| 4442 | mov.l %d0,%d1 |
| 4443 | |
| 4444 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4445 | |
| 4446 | clr.l %d0 |
| 4447 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4448 | |
| 4449 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4450 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4451 | |
| 4452 | tst.b %d1 |
| 4453 | bne.b _L21_2x |
| 4454 | bsr.l srem_snorm # operand is a NORM |
| 4455 | bra.b _L21_6x |
| 4456 | _L21_2x: |
| 4457 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4458 | bne.b _L21_3x # no |
| 4459 | bsr.l srem_szero # yes |
| 4460 | bra.b _L21_6x |
| 4461 | _L21_3x: |
| 4462 | cmpi.b %d1,&INF # is operand an INF? |
| 4463 | bne.b _L21_4x # no |
| 4464 | bsr.l srem_sinf # yes |
| 4465 | bra.b _L21_6x |
| 4466 | _L21_4x: |
| 4467 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4468 | bne.b _L21_5x # no |
| 4469 | bsr.l sop_sqnan # yes |
| 4470 | bra.b _L21_6x |
| 4471 | _L21_5x: |
| 4472 | bsr.l srem_sdnrm # operand is a DENORM |
| 4473 | _L21_6x: |
| 4474 | |
| 4475 | # |
| 4476 | # Result is now in FP0 |
| 4477 | # |
| 4478 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4479 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4480 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4481 | unlk %a6 |
| 4482 | rts |
| 4483 | |
| 4484 | |
| 4485 | ######################################################################### |
| 4486 | # DYADIC TEMPLATE # |
| 4487 | ######################################################################### |
| 4488 | global _fmods_ |
| 4489 | _fmods_: |
| 4490 | link %a6,&-LOCAL_SIZE |
| 4491 | |
| 4492 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4493 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4494 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4495 | |
| 4496 | fmov.l &0x0,%fpcr # zero FPCR |
| 4497 | |
| 4498 | # |
| 4499 | # copy, convert, and tag input argument |
| 4500 | # |
| 4501 | fmov.s 0x8(%a6),%fp0 # load sgl dst |
| 4502 | fmov.x %fp0,FP_DST(%a6) |
| 4503 | lea FP_DST(%a6),%a0 |
| 4504 | bsr.l tag # fetch operand type |
| 4505 | mov.b %d0,DTAG(%a6) |
| 4506 | |
| 4507 | fmov.s 0xc(%a6),%fp0 # load sgl src |
| 4508 | fmov.x %fp0,FP_SRC(%a6) |
| 4509 | lea FP_SRC(%a6),%a0 |
| 4510 | bsr.l tag # fetch operand type |
| 4511 | mov.b %d0,STAG(%a6) |
| 4512 | mov.l %d0,%d1 |
| 4513 | |
| 4514 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4515 | |
| 4516 | clr.l %d0 |
| 4517 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4518 | |
| 4519 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4520 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4521 | |
| 4522 | tst.b %d1 |
| 4523 | bne.b _L22_2s |
| 4524 | bsr.l smod_snorm # operand is a NORM |
| 4525 | bra.b _L22_6s |
| 4526 | _L22_2s: |
| 4527 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4528 | bne.b _L22_3s # no |
| 4529 | bsr.l smod_szero # yes |
| 4530 | bra.b _L22_6s |
| 4531 | _L22_3s: |
| 4532 | cmpi.b %d1,&INF # is operand an INF? |
| 4533 | bne.b _L22_4s # no |
| 4534 | bsr.l smod_sinf # yes |
| 4535 | bra.b _L22_6s |
| 4536 | _L22_4s: |
| 4537 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4538 | bne.b _L22_5s # no |
| 4539 | bsr.l sop_sqnan # yes |
| 4540 | bra.b _L22_6s |
| 4541 | _L22_5s: |
| 4542 | bsr.l smod_sdnrm # operand is a DENORM |
| 4543 | _L22_6s: |
| 4544 | |
| 4545 | # |
| 4546 | # Result is now in FP0 |
| 4547 | # |
| 4548 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4549 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4550 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4551 | unlk %a6 |
| 4552 | rts |
| 4553 | |
| 4554 | global _fmodd_ |
| 4555 | _fmodd_: |
| 4556 | link %a6,&-LOCAL_SIZE |
| 4557 | |
| 4558 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4559 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4560 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4561 | |
| 4562 | fmov.l &0x0,%fpcr # zero FPCR |
| 4563 | |
| 4564 | # |
| 4565 | # copy, convert, and tag input argument |
| 4566 | # |
| 4567 | fmov.d 0x8(%a6),%fp0 # load dbl dst |
| 4568 | fmov.x %fp0,FP_DST(%a6) |
| 4569 | lea FP_DST(%a6),%a0 |
| 4570 | bsr.l tag # fetch operand type |
| 4571 | mov.b %d0,DTAG(%a6) |
| 4572 | |
| 4573 | fmov.d 0x10(%a6),%fp0 # load dbl src |
| 4574 | fmov.x %fp0,FP_SRC(%a6) |
| 4575 | lea FP_SRC(%a6),%a0 |
| 4576 | bsr.l tag # fetch operand type |
| 4577 | mov.b %d0,STAG(%a6) |
| 4578 | mov.l %d0,%d1 |
| 4579 | |
| 4580 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4581 | |
| 4582 | clr.l %d0 |
| 4583 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4584 | |
| 4585 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4586 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4587 | |
| 4588 | tst.b %d1 |
| 4589 | bne.b _L22_2d |
| 4590 | bsr.l smod_snorm # operand is a NORM |
| 4591 | bra.b _L22_6d |
| 4592 | _L22_2d: |
| 4593 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4594 | bne.b _L22_3d # no |
| 4595 | bsr.l smod_szero # yes |
| 4596 | bra.b _L22_6d |
| 4597 | _L22_3d: |
| 4598 | cmpi.b %d1,&INF # is operand an INF? |
| 4599 | bne.b _L22_4d # no |
| 4600 | bsr.l smod_sinf # yes |
| 4601 | bra.b _L22_6d |
| 4602 | _L22_4d: |
| 4603 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4604 | bne.b _L22_5d # no |
| 4605 | bsr.l sop_sqnan # yes |
| 4606 | bra.b _L22_6d |
| 4607 | _L22_5d: |
| 4608 | bsr.l smod_sdnrm # operand is a DENORM |
| 4609 | _L22_6d: |
| 4610 | |
| 4611 | # |
| 4612 | # Result is now in FP0 |
| 4613 | # |
| 4614 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4615 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4616 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4617 | unlk %a6 |
| 4618 | rts |
| 4619 | |
| 4620 | global _fmodx_ |
| 4621 | _fmodx_: |
| 4622 | link %a6,&-LOCAL_SIZE |
| 4623 | |
| 4624 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4625 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4626 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4627 | |
| 4628 | fmov.l &0x0,%fpcr # zero FPCR |
| 4629 | |
| 4630 | # |
| 4631 | # copy, convert, and tag input argument |
| 4632 | # |
| 4633 | lea FP_DST(%a6),%a0 |
| 4634 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst |
| 4635 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 4636 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 4637 | bsr.l tag # fetch operand type |
| 4638 | mov.b %d0,DTAG(%a6) |
| 4639 | |
| 4640 | lea FP_SRC(%a6),%a0 |
| 4641 | mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src |
| 4642 | mov.l 0x14+0x4(%a6),0x4(%a0) |
| 4643 | mov.l 0x14+0x8(%a6),0x8(%a0) |
| 4644 | bsr.l tag # fetch operand type |
| 4645 | mov.b %d0,STAG(%a6) |
| 4646 | mov.l %d0,%d1 |
| 4647 | |
| 4648 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4649 | |
| 4650 | clr.l %d0 |
| 4651 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4652 | |
| 4653 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4654 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4655 | |
| 4656 | tst.b %d1 |
| 4657 | bne.b _L22_2x |
| 4658 | bsr.l smod_snorm # operand is a NORM |
| 4659 | bra.b _L22_6x |
| 4660 | _L22_2x: |
| 4661 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4662 | bne.b _L22_3x # no |
| 4663 | bsr.l smod_szero # yes |
| 4664 | bra.b _L22_6x |
| 4665 | _L22_3x: |
| 4666 | cmpi.b %d1,&INF # is operand an INF? |
| 4667 | bne.b _L22_4x # no |
| 4668 | bsr.l smod_sinf # yes |
| 4669 | bra.b _L22_6x |
| 4670 | _L22_4x: |
| 4671 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4672 | bne.b _L22_5x # no |
| 4673 | bsr.l sop_sqnan # yes |
| 4674 | bra.b _L22_6x |
| 4675 | _L22_5x: |
| 4676 | bsr.l smod_sdnrm # operand is a DENORM |
| 4677 | _L22_6x: |
| 4678 | |
| 4679 | # |
| 4680 | # Result is now in FP0 |
| 4681 | # |
| 4682 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4683 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4684 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4685 | unlk %a6 |
| 4686 | rts |
| 4687 | |
| 4688 | |
| 4689 | ######################################################################### |
| 4690 | # DYADIC TEMPLATE # |
| 4691 | ######################################################################### |
| 4692 | global _fscales_ |
| 4693 | _fscales_: |
| 4694 | link %a6,&-LOCAL_SIZE |
| 4695 | |
| 4696 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4697 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4698 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4699 | |
| 4700 | fmov.l &0x0,%fpcr # zero FPCR |
| 4701 | |
| 4702 | # |
| 4703 | # copy, convert, and tag input argument |
| 4704 | # |
| 4705 | fmov.s 0x8(%a6),%fp0 # load sgl dst |
| 4706 | fmov.x %fp0,FP_DST(%a6) |
| 4707 | lea FP_DST(%a6),%a0 |
| 4708 | bsr.l tag # fetch operand type |
| 4709 | mov.b %d0,DTAG(%a6) |
| 4710 | |
| 4711 | fmov.s 0xc(%a6),%fp0 # load sgl src |
| 4712 | fmov.x %fp0,FP_SRC(%a6) |
| 4713 | lea FP_SRC(%a6),%a0 |
| 4714 | bsr.l tag # fetch operand type |
| 4715 | mov.b %d0,STAG(%a6) |
| 4716 | mov.l %d0,%d1 |
| 4717 | |
| 4718 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4719 | |
| 4720 | clr.l %d0 |
| 4721 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4722 | |
| 4723 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4724 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4725 | |
| 4726 | tst.b %d1 |
| 4727 | bne.b _L23_2s |
| 4728 | bsr.l sscale_snorm # operand is a NORM |
| 4729 | bra.b _L23_6s |
| 4730 | _L23_2s: |
| 4731 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4732 | bne.b _L23_3s # no |
| 4733 | bsr.l sscale_szero # yes |
| 4734 | bra.b _L23_6s |
| 4735 | _L23_3s: |
| 4736 | cmpi.b %d1,&INF # is operand an INF? |
| 4737 | bne.b _L23_4s # no |
| 4738 | bsr.l sscale_sinf # yes |
| 4739 | bra.b _L23_6s |
| 4740 | _L23_4s: |
| 4741 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4742 | bne.b _L23_5s # no |
| 4743 | bsr.l sop_sqnan # yes |
| 4744 | bra.b _L23_6s |
| 4745 | _L23_5s: |
| 4746 | bsr.l sscale_sdnrm # operand is a DENORM |
| 4747 | _L23_6s: |
| 4748 | |
| 4749 | # |
| 4750 | # Result is now in FP0 |
| 4751 | # |
| 4752 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4753 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4754 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4755 | unlk %a6 |
| 4756 | rts |
| 4757 | |
| 4758 | global _fscaled_ |
| 4759 | _fscaled_: |
| 4760 | link %a6,&-LOCAL_SIZE |
| 4761 | |
| 4762 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4763 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4764 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4765 | |
| 4766 | fmov.l &0x0,%fpcr # zero FPCR |
| 4767 | |
| 4768 | # |
| 4769 | # copy, convert, and tag input argument |
| 4770 | # |
| 4771 | fmov.d 0x8(%a6),%fp0 # load dbl dst |
| 4772 | fmov.x %fp0,FP_DST(%a6) |
| 4773 | lea FP_DST(%a6),%a0 |
| 4774 | bsr.l tag # fetch operand type |
| 4775 | mov.b %d0,DTAG(%a6) |
| 4776 | |
| 4777 | fmov.d 0x10(%a6),%fp0 # load dbl src |
| 4778 | fmov.x %fp0,FP_SRC(%a6) |
| 4779 | lea FP_SRC(%a6),%a0 |
| 4780 | bsr.l tag # fetch operand type |
| 4781 | mov.b %d0,STAG(%a6) |
| 4782 | mov.l %d0,%d1 |
| 4783 | |
| 4784 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4785 | |
| 4786 | clr.l %d0 |
| 4787 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4788 | |
| 4789 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4790 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4791 | |
| 4792 | tst.b %d1 |
| 4793 | bne.b _L23_2d |
| 4794 | bsr.l sscale_snorm # operand is a NORM |
| 4795 | bra.b _L23_6d |
| 4796 | _L23_2d: |
| 4797 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4798 | bne.b _L23_3d # no |
| 4799 | bsr.l sscale_szero # yes |
| 4800 | bra.b _L23_6d |
| 4801 | _L23_3d: |
| 4802 | cmpi.b %d1,&INF # is operand an INF? |
| 4803 | bne.b _L23_4d # no |
| 4804 | bsr.l sscale_sinf # yes |
| 4805 | bra.b _L23_6d |
| 4806 | _L23_4d: |
| 4807 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4808 | bne.b _L23_5d # no |
| 4809 | bsr.l sop_sqnan # yes |
| 4810 | bra.b _L23_6d |
| 4811 | _L23_5d: |
| 4812 | bsr.l sscale_sdnrm # operand is a DENORM |
| 4813 | _L23_6d: |
| 4814 | |
| 4815 | # |
| 4816 | # Result is now in FP0 |
| 4817 | # |
| 4818 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4819 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4820 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4821 | unlk %a6 |
| 4822 | rts |
| 4823 | |
| 4824 | global _fscalex_ |
| 4825 | _fscalex_: |
| 4826 | link %a6,&-LOCAL_SIZE |
| 4827 | |
| 4828 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 4829 | fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs |
| 4830 | fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 |
| 4831 | |
| 4832 | fmov.l &0x0,%fpcr # zero FPCR |
| 4833 | |
| 4834 | # |
| 4835 | # copy, convert, and tag input argument |
| 4836 | # |
| 4837 | lea FP_DST(%a6),%a0 |
| 4838 | mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst |
| 4839 | mov.l 0x8+0x4(%a6),0x4(%a0) |
| 4840 | mov.l 0x8+0x8(%a6),0x8(%a0) |
| 4841 | bsr.l tag # fetch operand type |
| 4842 | mov.b %d0,DTAG(%a6) |
| 4843 | |
| 4844 | lea FP_SRC(%a6),%a0 |
| 4845 | mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src |
| 4846 | mov.l 0x14+0x4(%a6),0x4(%a0) |
| 4847 | mov.l 0x14+0x8(%a6),0x8(%a0) |
| 4848 | bsr.l tag # fetch operand type |
| 4849 | mov.b %d0,STAG(%a6) |
| 4850 | mov.l %d0,%d1 |
| 4851 | |
| 4852 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 4853 | |
| 4854 | clr.l %d0 |
| 4855 | mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec |
| 4856 | |
| 4857 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 4858 | lea FP_DST(%a6),%a1 # pass ptr to dst |
| 4859 | |
| 4860 | tst.b %d1 |
| 4861 | bne.b _L23_2x |
| 4862 | bsr.l sscale_snorm # operand is a NORM |
| 4863 | bra.b _L23_6x |
| 4864 | _L23_2x: |
| 4865 | cmpi.b %d1,&ZERO # is operand a ZERO? |
| 4866 | bne.b _L23_3x # no |
| 4867 | bsr.l sscale_szero # yes |
| 4868 | bra.b _L23_6x |
| 4869 | _L23_3x: |
| 4870 | cmpi.b %d1,&INF # is operand an INF? |
| 4871 | bne.b _L23_4x # no |
| 4872 | bsr.l sscale_sinf # yes |
| 4873 | bra.b _L23_6x |
| 4874 | _L23_4x: |
| 4875 | cmpi.b %d1,&QNAN # is operand a QNAN? |
| 4876 | bne.b _L23_5x # no |
| 4877 | bsr.l sop_sqnan # yes |
| 4878 | bra.b _L23_6x |
| 4879 | _L23_5x: |
| 4880 | bsr.l sscale_sdnrm # operand is a DENORM |
| 4881 | _L23_6x: |
| 4882 | |
| 4883 | # |
| 4884 | # Result is now in FP0 |
| 4885 | # |
| 4886 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 4887 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs |
| 4888 | fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 |
| 4889 | unlk %a6 |
| 4890 | rts |
| 4891 | |
| 4892 | |
| 4893 | ######################################################################### |
| 4894 | # ssin(): computes the sine of a normalized input # |
| 4895 | # ssind(): computes the sine of a denormalized input # |
| 4896 | # scos(): computes the cosine of a normalized input # |
| 4897 | # scosd(): computes the cosine of a denormalized input # |
| 4898 | # ssincos(): computes the sine and cosine of a normalized input # |
| 4899 | # ssincosd(): computes the sine and cosine of a denormalized input # |
| 4900 | # # |
| 4901 | # INPUT *************************************************************** # |
| 4902 | # a0 = pointer to extended precision input # |
| 4903 | # d0 = round precision,mode # |
| 4904 | # # |
| 4905 | # OUTPUT ************************************************************** # |
| 4906 | # fp0 = sin(X) or cos(X) # |
| 4907 | # # |
| 4908 | # For ssincos(X): # |
| 4909 | # fp0 = sin(X) # |
| 4910 | # fp1 = cos(X) # |
| 4911 | # # |
| 4912 | # ACCURACY and MONOTONICITY ******************************************* # |
| 4913 | # The returned result is within 1 ulp in 64 significant bit, i.e. # |
| 4914 | # within 0.5001 ulp to 53 bits if the result is subsequently # |
| 4915 | # rounded to double precision. The result is provably monotonic # |
| 4916 | # in double precision. # |
| 4917 | # # |
| 4918 | # ALGORITHM *********************************************************** # |
| 4919 | # # |
| 4920 | # SIN and COS: # |
| 4921 | # 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # |
| 4922 | # # |
| 4923 | # 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # |
| 4924 | # # |
| 4925 | # 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| 4926 | # k = N mod 4, so in particular, k = 0,1,2,or 3. # |
| 4927 | # Overwrite k by k := k + AdjN. # |
| 4928 | # # |
| 4929 | # 4. If k is even, go to 6. # |
| 4930 | # # |
| 4931 | # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # |
| 4932 | # Return sgn*cos(r) where cos(r) is approximated by an # |
| 4933 | # even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # |
| 4934 | # s = r*r. # |
| 4935 | # Exit. # |
| 4936 | # # |
| 4937 | # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # |
| 4938 | # where sin(r) is approximated by an odd polynomial in r # |
| 4939 | # r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # |
| 4940 | # Exit. # |
| 4941 | # # |
| 4942 | # 7. If |X| > 1, go to 9. # |
| 4943 | # # |
| 4944 | # 8. (|X|<2**(-40)) If SIN is invoked, return X; # |
| 4945 | # otherwise return 1. # |
| 4946 | # # |
| 4947 | # 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # |
| 4948 | # go back to 3. # |
| 4949 | # # |
| 4950 | # SINCOS: # |
| 4951 | # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # |
| 4952 | # # |
| 4953 | # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| 4954 | # k = N mod 4, so in particular, k = 0,1,2,or 3. # |
| 4955 | # # |
| 4956 | # 3. If k is even, go to 5. # |
| 4957 | # # |
| 4958 | # 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # |
| 4959 | # j1 exclusive or with the l.s.b. of k. # |
| 4960 | # sgn1 := (-1)**j1, sgn2 := (-1)**j2. # |
| 4961 | # SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # |
| 4962 | # sin(r) and cos(r) are computed as odd and even # |
| 4963 | # polynomials in r, respectively. Exit # |
| 4964 | # # |
| 4965 | # 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # |
| 4966 | # SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # |
| 4967 | # sin(r) and cos(r) are computed as odd and even # |
| 4968 | # polynomials in r, respectively. Exit # |
| 4969 | # # |
| 4970 | # 6. If |X| > 1, go to 8. # |
| 4971 | # # |
| 4972 | # 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # |
| 4973 | # # |
| 4974 | # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # |
| 4975 | # go back to 2. # |
| 4976 | # # |
| 4977 | ######################################################################### |
| 4978 | |
| 4979 | SINA7: long 0xBD6AAA77,0xCCC994F5 |
| 4980 | SINA6: long 0x3DE61209,0x7AAE8DA1 |
| 4981 | SINA5: long 0xBE5AE645,0x2A118AE4 |
| 4982 | SINA4: long 0x3EC71DE3,0xA5341531 |
| 4983 | SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 |
| 4984 | SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 |
| 4985 | SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 |
| 4986 | |
| 4987 | COSB8: long 0x3D2AC4D0,0xD6011EE3 |
| 4988 | COSB7: long 0xBDA9396F,0x9F45AC19 |
| 4989 | COSB6: long 0x3E21EED9,0x0612C972 |
| 4990 | COSB5: long 0xBE927E4F,0xB79D9FCF |
| 4991 | COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 |
| 4992 | COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 |
| 4993 | COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E |
| 4994 | COSB1: long 0xBF000000 |
| 4995 | |
| 4996 | set INARG,FP_SCR0 |
| 4997 | |
| 4998 | set X,FP_SCR0 |
| 4999 | # set XDCARE,X+2 |
| 5000 | set XFRAC,X+4 |
| 5001 | |
| 5002 | set RPRIME,FP_SCR0 |
| 5003 | set SPRIME,FP_SCR1 |
| 5004 | |
| 5005 | set POSNEG1,L_SCR1 |
| 5006 | set TWOTO63,L_SCR1 |
| 5007 | |
| 5008 | set ENDFLAG,L_SCR2 |
| 5009 | set INT,L_SCR2 |
| 5010 | |
| 5011 | set ADJN,L_SCR3 |
| 5012 | |
| 5013 | ############################################ |
| 5014 | global ssin |
| 5015 | ssin: |
| 5016 | mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 |
| 5017 | bra.b SINBGN |
| 5018 | |
| 5019 | ############################################ |
| 5020 | global scos |
| 5021 | scos: |
| 5022 | mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 |
| 5023 | |
| 5024 | ############################################ |
| 5025 | SINBGN: |
| 5026 | #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE |
| 5027 | |
| 5028 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 5029 | fmov.x %fp0,X(%a6) # save input at X |
| 5030 | |
| 5031 | # "COMPACTIFY" X |
| 5032 | mov.l (%a0),%d1 # put exp in hi word |
| 5033 | mov.w 4(%a0),%d1 # fetch hi(man) |
| 5034 | and.l &0x7FFFFFFF,%d1 # strip sign |
| 5035 | |
| 5036 | cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? |
| 5037 | bge.b SOK1 # no |
| 5038 | bra.w SINSM # yes; input is very small |
| 5039 | |
| 5040 | SOK1: |
| 5041 | cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? |
| 5042 | blt.b SINMAIN # no |
| 5043 | bra.w SREDUCEX # yes; input is very large |
| 5044 | |
| 5045 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| 5046 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| 5047 | SINMAIN: |
| 5048 | fmov.x %fp0,%fp1 |
| 5049 | fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| 5050 | |
| 5051 | lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| 5052 | |
| 5053 | fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER |
| 5054 | |
| 5055 | mov.l INT(%a6),%d1 # make a copy of N |
| 5056 | asl.l &4,%d1 # N *= 16 |
| 5057 | add.l %d1,%a1 # tbl_addr = a1 + (N*16) |
| 5058 | |
| 5059 | # A1 IS THE ADDRESS OF N*PIBY2 |
| 5060 | # ...WHICH IS IN TWO PIECES Y1 & Y2 |
| 5061 | fsub.x (%a1)+,%fp0 # X-Y1 |
| 5062 | fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 |
| 5063 | |
| 5064 | SINCONT: |
| 5065 | #--continuation from REDUCEX |
| 5066 | |
| 5067 | #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED |
| 5068 | mov.l INT(%a6),%d1 |
| 5069 | add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN |
| 5070 | ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE |
| 5071 | cmp.l %d1,&0 |
| 5072 | blt.w COSPOLY |
| 5073 | |
| 5074 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |
| 5075 | #--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY |
| 5076 | #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE |
| 5077 | #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS |
| 5078 | #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) |
| 5079 | #--WHERE T=S*S. |
| 5080 | #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION |
| 5081 | #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. |
| 5082 | SINPOLY: |
| 5083 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| 5084 | |
| 5085 | fmov.x %fp0,X(%a6) # X IS R |
| 5086 | fmul.x %fp0,%fp0 # FP0 IS S |
| 5087 | |
| 5088 | fmov.d SINA7(%pc),%fp3 |
| 5089 | fmov.d SINA6(%pc),%fp2 |
| 5090 | |
| 5091 | fmov.x %fp0,%fp1 |
| 5092 | fmul.x %fp1,%fp1 # FP1 IS T |
| 5093 | |
| 5094 | ror.l &1,%d1 |
| 5095 | and.l &0x80000000,%d1 |
| 5096 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION |
| 5097 | eor.l %d1,X(%a6) # X IS NOW R'= SGN*R |
| 5098 | |
| 5099 | fmul.x %fp1,%fp3 # TA7 |
| 5100 | fmul.x %fp1,%fp2 # TA6 |
| 5101 | |
| 5102 | fadd.d SINA5(%pc),%fp3 # A5+TA7 |
| 5103 | fadd.d SINA4(%pc),%fp2 # A4+TA6 |
| 5104 | |
| 5105 | fmul.x %fp1,%fp3 # T(A5+TA7) |
| 5106 | fmul.x %fp1,%fp2 # T(A4+TA6) |
| 5107 | |
| 5108 | fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) |
| 5109 | fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) |
| 5110 | |
| 5111 | fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) |
| 5112 | |
| 5113 | fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) |
| 5114 | fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) |
| 5115 | fmul.x X(%a6),%fp0 # R'*S |
| 5116 | |
| 5117 | fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] |
| 5118 | |
| 5119 | fmul.x %fp1,%fp0 # SIN(R')-R' |
| 5120 | |
| 5121 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| 5122 | |
| 5123 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5124 | fadd.x X(%a6),%fp0 # last inst - possible exception set |
| 5125 | bra t_inx2 |
| 5126 | |
| 5127 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. |
| 5128 | #--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY |
| 5129 | #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE |
| 5130 | #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS |
| 5131 | #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) |
| 5132 | #--WHERE T=S*S. |
| 5133 | #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION |
| 5134 | #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 |
| 5135 | #--AND IS THEREFORE STORED AS SINGLE PRECISION. |
| 5136 | COSPOLY: |
| 5137 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| 5138 | |
| 5139 | fmul.x %fp0,%fp0 # FP0 IS S |
| 5140 | |
| 5141 | fmov.d COSB8(%pc),%fp2 |
| 5142 | fmov.d COSB7(%pc),%fp3 |
| 5143 | |
| 5144 | fmov.x %fp0,%fp1 |
| 5145 | fmul.x %fp1,%fp1 # FP1 IS T |
| 5146 | |
| 5147 | fmov.x %fp0,X(%a6) # X IS S |
| 5148 | ror.l &1,%d1 |
| 5149 | and.l &0x80000000,%d1 |
| 5150 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION |
| 5151 | |
| 5152 | fmul.x %fp1,%fp2 # TB8 |
| 5153 | |
| 5154 | eor.l %d1,X(%a6) # X IS NOW S'= SGN*S |
| 5155 | and.l &0x80000000,%d1 |
| 5156 | |
| 5157 | fmul.x %fp1,%fp3 # TB7 |
| 5158 | |
| 5159 | or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE |
| 5160 | mov.l %d1,POSNEG1(%a6) |
| 5161 | |
| 5162 | fadd.d COSB6(%pc),%fp2 # B6+TB8 |
| 5163 | fadd.d COSB5(%pc),%fp3 # B5+TB7 |
| 5164 | |
| 5165 | fmul.x %fp1,%fp2 # T(B6+TB8) |
| 5166 | fmul.x %fp1,%fp3 # T(B5+TB7) |
| 5167 | |
| 5168 | fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) |
| 5169 | fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) |
| 5170 | |
| 5171 | fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) |
| 5172 | fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) |
| 5173 | |
| 5174 | fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) |
| 5175 | fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) |
| 5176 | |
| 5177 | fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) |
| 5178 | |
| 5179 | fadd.x %fp1,%fp0 |
| 5180 | |
| 5181 | fmul.x X(%a6),%fp0 |
| 5182 | |
| 5183 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| 5184 | |
| 5185 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5186 | fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set |
| 5187 | bra t_inx2 |
| 5188 | |
| 5189 | ############################################## |
| 5190 | |
| 5191 | # SINe: Big OR Small? |
| 5192 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| 5193 | #--IF |X| < 2**(-40), RETURN X OR 1. |
| 5194 | SINBORS: |
| 5195 | cmp.l %d1,&0x3FFF8000 |
| 5196 | bgt.l SREDUCEX |
| 5197 | |
| 5198 | SINSM: |
| 5199 | mov.l ADJN(%a6),%d1 |
| 5200 | cmp.l %d1,&0 |
| 5201 | bgt.b COSTINY |
| 5202 | |
| 5203 | # here, the operation may underflow iff the precision is sgl or dbl. |
| 5204 | # extended denorms are handled through another entry point. |
| 5205 | SINTINY: |
| 5206 | # mov.w &0x0000,XDCARE(%a6) # JUST IN CASE |
| 5207 | |
| 5208 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5209 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 5210 | fmov.x X(%a6),%fp0 # last inst - possible exception set |
| 5211 | bra t_catch |
| 5212 | |
| 5213 | COSTINY: |
| 5214 | fmov.s &0x3F800000,%fp0 # fp0 = 1.0 |
| 5215 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5216 | fadd.s &0x80800000,%fp0 # last inst - possible exception set |
| 5217 | bra t_pinx2 |
| 5218 | |
| 5219 | ################################################ |
| 5220 | global ssind |
| 5221 | #--SIN(X) = X FOR DENORMALIZED X |
| 5222 | ssind: |
| 5223 | bra t_extdnrm |
| 5224 | |
| 5225 | ############################################ |
| 5226 | global scosd |
| 5227 | #--COS(X) = 1 FOR DENORMALIZED X |
| 5228 | scosd: |
| 5229 | fmov.s &0x3F800000,%fp0 # fp0 = 1.0 |
| 5230 | bra t_pinx2 |
| 5231 | |
| 5232 | ################################################## |
| 5233 | |
| 5234 | global ssincos |
| 5235 | ssincos: |
| 5236 | #--SET ADJN TO 4 |
| 5237 | mov.l &4,ADJN(%a6) |
| 5238 | |
| 5239 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 5240 | fmov.x %fp0,X(%a6) |
| 5241 | |
| 5242 | mov.l (%a0),%d1 |
| 5243 | mov.w 4(%a0),%d1 |
| 5244 | and.l &0x7FFFFFFF,%d1 # COMPACTIFY X |
| 5245 | |
| 5246 | cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? |
| 5247 | bge.b SCOK1 |
| 5248 | bra.w SCSM |
| 5249 | |
| 5250 | SCOK1: |
| 5251 | cmp.l %d1,&0x4004BC7E # |X| < 15 PI? |
| 5252 | blt.b SCMAIN |
| 5253 | bra.w SREDUCEX |
| 5254 | |
| 5255 | |
| 5256 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| 5257 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| 5258 | SCMAIN: |
| 5259 | fmov.x %fp0,%fp1 |
| 5260 | |
| 5261 | fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| 5262 | |
| 5263 | lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| 5264 | |
| 5265 | fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER |
| 5266 | |
| 5267 | mov.l INT(%a6),%d1 |
| 5268 | asl.l &4,%d1 |
| 5269 | add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 |
| 5270 | |
| 5271 | fsub.x (%a1)+,%fp0 # X-Y1 |
| 5272 | fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 |
| 5273 | |
| 5274 | SCCONT: |
| 5275 | #--continuation point from REDUCEX |
| 5276 | |
| 5277 | mov.l INT(%a6),%d1 |
| 5278 | ror.l &1,%d1 |
| 5279 | cmp.l %d1,&0 # D0 < 0 IFF N IS ODD |
| 5280 | bge.w NEVEN |
| 5281 | |
| 5282 | SNODD: |
| 5283 | #--REGISTERS SAVED SO FAR: D0, A0, FP2. |
| 5284 | fmovm.x &0x04,-(%sp) # save fp2 |
| 5285 | |
| 5286 | fmov.x %fp0,RPRIME(%a6) |
| 5287 | fmul.x %fp0,%fp0 # FP0 IS S = R*R |
| 5288 | fmov.d SINA7(%pc),%fp1 # A7 |
| 5289 | fmov.d COSB8(%pc),%fp2 # B8 |
| 5290 | fmul.x %fp0,%fp1 # SA7 |
| 5291 | fmul.x %fp0,%fp2 # SB8 |
| 5292 | |
| 5293 | mov.l %d2,-(%sp) |
| 5294 | mov.l %d1,%d2 |
| 5295 | ror.l &1,%d2 |
| 5296 | and.l &0x80000000,%d2 |
| 5297 | eor.l %d1,%d2 |
| 5298 | and.l &0x80000000,%d2 |
| 5299 | |
| 5300 | fadd.d SINA6(%pc),%fp1 # A6+SA7 |
| 5301 | fadd.d COSB7(%pc),%fp2 # B7+SB8 |
| 5302 | |
| 5303 | fmul.x %fp0,%fp1 # S(A6+SA7) |
| 5304 | eor.l %d2,RPRIME(%a6) |
| 5305 | mov.l (%sp)+,%d2 |
| 5306 | fmul.x %fp0,%fp2 # S(B7+SB8) |
| 5307 | ror.l &1,%d1 |
| 5308 | and.l &0x80000000,%d1 |
| 5309 | mov.l &0x3F800000,POSNEG1(%a6) |
| 5310 | eor.l %d1,POSNEG1(%a6) |
| 5311 | |
| 5312 | fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) |
| 5313 | fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) |
| 5314 | |
| 5315 | fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) |
| 5316 | fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) |
| 5317 | fmov.x %fp0,SPRIME(%a6) |
| 5318 | |
| 5319 | fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) |
| 5320 | eor.l %d1,SPRIME(%a6) |
| 5321 | fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) |
| 5322 | |
| 5323 | fmul.x %fp0,%fp1 # S(A4+...) |
| 5324 | fmul.x %fp0,%fp2 # S(B5+...) |
| 5325 | |
| 5326 | fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) |
| 5327 | fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) |
| 5328 | |
| 5329 | fmul.x %fp0,%fp1 # S(A3+...) |
| 5330 | fmul.x %fp0,%fp2 # S(B4+...) |
| 5331 | |
| 5332 | fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) |
| 5333 | fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) |
| 5334 | |
| 5335 | fmul.x %fp0,%fp1 # S(A2+...) |
| 5336 | fmul.x %fp0,%fp2 # S(B3+...) |
| 5337 | |
| 5338 | fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) |
| 5339 | fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) |
| 5340 | |
| 5341 | fmul.x %fp0,%fp1 # S(A1+...) |
| 5342 | fmul.x %fp2,%fp0 # S(B2+...) |
| 5343 | |
| 5344 | fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) |
| 5345 | fadd.s COSB1(%pc),%fp0 # B1+S(B2...) |
| 5346 | fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) |
| 5347 | |
| 5348 | fmovm.x (%sp)+,&0x20 # restore fp2 |
| 5349 | |
| 5350 | fmov.l %d0,%fpcr |
| 5351 | fadd.x RPRIME(%a6),%fp1 # COS(X) |
| 5352 | bsr sto_cos # store cosine result |
| 5353 | fadd.s POSNEG1(%a6),%fp0 # SIN(X) |
| 5354 | bra t_inx2 |
| 5355 | |
| 5356 | NEVEN: |
| 5357 | #--REGISTERS SAVED SO FAR: FP2. |
| 5358 | fmovm.x &0x04,-(%sp) # save fp2 |
| 5359 | |
| 5360 | fmov.x %fp0,RPRIME(%a6) |
| 5361 | fmul.x %fp0,%fp0 # FP0 IS S = R*R |
| 5362 | |
| 5363 | fmov.d COSB8(%pc),%fp1 # B8 |
| 5364 | fmov.d SINA7(%pc),%fp2 # A7 |
| 5365 | |
| 5366 | fmul.x %fp0,%fp1 # SB8 |
| 5367 | fmov.x %fp0,SPRIME(%a6) |
| 5368 | fmul.x %fp0,%fp2 # SA7 |
| 5369 | |
| 5370 | ror.l &1,%d1 |
| 5371 | and.l &0x80000000,%d1 |
| 5372 | |
| 5373 | fadd.d COSB7(%pc),%fp1 # B7+SB8 |
| 5374 | fadd.d SINA6(%pc),%fp2 # A6+SA7 |
| 5375 | |
| 5376 | eor.l %d1,RPRIME(%a6) |
| 5377 | eor.l %d1,SPRIME(%a6) |
| 5378 | |
| 5379 | fmul.x %fp0,%fp1 # S(B7+SB8) |
| 5380 | |
| 5381 | or.l &0x3F800000,%d1 |
| 5382 | mov.l %d1,POSNEG1(%a6) |
| 5383 | |
| 5384 | fmul.x %fp0,%fp2 # S(A6+SA7) |
| 5385 | |
| 5386 | fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) |
| 5387 | fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) |
| 5388 | |
| 5389 | fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) |
| 5390 | fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) |
| 5391 | |
| 5392 | fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) |
| 5393 | fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) |
| 5394 | |
| 5395 | fmul.x %fp0,%fp1 # S(B5+...) |
| 5396 | fmul.x %fp0,%fp2 # S(A4+...) |
| 5397 | |
| 5398 | fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) |
| 5399 | fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) |
| 5400 | |
| 5401 | fmul.x %fp0,%fp1 # S(B4+...) |
| 5402 | fmul.x %fp0,%fp2 # S(A3+...) |
| 5403 | |
| 5404 | fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) |
| 5405 | fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) |
| 5406 | |
| 5407 | fmul.x %fp0,%fp1 # S(B3+...) |
| 5408 | fmul.x %fp0,%fp2 # S(A2+...) |
| 5409 | |
| 5410 | fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) |
| 5411 | fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) |
| 5412 | |
| 5413 | fmul.x %fp0,%fp1 # S(B2+...) |
| 5414 | fmul.x %fp2,%fp0 # s(a1+...) |
| 5415 | |
| 5416 | |
| 5417 | fadd.s COSB1(%pc),%fp1 # B1+S(B2...) |
| 5418 | fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) |
| 5419 | fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) |
| 5420 | |
| 5421 | fmovm.x (%sp)+,&0x20 # restore fp2 |
| 5422 | |
| 5423 | fmov.l %d0,%fpcr |
| 5424 | fadd.s POSNEG1(%a6),%fp1 # COS(X) |
| 5425 | bsr sto_cos # store cosine result |
| 5426 | fadd.x RPRIME(%a6),%fp0 # SIN(X) |
| 5427 | bra t_inx2 |
| 5428 | |
| 5429 | ################################################ |
| 5430 | |
| 5431 | SCBORS: |
| 5432 | cmp.l %d1,&0x3FFF8000 |
| 5433 | bgt.w SREDUCEX |
| 5434 | |
| 5435 | ################################################ |
| 5436 | |
| 5437 | SCSM: |
| 5438 | # mov.w &0x0000,XDCARE(%a6) |
| 5439 | fmov.s &0x3F800000,%fp1 |
| 5440 | |
| 5441 | fmov.l %d0,%fpcr |
| 5442 | fsub.s &0x00800000,%fp1 |
| 5443 | bsr sto_cos # store cosine result |
| 5444 | fmov.l %fpcr,%d0 # d0 must have fpcr,too |
| 5445 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 5446 | fmov.x X(%a6),%fp0 |
| 5447 | bra t_catch |
| 5448 | |
| 5449 | ############################################## |
| 5450 | |
| 5451 | global ssincosd |
| 5452 | #--SIN AND COS OF X FOR DENORMALIZED X |
| 5453 | ssincosd: |
| 5454 | mov.l %d0,-(%sp) # save d0 |
| 5455 | fmov.s &0x3F800000,%fp1 |
| 5456 | bsr sto_cos # store cosine result |
| 5457 | mov.l (%sp)+,%d0 # restore d0 |
| 5458 | bra t_extdnrm |
| 5459 | |
| 5460 | ############################################ |
| 5461 | |
| 5462 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| 5463 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| 5464 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| 5465 | SREDUCEX: |
| 5466 | fmovm.x &0x3c,-(%sp) # save {fp2-fp5} |
| 5467 | mov.l %d2,-(%sp) # save d2 |
| 5468 | fmov.s &0x00000000,%fp1 # fp1 = 0 |
| 5469 | |
| 5470 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| 5471 | #--there is a danger of unwanted overflow in first LOOP iteration. In this |
| 5472 | #--case, reduce argument by one remainder step to make subsequent reduction |
| 5473 | #--safe. |
| 5474 | cmp.l %d1,&0x7ffeffff # is arg dangerously large? |
| 5475 | bne.b SLOOP # no |
| 5476 | |
| 5477 | # yes; create 2**16383*PI/2 |
| 5478 | mov.w &0x7ffe,FP_SCR0_EX(%a6) |
| 5479 | mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) |
| 5480 | clr.l FP_SCR0_LO(%a6) |
| 5481 | |
| 5482 | # create low half of 2**16383*PI/2 at FP_SCR1 |
| 5483 | mov.w &0x7fdc,FP_SCR1_EX(%a6) |
| 5484 | mov.l &0x85a308d3,FP_SCR1_HI(%a6) |
| 5485 | clr.l FP_SCR1_LO(%a6) |
| 5486 | |
| 5487 | ftest.x %fp0 # test sign of argument |
| 5488 | fblt.w sred_neg |
| 5489 | |
| 5490 | or.b &0x80,FP_SCR0_EX(%a6) # positive arg |
| 5491 | or.b &0x80,FP_SCR1_EX(%a6) |
| 5492 | sred_neg: |
| 5493 | fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact |
| 5494 | fmov.x %fp0,%fp1 # save high result in fp1 |
| 5495 | fadd.x FP_SCR1(%a6),%fp0 # low part of reduction |
| 5496 | fsub.x %fp0,%fp1 # determine low component of result |
| 5497 | fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. |
| 5498 | |
| 5499 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| 5500 | #--integer quotient will be stored in N |
| 5501 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| 5502 | SLOOP: |
| 5503 | fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 |
| 5504 | mov.w INARG(%a6),%d1 |
| 5505 | mov.l %d1,%a1 # save a copy of D0 |
| 5506 | and.l &0x00007FFF,%d1 |
| 5507 | sub.l &0x00003FFF,%d1 # d0 = K |
| 5508 | cmp.l %d1,&28 |
| 5509 | ble.b SLASTLOOP |
| 5510 | SCONTLOOP: |
| 5511 | sub.l &27,%d1 # d0 = L := K-27 |
| 5512 | mov.b &0,ENDFLAG(%a6) |
| 5513 | bra.b SWORK |
| 5514 | SLASTLOOP: |
| 5515 | clr.l %d1 # d0 = L := 0 |
| 5516 | mov.b &1,ENDFLAG(%a6) |
| 5517 | |
| 5518 | SWORK: |
| 5519 | #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| 5520 | #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| 5521 | |
| 5522 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| 5523 | #--2**L * (PIby2_1), 2**L * (PIby2_2) |
| 5524 | |
| 5525 | mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI |
| 5526 | sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) |
| 5527 | |
| 5528 | mov.l &0xA2F9836E,FP_SCR0_HI(%a6) |
| 5529 | mov.l &0x4E44152A,FP_SCR0_LO(%a6) |
| 5530 | mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) |
| 5531 | |
| 5532 | fmov.x %fp0,%fp2 |
| 5533 | fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) |
| 5534 | |
| 5535 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| 5536 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| 5537 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| 5538 | #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| 5539 | #--US THE DESIRED VALUE IN FLOATING POINT. |
| 5540 | mov.l %a1,%d2 |
| 5541 | swap %d2 |
| 5542 | and.l &0x80000000,%d2 |
| 5543 | or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL |
| 5544 | mov.l %d2,TWOTO63(%a6) |
| 5545 | fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED |
| 5546 | fsub.s TWOTO63(%a6),%fp2 # fp2 = N |
| 5547 | # fint.x %fp2 |
| 5548 | |
| 5549 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| 5550 | mov.l %d1,%d2 # d2 = L |
| 5551 | |
| 5552 | add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) |
| 5553 | mov.w %d2,FP_SCR0_EX(%a6) |
| 5554 | mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) |
| 5555 | clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 |
| 5556 | |
| 5557 | add.l &0x00003FDD,%d1 |
| 5558 | mov.w %d1,FP_SCR1_EX(%a6) |
| 5559 | mov.l &0x85A308D3,FP_SCR1_HI(%a6) |
| 5560 | clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 |
| 5561 | |
| 5562 | mov.b ENDFLAG(%a6),%d1 |
| 5563 | |
| 5564 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| 5565 | #--P2 = 2**(L) * Piby2_2 |
| 5566 | fmov.x %fp2,%fp4 # fp4 = N |
| 5567 | fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 |
| 5568 | fmov.x %fp2,%fp5 # fp5 = N |
| 5569 | fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 |
| 5570 | fmov.x %fp4,%fp3 # fp3 = W = N*P1 |
| 5571 | |
| 5572 | #--we want P+p = W+w but |p| <= half ulp of P |
| 5573 | #--Then, we need to compute A := R-P and a := r-p |
| 5574 | fadd.x %fp5,%fp3 # fp3 = P |
| 5575 | fsub.x %fp3,%fp4 # fp4 = W-P |
| 5576 | |
| 5577 | fsub.x %fp3,%fp0 # fp0 = A := R - P |
| 5578 | fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w |
| 5579 | |
| 5580 | fmov.x %fp0,%fp3 # fp3 = A |
| 5581 | fsub.x %fp4,%fp1 # fp1 = a := r - p |
| 5582 | |
| 5583 | #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| 5584 | #--|r| <= half ulp of R. |
| 5585 | fadd.x %fp1,%fp0 # fp0 = R := A+a |
| 5586 | #--No need to calculate r if this is the last loop |
| 5587 | cmp.b %d1,&0 |
| 5588 | bgt.w SRESTORE |
| 5589 | |
| 5590 | #--Need to calculate r |
| 5591 | fsub.x %fp0,%fp3 # fp3 = A-R |
| 5592 | fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a |
| 5593 | bra.w SLOOP |
| 5594 | |
| 5595 | SRESTORE: |
| 5596 | fmov.l %fp2,INT(%a6) |
| 5597 | mov.l (%sp)+,%d2 # restore d2 |
| 5598 | fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} |
| 5599 | |
| 5600 | mov.l ADJN(%a6),%d1 |
| 5601 | cmp.l %d1,&4 |
| 5602 | |
| 5603 | blt.w SINCONT |
| 5604 | bra.w SCCONT |
| 5605 | |
| 5606 | ######################################################################### |
| 5607 | # stan(): computes the tangent of a normalized input # |
| 5608 | # stand(): computes the tangent of a denormalized input # |
| 5609 | # # |
| 5610 | # INPUT *************************************************************** # |
| 5611 | # a0 = pointer to extended precision input # |
| 5612 | # d0 = round precision,mode # |
| 5613 | # # |
| 5614 | # OUTPUT ************************************************************** # |
| 5615 | # fp0 = tan(X) # |
| 5616 | # # |
| 5617 | # ACCURACY and MONOTONICITY ******************************************* # |
| 5618 | # The returned result is within 3 ulp in 64 significant bit, i.e. # |
| 5619 | # within 0.5001 ulp to 53 bits if the result is subsequently # |
| 5620 | # rounded to double precision. The result is provably monotonic # |
| 5621 | # in double precision. # |
| 5622 | # # |
| 5623 | # ALGORITHM *********************************************************** # |
| 5624 | # # |
| 5625 | # 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # |
| 5626 | # # |
| 5627 | # 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # |
| 5628 | # k = N mod 2, so in particular, k = 0 or 1. # |
| 5629 | # # |
| 5630 | # 3. If k is odd, go to 5. # |
| 5631 | # # |
| 5632 | # 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # |
| 5633 | # rational function U/V where # |
| 5634 | # U = r + r*s*(P1 + s*(P2 + s*P3)), and # |
| 5635 | # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # |
| 5636 | # Exit. # |
| 5637 | # # |
| 5638 | # 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # |
| 5639 | # a rational function U/V where # |
| 5640 | # U = r + r*s*(P1 + s*(P2 + s*P3)), and # |
| 5641 | # V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # |
| 5642 | # -Cot(r) = -V/U. Exit. # |
| 5643 | # # |
| 5644 | # 6. If |X| > 1, go to 8. # |
| 5645 | # # |
| 5646 | # 7. (|X|<2**(-40)) Tan(X) = X. Exit. # |
| 5647 | # # |
| 5648 | # 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # |
| 5649 | # to 2. # |
| 5650 | # # |
| 5651 | ######################################################################### |
| 5652 | |
| 5653 | TANQ4: |
| 5654 | long 0x3EA0B759,0xF50F8688 |
| 5655 | TANP3: |
| 5656 | long 0xBEF2BAA5,0xA8924F04 |
| 5657 | |
| 5658 | TANQ3: |
| 5659 | long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 |
| 5660 | |
| 5661 | TANP2: |
| 5662 | long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 |
| 5663 | |
| 5664 | TANQ2: |
| 5665 | long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 |
| 5666 | |
| 5667 | TANP1: |
| 5668 | long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 |
| 5669 | |
| 5670 | TANQ1: |
| 5671 | long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 |
| 5672 | |
| 5673 | INVTWOPI: |
| 5674 | long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 |
| 5675 | |
| 5676 | TWOPI1: |
| 5677 | long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 |
| 5678 | TWOPI2: |
| 5679 | long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 |
| 5680 | |
| 5681 | #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING |
| 5682 | #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT |
| 5683 | #--MOST 69 BITS LONG. |
| 5684 | # global PITBL |
| 5685 | PITBL: |
| 5686 | long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 |
| 5687 | long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 |
| 5688 | long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 |
| 5689 | long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 |
| 5690 | long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 |
| 5691 | long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 |
| 5692 | long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 |
| 5693 | long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 |
| 5694 | long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 |
| 5695 | long 0xC0040000,0x90836524,0x88034B96,0x20B00000 |
| 5696 | long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 |
| 5697 | long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 |
| 5698 | long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 |
| 5699 | long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 |
| 5700 | long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 |
| 5701 | long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 |
| 5702 | long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 |
| 5703 | long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 |
| 5704 | long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 |
| 5705 | long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 |
| 5706 | long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 |
| 5707 | long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 |
| 5708 | long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 |
| 5709 | long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 |
| 5710 | long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 |
| 5711 | long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 |
| 5712 | long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 |
| 5713 | long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 |
| 5714 | long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 |
| 5715 | long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 |
| 5716 | long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 |
| 5717 | long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 |
| 5718 | long 0x00000000,0x00000000,0x00000000,0x00000000 |
| 5719 | long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 |
| 5720 | long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 |
| 5721 | long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 |
| 5722 | long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 |
| 5723 | long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 |
| 5724 | long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 |
| 5725 | long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 |
| 5726 | long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 |
| 5727 | long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 |
| 5728 | long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 |
| 5729 | long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 |
| 5730 | long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 |
| 5731 | long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 |
| 5732 | long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 |
| 5733 | long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 |
| 5734 | long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 |
| 5735 | long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 |
| 5736 | long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 |
| 5737 | long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 |
| 5738 | long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 |
| 5739 | long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 |
| 5740 | long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 |
| 5741 | long 0x40040000,0x90836524,0x88034B96,0xA0B00000 |
| 5742 | long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 |
| 5743 | long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 |
| 5744 | long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 |
| 5745 | long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 |
| 5746 | long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 |
| 5747 | long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 |
| 5748 | long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 |
| 5749 | long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 |
| 5750 | long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 |
| 5751 | |
| 5752 | set INARG,FP_SCR0 |
| 5753 | |
| 5754 | set TWOTO63,L_SCR1 |
| 5755 | set INT,L_SCR1 |
| 5756 | set ENDFLAG,L_SCR2 |
| 5757 | |
| 5758 | global stan |
| 5759 | stan: |
| 5760 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 5761 | |
| 5762 | mov.l (%a0),%d1 |
| 5763 | mov.w 4(%a0),%d1 |
| 5764 | and.l &0x7FFFFFFF,%d1 |
| 5765 | |
| 5766 | cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? |
| 5767 | bge.b TANOK1 |
| 5768 | bra.w TANSM |
| 5769 | TANOK1: |
| 5770 | cmp.l %d1,&0x4004BC7E # |X| < 15 PI? |
| 5771 | blt.b TANMAIN |
| 5772 | bra.w REDUCEX |
| 5773 | |
| 5774 | TANMAIN: |
| 5775 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. |
| 5776 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. |
| 5777 | fmov.x %fp0,%fp1 |
| 5778 | fmul.d TWOBYPI(%pc),%fp1 # X*2/PI |
| 5779 | |
| 5780 | lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 |
| 5781 | |
| 5782 | fmov.l %fp1,%d1 # CONVERT TO INTEGER |
| 5783 | |
| 5784 | asl.l &4,%d1 |
| 5785 | add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 |
| 5786 | |
| 5787 | fsub.x (%a1)+,%fp0 # X-Y1 |
| 5788 | |
| 5789 | fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 |
| 5790 | |
| 5791 | ror.l &5,%d1 |
| 5792 | and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 |
| 5793 | |
| 5794 | TANCONT: |
| 5795 | fmovm.x &0x0c,-(%sp) # save fp2,fp3 |
| 5796 | |
| 5797 | cmp.l %d1,&0 |
| 5798 | blt.w NODD |
| 5799 | |
| 5800 | fmov.x %fp0,%fp1 |
| 5801 | fmul.x %fp1,%fp1 # S = R*R |
| 5802 | |
| 5803 | fmov.d TANQ4(%pc),%fp3 |
| 5804 | fmov.d TANP3(%pc),%fp2 |
| 5805 | |
| 5806 | fmul.x %fp1,%fp3 # SQ4 |
| 5807 | fmul.x %fp1,%fp2 # SP3 |
| 5808 | |
| 5809 | fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 |
| 5810 | fadd.x TANP2(%pc),%fp2 # P2+SP3 |
| 5811 | |
| 5812 | fmul.x %fp1,%fp3 # S(Q3+SQ4) |
| 5813 | fmul.x %fp1,%fp2 # S(P2+SP3) |
| 5814 | |
| 5815 | fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) |
| 5816 | fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) |
| 5817 | |
| 5818 | fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) |
| 5819 | fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) |
| 5820 | |
| 5821 | fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) |
| 5822 | fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) |
| 5823 | |
| 5824 | fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) |
| 5825 | |
| 5826 | fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) |
| 5827 | |
| 5828 | fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) |
| 5829 | |
| 5830 | fmovm.x (%sp)+,&0x30 # restore fp2,fp3 |
| 5831 | |
| 5832 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5833 | fdiv.x %fp1,%fp0 # last inst - possible exception set |
| 5834 | bra t_inx2 |
| 5835 | |
| 5836 | NODD: |
| 5837 | fmov.x %fp0,%fp1 |
| 5838 | fmul.x %fp0,%fp0 # S = R*R |
| 5839 | |
| 5840 | fmov.d TANQ4(%pc),%fp3 |
| 5841 | fmov.d TANP3(%pc),%fp2 |
| 5842 | |
| 5843 | fmul.x %fp0,%fp3 # SQ4 |
| 5844 | fmul.x %fp0,%fp2 # SP3 |
| 5845 | |
| 5846 | fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 |
| 5847 | fadd.x TANP2(%pc),%fp2 # P2+SP3 |
| 5848 | |
| 5849 | fmul.x %fp0,%fp3 # S(Q3+SQ4) |
| 5850 | fmul.x %fp0,%fp2 # S(P2+SP3) |
| 5851 | |
| 5852 | fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) |
| 5853 | fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) |
| 5854 | |
| 5855 | fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) |
| 5856 | fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) |
| 5857 | |
| 5858 | fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) |
| 5859 | fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) |
| 5860 | |
| 5861 | fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) |
| 5862 | |
| 5863 | fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) |
| 5864 | fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) |
| 5865 | |
| 5866 | fmovm.x (%sp)+,&0x30 # restore fp2,fp3 |
| 5867 | |
| 5868 | fmov.x %fp1,-(%sp) |
| 5869 | eor.l &0x80000000,(%sp) |
| 5870 | |
| 5871 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5872 | fdiv.x (%sp)+,%fp0 # last inst - possible exception set |
| 5873 | bra t_inx2 |
| 5874 | |
| 5875 | TANBORS: |
| 5876 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. |
| 5877 | #--IF |X| < 2**(-40), RETURN X OR 1. |
| 5878 | cmp.l %d1,&0x3FFF8000 |
| 5879 | bgt.b REDUCEX |
| 5880 | |
| 5881 | TANSM: |
| 5882 | fmov.x %fp0,-(%sp) |
| 5883 | fmov.l %d0,%fpcr # restore users round mode,prec |
| 5884 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 5885 | fmov.x (%sp)+,%fp0 # last inst - posibble exception set |
| 5886 | bra t_catch |
| 5887 | |
| 5888 | global stand |
| 5889 | #--TAN(X) = X FOR DENORMALIZED X |
| 5890 | stand: |
| 5891 | bra t_extdnrm |
| 5892 | |
| 5893 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. |
| 5894 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING |
| 5895 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. |
| 5896 | REDUCEX: |
| 5897 | fmovm.x &0x3c,-(%sp) # save {fp2-fp5} |
| 5898 | mov.l %d2,-(%sp) # save d2 |
| 5899 | fmov.s &0x00000000,%fp1 # fp1 = 0 |
| 5900 | |
| 5901 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that |
| 5902 | #--there is a danger of unwanted overflow in first LOOP iteration. In this |
| 5903 | #--case, reduce argument by one remainder step to make subsequent reduction |
| 5904 | #--safe. |
| 5905 | cmp.l %d1,&0x7ffeffff # is arg dangerously large? |
| 5906 | bne.b LOOP # no |
| 5907 | |
| 5908 | # yes; create 2**16383*PI/2 |
| 5909 | mov.w &0x7ffe,FP_SCR0_EX(%a6) |
| 5910 | mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) |
| 5911 | clr.l FP_SCR0_LO(%a6) |
| 5912 | |
| 5913 | # create low half of 2**16383*PI/2 at FP_SCR1 |
| 5914 | mov.w &0x7fdc,FP_SCR1_EX(%a6) |
| 5915 | mov.l &0x85a308d3,FP_SCR1_HI(%a6) |
| 5916 | clr.l FP_SCR1_LO(%a6) |
| 5917 | |
| 5918 | ftest.x %fp0 # test sign of argument |
| 5919 | fblt.w red_neg |
| 5920 | |
| 5921 | or.b &0x80,FP_SCR0_EX(%a6) # positive arg |
| 5922 | or.b &0x80,FP_SCR1_EX(%a6) |
| 5923 | red_neg: |
| 5924 | fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact |
| 5925 | fmov.x %fp0,%fp1 # save high result in fp1 |
| 5926 | fadd.x FP_SCR1(%a6),%fp0 # low part of reduction |
| 5927 | fsub.x %fp0,%fp1 # determine low component of result |
| 5928 | fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. |
| 5929 | |
| 5930 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. |
| 5931 | #--integer quotient will be stored in N |
| 5932 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) |
| 5933 | LOOP: |
| 5934 | fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 |
| 5935 | mov.w INARG(%a6),%d1 |
| 5936 | mov.l %d1,%a1 # save a copy of D0 |
| 5937 | and.l &0x00007FFF,%d1 |
| 5938 | sub.l &0x00003FFF,%d1 # d0 = K |
| 5939 | cmp.l %d1,&28 |
| 5940 | ble.b LASTLOOP |
| 5941 | CONTLOOP: |
| 5942 | sub.l &27,%d1 # d0 = L := K-27 |
| 5943 | mov.b &0,ENDFLAG(%a6) |
| 5944 | bra.b WORK |
| 5945 | LASTLOOP: |
| 5946 | clr.l %d1 # d0 = L := 0 |
| 5947 | mov.b &1,ENDFLAG(%a6) |
| 5948 | |
| 5949 | WORK: |
| 5950 | #--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN |
| 5951 | #--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. |
| 5952 | |
| 5953 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), |
| 5954 | #--2**L * (PIby2_1), 2**L * (PIby2_2) |
| 5955 | |
| 5956 | mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI |
| 5957 | sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) |
| 5958 | |
| 5959 | mov.l &0xA2F9836E,FP_SCR0_HI(%a6) |
| 5960 | mov.l &0x4E44152A,FP_SCR0_LO(%a6) |
| 5961 | mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) |
| 5962 | |
| 5963 | fmov.x %fp0,%fp2 |
| 5964 | fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) |
| 5965 | |
| 5966 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN |
| 5967 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N |
| 5968 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT |
| 5969 | #--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE |
| 5970 | #--US THE DESIRED VALUE IN FLOATING POINT. |
| 5971 | mov.l %a1,%d2 |
| 5972 | swap %d2 |
| 5973 | and.l &0x80000000,%d2 |
| 5974 | or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL |
| 5975 | mov.l %d2,TWOTO63(%a6) |
| 5976 | fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED |
| 5977 | fsub.s TWOTO63(%a6),%fp2 # fp2 = N |
| 5978 | # fintrz.x %fp2,%fp2 |
| 5979 | |
| 5980 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 |
| 5981 | mov.l %d1,%d2 # d2 = L |
| 5982 | |
| 5983 | add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) |
| 5984 | mov.w %d2,FP_SCR0_EX(%a6) |
| 5985 | mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) |
| 5986 | clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 |
| 5987 | |
| 5988 | add.l &0x00003FDD,%d1 |
| 5989 | mov.w %d1,FP_SCR1_EX(%a6) |
| 5990 | mov.l &0x85A308D3,FP_SCR1_HI(%a6) |
| 5991 | clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 |
| 5992 | |
| 5993 | mov.b ENDFLAG(%a6),%d1 |
| 5994 | |
| 5995 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and |
| 5996 | #--P2 = 2**(L) * Piby2_2 |
| 5997 | fmov.x %fp2,%fp4 # fp4 = N |
| 5998 | fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 |
| 5999 | fmov.x %fp2,%fp5 # fp5 = N |
| 6000 | fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 |
| 6001 | fmov.x %fp4,%fp3 # fp3 = W = N*P1 |
| 6002 | |
| 6003 | #--we want P+p = W+w but |p| <= half ulp of P |
| 6004 | #--Then, we need to compute A := R-P and a := r-p |
| 6005 | fadd.x %fp5,%fp3 # fp3 = P |
| 6006 | fsub.x %fp3,%fp4 # fp4 = W-P |
| 6007 | |
| 6008 | fsub.x %fp3,%fp0 # fp0 = A := R - P |
| 6009 | fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w |
| 6010 | |
| 6011 | fmov.x %fp0,%fp3 # fp3 = A |
| 6012 | fsub.x %fp4,%fp1 # fp1 = a := r - p |
| 6013 | |
| 6014 | #--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but |
| 6015 | #--|r| <= half ulp of R. |
| 6016 | fadd.x %fp1,%fp0 # fp0 = R := A+a |
| 6017 | #--No need to calculate r if this is the last loop |
| 6018 | cmp.b %d1,&0 |
| 6019 | bgt.w RESTORE |
| 6020 | |
| 6021 | #--Need to calculate r |
| 6022 | fsub.x %fp0,%fp3 # fp3 = A-R |
| 6023 | fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a |
| 6024 | bra.w LOOP |
| 6025 | |
| 6026 | RESTORE: |
| 6027 | fmov.l %fp2,INT(%a6) |
| 6028 | mov.l (%sp)+,%d2 # restore d2 |
| 6029 | fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} |
| 6030 | |
| 6031 | mov.l INT(%a6),%d1 |
| 6032 | ror.l &1,%d1 |
| 6033 | |
| 6034 | bra.w TANCONT |
| 6035 | |
| 6036 | ######################################################################### |
| 6037 | # satan(): computes the arctangent of a normalized number # |
| 6038 | # satand(): computes the arctangent of a denormalized number # |
| 6039 | # # |
| 6040 | # INPUT *************************************************************** # |
| 6041 | # a0 = pointer to extended precision input # |
| 6042 | # d0 = round precision,mode # |
| 6043 | # # |
| 6044 | # OUTPUT ************************************************************** # |
| 6045 | # fp0 = arctan(X) # |
| 6046 | # # |
| 6047 | # ACCURACY and MONOTONICITY ******************************************* # |
| 6048 | # The returned result is within 2 ulps in 64 significant bit, # |
| 6049 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 6050 | # rounded to double precision. The result is provably monotonic # |
| 6051 | # in double precision. # |
| 6052 | # # |
| 6053 | # ALGORITHM *********************************************************** # |
| 6054 | # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # |
| 6055 | # # |
| 6056 | # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # |
| 6057 | # Note that k = -4, -3,..., or 3. # |
| 6058 | # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # |
| 6059 | # significant bits of X with a bit-1 attached at the 6-th # |
| 6060 | # bit position. Define u to be u = (X-F) / (1 + X*F). # |
| 6061 | # # |
| 6062 | # Step 3. Approximate arctan(u) by a polynomial poly. # |
| 6063 | # # |
| 6064 | # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # |
| 6065 | # table of values calculated beforehand. Exit. # |
| 6066 | # # |
| 6067 | # Step 5. If |X| >= 16, go to Step 7. # |
| 6068 | # # |
| 6069 | # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # |
| 6070 | # # |
| 6071 | # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # |
| 6072 | # polynomial in X'. # |
| 6073 | # Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # |
| 6074 | # # |
| 6075 | ######################################################################### |
| 6076 | |
| 6077 | ATANA3: long 0xBFF6687E,0x314987D8 |
| 6078 | ATANA2: long 0x4002AC69,0x34A26DB3 |
| 6079 | ATANA1: long 0xBFC2476F,0x4E1DA28E |
| 6080 | |
| 6081 | ATANB6: long 0x3FB34444,0x7F876989 |
| 6082 | ATANB5: long 0xBFB744EE,0x7FAF45DB |
| 6083 | ATANB4: long 0x3FBC71C6,0x46940220 |
| 6084 | ATANB3: long 0xBFC24924,0x921872F9 |
| 6085 | ATANB2: long 0x3FC99999,0x99998FA9 |
| 6086 | ATANB1: long 0xBFD55555,0x55555555 |
| 6087 | |
| 6088 | ATANC5: long 0xBFB70BF3,0x98539E6A |
| 6089 | ATANC4: long 0x3FBC7187,0x962D1D7D |
| 6090 | ATANC3: long 0xBFC24924,0x827107B8 |
| 6091 | ATANC2: long 0x3FC99999,0x9996263E |
| 6092 | ATANC1: long 0xBFD55555,0x55555536 |
| 6093 | |
| 6094 | PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| 6095 | NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| 6096 | |
| 6097 | PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 |
| 6098 | NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 |
| 6099 | |
| 6100 | ATANTBL: |
| 6101 | long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 |
| 6102 | long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 |
| 6103 | long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 |
| 6104 | long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 |
| 6105 | long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 |
| 6106 | long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 |
| 6107 | long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 |
| 6108 | long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 |
| 6109 | long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 |
| 6110 | long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 |
| 6111 | long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 |
| 6112 | long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 |
| 6113 | long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 |
| 6114 | long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 |
| 6115 | long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 |
| 6116 | long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 |
| 6117 | long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 |
| 6118 | long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 |
| 6119 | long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 |
| 6120 | long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 |
| 6121 | long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 |
| 6122 | long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 |
| 6123 | long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 |
| 6124 | long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 |
| 6125 | long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 |
| 6126 | long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 |
| 6127 | long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 |
| 6128 | long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 |
| 6129 | long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 |
| 6130 | long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 |
| 6131 | long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 |
| 6132 | long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 |
| 6133 | long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 |
| 6134 | long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 |
| 6135 | long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 |
| 6136 | long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 |
| 6137 | long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 |
| 6138 | long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 |
| 6139 | long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 |
| 6140 | long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 |
| 6141 | long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 |
| 6142 | long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 |
| 6143 | long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 |
| 6144 | long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 |
| 6145 | long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 |
| 6146 | long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 |
| 6147 | long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 |
| 6148 | long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 |
| 6149 | long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 |
| 6150 | long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 |
| 6151 | long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 |
| 6152 | long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 |
| 6153 | long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 |
| 6154 | long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 |
| 6155 | long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 |
| 6156 | long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 |
| 6157 | long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 |
| 6158 | long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 |
| 6159 | long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 |
| 6160 | long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 |
| 6161 | long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 |
| 6162 | long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 |
| 6163 | long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 |
| 6164 | long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 |
| 6165 | long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 |
| 6166 | long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 |
| 6167 | long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 |
| 6168 | long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 |
| 6169 | long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 |
| 6170 | long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 |
| 6171 | long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 |
| 6172 | long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 |
| 6173 | long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 |
| 6174 | long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 |
| 6175 | long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 |
| 6176 | long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 |
| 6177 | long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 |
| 6178 | long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 |
| 6179 | long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 |
| 6180 | long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 |
| 6181 | long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 |
| 6182 | long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 |
| 6183 | long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 |
| 6184 | long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 |
| 6185 | long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 |
| 6186 | long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 |
| 6187 | long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 |
| 6188 | long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 |
| 6189 | long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 |
| 6190 | long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 |
| 6191 | long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 |
| 6192 | long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 |
| 6193 | long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 |
| 6194 | long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 |
| 6195 | long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 |
| 6196 | long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 |
| 6197 | long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 |
| 6198 | long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 |
| 6199 | long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 |
| 6200 | long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 |
| 6201 | long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 |
| 6202 | long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 |
| 6203 | long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 |
| 6204 | long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 |
| 6205 | long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 |
| 6206 | long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 |
| 6207 | long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 |
| 6208 | long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 |
| 6209 | long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 |
| 6210 | long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 |
| 6211 | long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 |
| 6212 | long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 |
| 6213 | long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 |
| 6214 | long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 |
| 6215 | long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 |
| 6216 | long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 |
| 6217 | long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 |
| 6218 | long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 |
| 6219 | long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 |
| 6220 | long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 |
| 6221 | long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 |
| 6222 | long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 |
| 6223 | long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 |
| 6224 | long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 |
| 6225 | long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 |
| 6226 | long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 |
| 6227 | long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 |
| 6228 | long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 |
| 6229 | |
| 6230 | set X,FP_SCR0 |
| 6231 | set XDCARE,X+2 |
| 6232 | set XFRAC,X+4 |
| 6233 | set XFRACLO,X+8 |
| 6234 | |
| 6235 | set ATANF,FP_SCR1 |
| 6236 | set ATANFHI,ATANF+4 |
| 6237 | set ATANFLO,ATANF+8 |
| 6238 | |
| 6239 | global satan |
| 6240 | #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| 6241 | satan: |
| 6242 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 6243 | |
| 6244 | mov.l (%a0),%d1 |
| 6245 | mov.w 4(%a0),%d1 |
| 6246 | fmov.x %fp0,X(%a6) |
| 6247 | and.l &0x7FFFFFFF,%d1 |
| 6248 | |
| 6249 | cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? |
| 6250 | bge.b ATANOK1 |
| 6251 | bra.w ATANSM |
| 6252 | |
| 6253 | ATANOK1: |
| 6254 | cmp.l %d1,&0x4002FFFF # |X| < 16 ? |
| 6255 | ble.b ATANMAIN |
| 6256 | bra.w ATANBIG |
| 6257 | |
| 6258 | #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE |
| 6259 | #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). |
| 6260 | #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN |
| 6261 | #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE |
| 6262 | #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS |
| 6263 | #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR |
| 6264 | #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO |
| 6265 | #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE |
| 6266 | #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL |
| 6267 | #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE |
| 6268 | #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION |
| 6269 | #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION |
| 6270 | #--WILL INVOLVE A VERY LONG POLYNOMIAL. |
| 6271 | |
| 6272 | #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS |
| 6273 | #--WE CHOSE F TO BE +-2^K * 1.BBBB1 |
| 6274 | #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE |
| 6275 | #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE |
| 6276 | #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS |
| 6277 | #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). |
| 6278 | |
| 6279 | ATANMAIN: |
| 6280 | |
| 6281 | and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS |
| 6282 | or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 |
| 6283 | mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F |
| 6284 | |
| 6285 | fmov.x %fp0,%fp1 # FP1 IS X |
| 6286 | fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 |
| 6287 | fsub.x X(%a6),%fp0 # FP0 IS X-F |
| 6288 | fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F |
| 6289 | fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) |
| 6290 | |
| 6291 | #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) |
| 6292 | #--CREATE ATAN(F) AND STORE IT IN ATANF, AND |
| 6293 | #--SAVE REGISTERS FP2. |
| 6294 | |
| 6295 | mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY |
| 6296 | mov.l %d1,%d2 # THE EXP AND 16 BITS OF X |
| 6297 | and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION |
| 6298 | and.l &0x7FFF0000,%d2 # EXPONENT OF F |
| 6299 | sub.l &0x3FFB0000,%d2 # K+4 |
| 6300 | asr.l &1,%d2 |
| 6301 | add.l %d2,%d1 # THE 7 BITS IDENTIFYING F |
| 6302 | asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) |
| 6303 | lea ATANTBL(%pc),%a1 |
| 6304 | add.l %d1,%a1 # ADDRESS OF ATAN(|F|) |
| 6305 | mov.l (%a1)+,ATANF(%a6) |
| 6306 | mov.l (%a1)+,ATANFHI(%a6) |
| 6307 | mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) |
| 6308 | mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN |
| 6309 | and.l &0x80000000,%d1 # SIGN(F) |
| 6310 | or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) |
| 6311 | mov.l (%sp)+,%d2 # RESTORE d2 |
| 6312 | |
| 6313 | #--THAT'S ALL I HAVE TO DO FOR NOW, |
| 6314 | #--BUT ALAS, THE DIVIDE IS STILL CRANKING! |
| 6315 | |
| 6316 | #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS |
| 6317 | #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U |
| 6318 | #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. |
| 6319 | #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) |
| 6320 | #--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. |
| 6321 | #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT |
| 6322 | #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED |
| 6323 | |
| 6324 | fmovm.x &0x04,-(%sp) # save fp2 |
| 6325 | |
| 6326 | fmov.x %fp0,%fp1 |
| 6327 | fmul.x %fp1,%fp1 |
| 6328 | fmov.d ATANA3(%pc),%fp2 |
| 6329 | fadd.x %fp1,%fp2 # A3+V |
| 6330 | fmul.x %fp1,%fp2 # V*(A3+V) |
| 6331 | fmul.x %fp0,%fp1 # U*V |
| 6332 | fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) |
| 6333 | fmul.d ATANA1(%pc),%fp1 # A1*U*V |
| 6334 | fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) |
| 6335 | fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED |
| 6336 | |
| 6337 | fmovm.x (%sp)+,&0x20 # restore fp2 |
| 6338 | |
| 6339 | fmov.l %d0,%fpcr # restore users rnd mode,prec |
| 6340 | fadd.x ATANF(%a6),%fp0 # ATAN(X) |
| 6341 | bra t_inx2 |
| 6342 | |
| 6343 | ATANBORS: |
| 6344 | #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. |
| 6345 | #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. |
| 6346 | cmp.l %d1,&0x3FFF8000 |
| 6347 | bgt.w ATANBIG # I.E. |X| >= 16 |
| 6348 | |
| 6349 | ATANSM: |
| 6350 | #--|X| <= 1/16 |
| 6351 | #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE |
| 6352 | #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) |
| 6353 | #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) |
| 6354 | #--WHERE Y = X*X, AND Z = Y*Y. |
| 6355 | |
| 6356 | cmp.l %d1,&0x3FD78000 |
| 6357 | blt.w ATANTINY |
| 6358 | |
| 6359 | #--COMPUTE POLYNOMIAL |
| 6360 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| 6361 | |
| 6362 | fmul.x %fp0,%fp0 # FPO IS Y = X*X |
| 6363 | |
| 6364 | fmov.x %fp0,%fp1 |
| 6365 | fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y |
| 6366 | |
| 6367 | fmov.d ATANB6(%pc),%fp2 |
| 6368 | fmov.d ATANB5(%pc),%fp3 |
| 6369 | |
| 6370 | fmul.x %fp1,%fp2 # Z*B6 |
| 6371 | fmul.x %fp1,%fp3 # Z*B5 |
| 6372 | |
| 6373 | fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 |
| 6374 | fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 |
| 6375 | |
| 6376 | fmul.x %fp1,%fp2 # Z*(B4+Z*B6) |
| 6377 | fmul.x %fp3,%fp1 # Z*(B3+Z*B5) |
| 6378 | |
| 6379 | fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) |
| 6380 | fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) |
| 6381 | |
| 6382 | fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) |
| 6383 | fmul.x X(%a6),%fp0 # X*Y |
| 6384 | |
| 6385 | fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] |
| 6386 | |
| 6387 | fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) |
| 6388 | |
| 6389 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| 6390 | |
| 6391 | fmov.l %d0,%fpcr # restore users rnd mode,prec |
| 6392 | fadd.x X(%a6),%fp0 |
| 6393 | bra t_inx2 |
| 6394 | |
| 6395 | ATANTINY: |
| 6396 | #--|X| < 2^(-40), ATAN(X) = X |
| 6397 | |
| 6398 | fmov.l %d0,%fpcr # restore users rnd mode,prec |
| 6399 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 6400 | fmov.x X(%a6),%fp0 # last inst - possible exception set |
| 6401 | |
| 6402 | bra t_catch |
| 6403 | |
| 6404 | ATANBIG: |
| 6405 | #--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, |
| 6406 | #--RETURN SIGN(X)*PI/2 + ATAN(-1/X). |
| 6407 | cmp.l %d1,&0x40638000 |
| 6408 | bgt.w ATANHUGE |
| 6409 | |
| 6410 | #--APPROXIMATE ATAN(-1/X) BY |
| 6411 | #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' |
| 6412 | #--THIS CAN BE RE-WRITTEN AS |
| 6413 | #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. |
| 6414 | |
| 6415 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| 6416 | |
| 6417 | fmov.s &0xBF800000,%fp1 # LOAD -1 |
| 6418 | fdiv.x %fp0,%fp1 # FP1 IS -1/X |
| 6419 | |
| 6420 | #--DIVIDE IS STILL CRANKING |
| 6421 | |
| 6422 | fmov.x %fp1,%fp0 # FP0 IS X' |
| 6423 | fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' |
| 6424 | fmov.x %fp1,X(%a6) # X IS REALLY X' |
| 6425 | |
| 6426 | fmov.x %fp0,%fp1 |
| 6427 | fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y |
| 6428 | |
| 6429 | fmov.d ATANC5(%pc),%fp3 |
| 6430 | fmov.d ATANC4(%pc),%fp2 |
| 6431 | |
| 6432 | fmul.x %fp1,%fp3 # Z*C5 |
| 6433 | fmul.x %fp1,%fp2 # Z*B4 |
| 6434 | |
| 6435 | fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 |
| 6436 | fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 |
| 6437 | |
| 6438 | fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED |
| 6439 | fmul.x %fp0,%fp2 # Y*(C2+Z*C4) |
| 6440 | |
| 6441 | fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) |
| 6442 | fmul.x X(%a6),%fp0 # X'*Y |
| 6443 | |
| 6444 | fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] |
| 6445 | |
| 6446 | fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] |
| 6447 | # ... +[Y*(B2+Z*(B4+Z*B6))]) |
| 6448 | fadd.x X(%a6),%fp0 |
| 6449 | |
| 6450 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| 6451 | |
| 6452 | fmov.l %d0,%fpcr # restore users rnd mode,prec |
| 6453 | tst.b (%a0) |
| 6454 | bpl.b pos_big |
| 6455 | |
| 6456 | neg_big: |
| 6457 | fadd.x NPIBY2(%pc),%fp0 |
| 6458 | bra t_minx2 |
| 6459 | |
| 6460 | pos_big: |
| 6461 | fadd.x PPIBY2(%pc),%fp0 |
| 6462 | bra t_pinx2 |
| 6463 | |
| 6464 | ATANHUGE: |
| 6465 | #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY |
| 6466 | tst.b (%a0) |
| 6467 | bpl.b pos_huge |
| 6468 | |
| 6469 | neg_huge: |
| 6470 | fmov.x NPIBY2(%pc),%fp0 |
| 6471 | fmov.l %d0,%fpcr |
| 6472 | fadd.x PTINY(%pc),%fp0 |
| 6473 | bra t_minx2 |
| 6474 | |
| 6475 | pos_huge: |
| 6476 | fmov.x PPIBY2(%pc),%fp0 |
| 6477 | fmov.l %d0,%fpcr |
| 6478 | fadd.x NTINY(%pc),%fp0 |
| 6479 | bra t_pinx2 |
| 6480 | |
| 6481 | global satand |
| 6482 | #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT |
| 6483 | satand: |
| 6484 | bra t_extdnrm |
| 6485 | |
| 6486 | ######################################################################### |
| 6487 | # sasin(): computes the inverse sine of a normalized input # |
| 6488 | # sasind(): computes the inverse sine of a denormalized input # |
| 6489 | # # |
| 6490 | # INPUT *************************************************************** # |
| 6491 | # a0 = pointer to extended precision input # |
| 6492 | # d0 = round precision,mode # |
| 6493 | # # |
| 6494 | # OUTPUT ************************************************************** # |
| 6495 | # fp0 = arcsin(X) # |
| 6496 | # # |
| 6497 | # ACCURACY and MONOTONICITY ******************************************* # |
| 6498 | # The returned result is within 3 ulps in 64 significant bit, # |
| 6499 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 6500 | # rounded to double precision. The result is provably monotonic # |
| 6501 | # in double precision. # |
| 6502 | # # |
| 6503 | # ALGORITHM *********************************************************** # |
| 6504 | # # |
| 6505 | # ASIN # |
| 6506 | # 1. If |X| >= 1, go to 3. # |
| 6507 | # # |
| 6508 | # 2. (|X| < 1) Calculate asin(X) by # |
| 6509 | # z := sqrt( [1-X][1+X] ) # |
| 6510 | # asin(X) = atan( x / z ). # |
| 6511 | # Exit. # |
| 6512 | # # |
| 6513 | # 3. If |X| > 1, go to 5. # |
| 6514 | # # |
| 6515 | # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# |
| 6516 | # # |
| 6517 | # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| 6518 | # Exit. # |
| 6519 | # # |
| 6520 | ######################################################################### |
| 6521 | |
| 6522 | global sasin |
| 6523 | sasin: |
| 6524 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 6525 | |
| 6526 | mov.l (%a0),%d1 |
| 6527 | mov.w 4(%a0),%d1 |
| 6528 | and.l &0x7FFFFFFF,%d1 |
| 6529 | cmp.l %d1,&0x3FFF8000 |
| 6530 | bge.b ASINBIG |
| 6531 | |
| 6532 | # This catch is added here for the '060 QSP. Originally, the call to |
| 6533 | # satan() would handle this case by causing the exception which would |
| 6534 | # not be caught until gen_except(). Now, with the exceptions being |
| 6535 | # detected inside of satan(), the exception would have been handled there |
| 6536 | # instead of inside sasin() as expected. |
| 6537 | cmp.l %d1,&0x3FD78000 |
| 6538 | blt.w ASINTINY |
| 6539 | |
| 6540 | #--THIS IS THE USUAL CASE, |X| < 1 |
| 6541 | #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) |
| 6542 | |
| 6543 | ASINMAIN: |
| 6544 | fmov.s &0x3F800000,%fp1 |
| 6545 | fsub.x %fp0,%fp1 # 1-X |
| 6546 | fmovm.x &0x4,-(%sp) # {fp2} |
| 6547 | fmov.s &0x3F800000,%fp2 |
| 6548 | fadd.x %fp0,%fp2 # 1+X |
| 6549 | fmul.x %fp2,%fp1 # (1+X)(1-X) |
| 6550 | fmovm.x (%sp)+,&0x20 # {fp2} |
| 6551 | fsqrt.x %fp1 # SQRT([1-X][1+X]) |
| 6552 | fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) |
| 6553 | fmovm.x &0x01,-(%sp) # save X/SQRT(...) |
| 6554 | lea (%sp),%a0 # pass ptr to X/SQRT(...) |
| 6555 | bsr satan |
| 6556 | add.l &0xc,%sp # clear X/SQRT(...) from stack |
| 6557 | bra t_inx2 |
| 6558 | |
| 6559 | ASINBIG: |
| 6560 | fabs.x %fp0 # |X| |
| 6561 | fcmp.s %fp0,&0x3F800000 |
| 6562 | fbgt t_operr # cause an operr exception |
| 6563 | |
| 6564 | #--|X| = 1, ASIN(X) = +- PI/2. |
| 6565 | ASINONE: |
| 6566 | fmov.x PIBY2(%pc),%fp0 |
| 6567 | mov.l (%a0),%d1 |
| 6568 | and.l &0x80000000,%d1 # SIGN BIT OF X |
| 6569 | or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT |
| 6570 | mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT |
| 6571 | fmov.l %d0,%fpcr |
| 6572 | fmul.s (%sp)+,%fp0 |
| 6573 | bra t_inx2 |
| 6574 | |
| 6575 | #--|X| < 2^(-40), ATAN(X) = X |
| 6576 | ASINTINY: |
| 6577 | fmov.l %d0,%fpcr # restore users rnd mode,prec |
| 6578 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 6579 | fmov.x (%a0),%fp0 # last inst - possible exception |
| 6580 | bra t_catch |
| 6581 | |
| 6582 | global sasind |
| 6583 | #--ASIN(X) = X FOR DENORMALIZED X |
| 6584 | sasind: |
| 6585 | bra t_extdnrm |
| 6586 | |
| 6587 | ######################################################################### |
| 6588 | # sacos(): computes the inverse cosine of a normalized input # |
| 6589 | # sacosd(): computes the inverse cosine of a denormalized input # |
| 6590 | # # |
| 6591 | # INPUT *************************************************************** # |
| 6592 | # a0 = pointer to extended precision input # |
| 6593 | # d0 = round precision,mode # |
| 6594 | # # |
| 6595 | # OUTPUT ************************************************************** # |
| 6596 | # fp0 = arccos(X) # |
| 6597 | # # |
| 6598 | # ACCURACY and MONOTONICITY ******************************************* # |
| 6599 | # The returned result is within 3 ulps in 64 significant bit, # |
| 6600 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 6601 | # rounded to double precision. The result is provably monotonic # |
| 6602 | # in double precision. # |
| 6603 | # # |
| 6604 | # ALGORITHM *********************************************************** # |
| 6605 | # # |
| 6606 | # ACOS # |
| 6607 | # 1. If |X| >= 1, go to 3. # |
| 6608 | # # |
| 6609 | # 2. (|X| < 1) Calculate acos(X) by # |
| 6610 | # z := (1-X) / (1+X) # |
| 6611 | # acos(X) = 2 * atan( sqrt(z) ). # |
| 6612 | # Exit. # |
| 6613 | # # |
| 6614 | # 3. If |X| > 1, go to 5. # |
| 6615 | # # |
| 6616 | # 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # |
| 6617 | # # |
| 6618 | # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| 6619 | # Exit. # |
| 6620 | # # |
| 6621 | ######################################################################### |
| 6622 | |
| 6623 | global sacos |
| 6624 | sacos: |
| 6625 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 6626 | |
| 6627 | mov.l (%a0),%d1 # pack exp w/ upper 16 fraction |
| 6628 | mov.w 4(%a0),%d1 |
| 6629 | and.l &0x7FFFFFFF,%d1 |
| 6630 | cmp.l %d1,&0x3FFF8000 |
| 6631 | bge.b ACOSBIG |
| 6632 | |
| 6633 | #--THIS IS THE USUAL CASE, |X| < 1 |
| 6634 | #--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) |
| 6635 | |
| 6636 | ACOSMAIN: |
| 6637 | fmov.s &0x3F800000,%fp1 |
| 6638 | fadd.x %fp0,%fp1 # 1+X |
| 6639 | fneg.x %fp0 # -X |
| 6640 | fadd.s &0x3F800000,%fp0 # 1-X |
| 6641 | fdiv.x %fp1,%fp0 # (1-X)/(1+X) |
| 6642 | fsqrt.x %fp0 # SQRT((1-X)/(1+X)) |
| 6643 | mov.l %d0,-(%sp) # save original users fpcr |
| 6644 | clr.l %d0 |
| 6645 | fmovm.x &0x01,-(%sp) # save SQRT(...) to stack |
| 6646 | lea (%sp),%a0 # pass ptr to sqrt |
| 6647 | bsr satan # ATAN(SQRT([1-X]/[1+X])) |
| 6648 | add.l &0xc,%sp # clear SQRT(...) from stack |
| 6649 | |
| 6650 | fmov.l (%sp)+,%fpcr # restore users round prec,mode |
| 6651 | fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) |
| 6652 | bra t_pinx2 |
| 6653 | |
| 6654 | ACOSBIG: |
| 6655 | fabs.x %fp0 |
| 6656 | fcmp.s %fp0,&0x3F800000 |
| 6657 | fbgt t_operr # cause an operr exception |
| 6658 | |
| 6659 | #--|X| = 1, ACOS(X) = 0 OR PI |
| 6660 | tst.b (%a0) # is X positive or negative? |
| 6661 | bpl.b ACOSP1 |
| 6662 | |
| 6663 | #--X = -1 |
| 6664 | #Returns PI and inexact exception |
| 6665 | ACOSM1: |
| 6666 | fmov.x PI(%pc),%fp0 # load PI |
| 6667 | fmov.l %d0,%fpcr # load round mode,prec |
| 6668 | fadd.s &0x00800000,%fp0 # add a small value |
| 6669 | bra t_pinx2 |
| 6670 | |
| 6671 | ACOSP1: |
| 6672 | bra ld_pzero # answer is positive zero |
| 6673 | |
| 6674 | global sacosd |
| 6675 | #--ACOS(X) = PI/2 FOR DENORMALIZED X |
| 6676 | sacosd: |
| 6677 | fmov.l %d0,%fpcr # load user's rnd mode/prec |
| 6678 | fmov.x PIBY2(%pc),%fp0 |
| 6679 | bra t_pinx2 |
| 6680 | |
| 6681 | ######################################################################### |
| 6682 | # setox(): computes the exponential for a normalized input # |
| 6683 | # setoxd(): computes the exponential for a denormalized input # |
| 6684 | # setoxm1(): computes the exponential minus 1 for a normalized input # |
| 6685 | # setoxm1d(): computes the exponential minus 1 for a denormalized input # |
| 6686 | # # |
| 6687 | # INPUT *************************************************************** # |
| 6688 | # a0 = pointer to extended precision input # |
| 6689 | # d0 = round precision,mode # |
| 6690 | # # |
| 6691 | # OUTPUT ************************************************************** # |
| 6692 | # fp0 = exp(X) or exp(X)-1 # |
| 6693 | # # |
| 6694 | # ACCURACY and MONOTONICITY ******************************************* # |
| 6695 | # The returned result is within 0.85 ulps in 64 significant bit, # |
| 6696 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 6697 | # rounded to double precision. The result is provably monotonic # |
| 6698 | # in double precision. # |
| 6699 | # # |
| 6700 | # ALGORITHM and IMPLEMENTATION **************************************** # |
| 6701 | # # |
| 6702 | # setoxd # |
| 6703 | # ------ # |
| 6704 | # Step 1. Set ans := 1.0 # |
| 6705 | # # |
| 6706 | # Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # |
| 6707 | # Notes: This will always generate one exception -- inexact. # |
| 6708 | # # |
| 6709 | # # |
| 6710 | # setox # |
| 6711 | # ----- # |
| 6712 | # # |
| 6713 | # Step 1. Filter out extreme cases of input argument. # |
| 6714 | # 1.1 If |X| >= 2^(-65), go to Step 1.3. # |
| 6715 | # 1.2 Go to Step 7. # |
| 6716 | # 1.3 If |X| < 16380 log(2), go to Step 2. # |
| 6717 | # 1.4 Go to Step 8. # |
| 6718 | # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# |
| 6719 | # To avoid the use of floating-point comparisons, a # |
| 6720 | # compact representation of |X| is used. This format is a # |
| 6721 | # 32-bit integer, the upper (more significant) 16 bits # |
| 6722 | # are the sign and biased exponent field of |X|; the # |
| 6723 | # lower 16 bits are the 16 most significant fraction # |
| 6724 | # (including the explicit bit) bits of |X|. Consequently, # |
| 6725 | # the comparisons in Steps 1.1 and 1.3 can be performed # |
| 6726 | # by integer comparison. Note also that the constant # |
| 6727 | # 16380 log(2) used in Step 1.3 is also in the compact # |
| 6728 | # form. Thus taking the branch to Step 2 guarantees # |
| 6729 | # |X| < 16380 log(2). There is no harm to have a small # |
| 6730 | # number of cases where |X| is less than, but close to, # |
| 6731 | # 16380 log(2) and the branch to Step 9 is taken. # |
| 6732 | # # |
| 6733 | # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # |
| 6734 | # 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # |
| 6735 | # was taken) # |
| 6736 | # 2.2 N := round-to-nearest-integer( X * 64/log2 ). # |
| 6737 | # 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # |
| 6738 | # or 63. # |
| 6739 | # 2.4 Calculate M = (N - J)/64; so N = 64M + J. # |
| 6740 | # 2.5 Calculate the address of the stored value of # |
| 6741 | # 2^(J/64). # |
| 6742 | # 2.6 Create the value Scale = 2^M. # |
| 6743 | # Notes: The calculation in 2.2 is really performed by # |
| 6744 | # Z := X * constant # |
| 6745 | # N := round-to-nearest-integer(Z) # |
| 6746 | # where # |
| 6747 | # constant := single-precision( 64/log 2 ). # |
| 6748 | # # |
| 6749 | # Using a single-precision constant avoids memory # |
| 6750 | # access. Another effect of using a single-precision # |
| 6751 | # "constant" is that the calculated value Z is # |
| 6752 | # # |
| 6753 | # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # |
| 6754 | # # |
| 6755 | # This error has to be considered later in Steps 3 and 4. # |
| 6756 | # # |
| 6757 | # Step 3. Calculate X - N*log2/64. # |
| 6758 | # 3.1 R := X + N*L1, # |
| 6759 | # where L1 := single-precision(-log2/64). # |
| 6760 | # 3.2 R := R + N*L2, # |
| 6761 | # L2 := extended-precision(-log2/64 - L1).# |
| 6762 | # Notes: a) The way L1 and L2 are chosen ensures L1+L2 # |
| 6763 | # approximate the value -log2/64 to 88 bits of accuracy. # |
| 6764 | # b) N*L1 is exact because N is no longer than 22 bits # |
| 6765 | # and L1 is no longer than 24 bits. # |
| 6766 | # c) The calculation X+N*L1 is also exact due to # |
| 6767 | # cancellation. Thus, R is practically X+N(L1+L2) to full # |
| 6768 | # 64 bits. # |
| 6769 | # d) It is important to estimate how large can |R| be # |
| 6770 | # after Step 3.2. # |
| 6771 | # # |
| 6772 | # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # |
| 6773 | # X*64/log2 (1+eps) = N + f, |f| <= 0.5 # |
| 6774 | # X*64/log2 - N = f - eps*X 64/log2 # |
| 6775 | # X - N*log2/64 = f*log2/64 - eps*X # |
| 6776 | # # |
| 6777 | # # |
| 6778 | # Now |X| <= 16446 log2, thus # |
| 6779 | # # |
| 6780 | # |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # |
| 6781 | # <= 0.57 log2/64. # |
| 6782 | # This bound will be used in Step 4. # |
| 6783 | # # |
| 6784 | # Step 4. Approximate exp(R)-1 by a polynomial # |
| 6785 | # p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # |
| 6786 | # Notes: a) In order to reduce memory access, the coefficients # |
| 6787 | # are made as "short" as possible: A1 (which is 1/2), A4 # |
| 6788 | # and A5 are single precision; A2 and A3 are double # |
| 6789 | # precision. # |
| 6790 | # b) Even with the restrictions above, # |
| 6791 | # |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # |
| 6792 | # Note that 0.0062 is slightly bigger than 0.57 log2/64. # |
| 6793 | # c) To fully utilize the pipeline, p is separated into # |
| 6794 | # two independent pieces of roughly equal complexities # |
| 6795 | # p = [ R + R*S*(A2 + S*A4) ] + # |
| 6796 | # [ S*(A1 + S*(A3 + S*A5)) ] # |
| 6797 | # where S = R*R. # |
| 6798 | # # |
| 6799 | # Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # |
| 6800 | # ans := T + ( T*p + t) # |
| 6801 | # where T and t are the stored values for 2^(J/64). # |
| 6802 | # Notes: 2^(J/64) is stored as T and t where T+t approximates # |
| 6803 | # 2^(J/64) to roughly 85 bits; T is in extended precision # |
| 6804 | # and t is in single precision. Note also that T is # |
| 6805 | # rounded to 62 bits so that the last two bits of T are # |
| 6806 | # zero. The reason for such a special form is that T-1, # |
| 6807 | # T-2, and T-8 will all be exact --- a property that will # |
| 6808 | # give much more accurate computation of the function # |
| 6809 | # EXPM1. # |
| 6810 | # # |
| 6811 | # Step 6. Reconstruction of exp(X) # |
| 6812 | # exp(X) = 2^M * 2^(J/64) * exp(R). # |
| 6813 | # 6.1 If AdjFlag = 0, go to 6.3 # |
| 6814 | # 6.2 ans := ans * AdjScale # |
| 6815 | # 6.3 Restore the user FPCR # |
| 6816 | # 6.4 Return ans := ans * Scale. Exit. # |
| 6817 | # Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # |
| 6818 | # |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # |
| 6819 | # neither overflow nor underflow. If AdjFlag = 1, that # |
| 6820 | # means that # |
| 6821 | # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # |
| 6822 | # Hence, exp(X) may overflow or underflow or neither. # |
| 6823 | # When that is the case, AdjScale = 2^(M1) where M1 is # |
| 6824 | # approximately M. Thus 6.2 will never cause # |
| 6825 | # over/underflow. Possible exception in 6.4 is overflow # |
| 6826 | # or underflow. The inexact exception is not generated in # |
| 6827 | # 6.4. Although one can argue that the inexact flag # |
| 6828 | # should always be raised, to simulate that exception # |
| 6829 | # cost to much than the flag is worth in practical uses. # |
| 6830 | # # |
| 6831 | # Step 7. Return 1 + X. # |
| 6832 | # 7.1 ans := X # |
| 6833 | # 7.2 Restore user FPCR. # |
| 6834 | # 7.3 Return ans := 1 + ans. Exit # |
| 6835 | # Notes: For non-zero X, the inexact exception will always be # |
| 6836 | # raised by 7.3. That is the only exception raised by 7.3.# |
| 6837 | # Note also that we use the FMOVEM instruction to move X # |
| 6838 | # in Step 7.1 to avoid unnecessary trapping. (Although # |
| 6839 | # the FMOVEM may not seem relevant since X is normalized, # |
| 6840 | # the precaution will be useful in the library version of # |
| 6841 | # this code where the separate entry for denormalized # |
| 6842 | # inputs will be done away with.) # |
| 6843 | # # |
| 6844 | # Step 8. Handle exp(X) where |X| >= 16380log2. # |
| 6845 | # 8.1 If |X| > 16480 log2, go to Step 9. # |
| 6846 | # (mimic 2.2 - 2.6) # |
| 6847 | # 8.2 N := round-to-integer( X * 64/log2 ) # |
| 6848 | # 8.3 Calculate J = N mod 64, J = 0,1,...,63 # |
| 6849 | # 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # |
| 6850 | # AdjFlag := 1. # |
| 6851 | # 8.5 Calculate the address of the stored value # |
| 6852 | # 2^(J/64). # |
| 6853 | # 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # |
| 6854 | # 8.7 Go to Step 3. # |
| 6855 | # Notes: Refer to notes for 2.2 - 2.6. # |
| 6856 | # # |
| 6857 | # Step 9. Handle exp(X), |X| > 16480 log2. # |
| 6858 | # 9.1 If X < 0, go to 9.3 # |
| 6859 | # 9.2 ans := Huge, go to 9.4 # |
| 6860 | # 9.3 ans := Tiny. # |
| 6861 | # 9.4 Restore user FPCR. # |
| 6862 | # 9.5 Return ans := ans * ans. Exit. # |
| 6863 | # Notes: Exp(X) will surely overflow or underflow, depending on # |
| 6864 | # X's sign. "Huge" and "Tiny" are respectively large/tiny # |
| 6865 | # extended-precision numbers whose square over/underflow # |
| 6866 | # with an inexact result. Thus, 9.5 always raises the # |
| 6867 | # inexact together with either overflow or underflow. # |
| 6868 | # # |
| 6869 | # setoxm1d # |
| 6870 | # -------- # |
| 6871 | # # |
| 6872 | # Step 1. Set ans := 0 # |
| 6873 | # # |
| 6874 | # Step 2. Return ans := X + ans. Exit. # |
| 6875 | # Notes: This will return X with the appropriate rounding # |
| 6876 | # precision prescribed by the user FPCR. # |
| 6877 | # # |
| 6878 | # setoxm1 # |
| 6879 | # ------- # |
| 6880 | # # |
| 6881 | # Step 1. Check |X| # |
| 6882 | # 1.1 If |X| >= 1/4, go to Step 1.3. # |
| 6883 | # 1.2 Go to Step 7. # |
| 6884 | # 1.3 If |X| < 70 log(2), go to Step 2. # |
| 6885 | # 1.4 Go to Step 10. # |
| 6886 | # Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# |
| 6887 | # However, it is conceivable |X| can be small very often # |
| 6888 | # because EXPM1 is intended to evaluate exp(X)-1 # |
| 6889 | # accurately when |X| is small. For further details on # |
| 6890 | # the comparisons, see the notes on Step 1 of setox. # |
| 6891 | # # |
| 6892 | # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # |
| 6893 | # 2.1 N := round-to-nearest-integer( X * 64/log2 ). # |
| 6894 | # 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # |
| 6895 | # or 63. # |
| 6896 | # 2.3 Calculate M = (N - J)/64; so N = 64M + J. # |
| 6897 | # 2.4 Calculate the address of the stored value of # |
| 6898 | # 2^(J/64). # |
| 6899 | # 2.5 Create the values Sc = 2^M and # |
| 6900 | # OnebySc := -2^(-M). # |
| 6901 | # Notes: See the notes on Step 2 of setox. # |
| 6902 | # # |
| 6903 | # Step 3. Calculate X - N*log2/64. # |
| 6904 | # 3.1 R := X + N*L1, # |
| 6905 | # where L1 := single-precision(-log2/64). # |
| 6906 | # 3.2 R := R + N*L2, # |
| 6907 | # L2 := extended-precision(-log2/64 - L1).# |
| 6908 | # Notes: Applying the analysis of Step 3 of setox in this case # |
| 6909 | # shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # |
| 6910 | # this case). # |
| 6911 | # # |
| 6912 | # Step 4. Approximate exp(R)-1 by a polynomial # |
| 6913 | # p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # |
| 6914 | # Notes: a) In order to reduce memory access, the coefficients # |
| 6915 | # are made as "short" as possible: A1 (which is 1/2), A5 # |
| 6916 | # and A6 are single precision; A2, A3 and A4 are double # |
| 6917 | # precision. # |
| 6918 | # b) Even with the restriction above, # |
| 6919 | # |p - (exp(R)-1)| < |R| * 2^(-72.7) # |
| 6920 | # for all |R| <= 0.0055. # |
| 6921 | # c) To fully utilize the pipeline, p is separated into # |
| 6922 | # two independent pieces of roughly equal complexity # |
| 6923 | # p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # |
| 6924 | # [ R + S*(A1 + S*(A3 + S*A5)) ] # |
| 6925 | # where S = R*R. # |
| 6926 | # # |
| 6927 | # Step 5. Compute 2^(J/64)*p by # |
| 6928 | # p := T*p # |
| 6929 | # where T and t are the stored values for 2^(J/64). # |
| 6930 | # Notes: 2^(J/64) is stored as T and t where T+t approximates # |
| 6931 | # 2^(J/64) to roughly 85 bits; T is in extended precision # |
| 6932 | # and t is in single precision. Note also that T is # |
| 6933 | # rounded to 62 bits so that the last two bits of T are # |
| 6934 | # zero. The reason for such a special form is that T-1, # |
| 6935 | # T-2, and T-8 will all be exact --- a property that will # |
| 6936 | # be exploited in Step 6 below. The total relative error # |
| 6937 | # in p is no bigger than 2^(-67.7) compared to the final # |
| 6938 | # result. # |
| 6939 | # # |
| 6940 | # Step 6. Reconstruction of exp(X)-1 # |
| 6941 | # exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # |
| 6942 | # 6.1 If M <= 63, go to Step 6.3. # |
| 6943 | # 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # |
| 6944 | # 6.3 If M >= -3, go to 6.5. # |
| 6945 | # 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # |
| 6946 | # 6.5 ans := (T + OnebySc) + (p + t). # |
| 6947 | # 6.6 Restore user FPCR. # |
| 6948 | # 6.7 Return ans := Sc * ans. Exit. # |
| 6949 | # Notes: The various arrangements of the expressions give # |
| 6950 | # accurate evaluations. # |
| 6951 | # # |
| 6952 | # Step 7. exp(X)-1 for |X| < 1/4. # |
| 6953 | # 7.1 If |X| >= 2^(-65), go to Step 9. # |
| 6954 | # 7.2 Go to Step 8. # |
| 6955 | # # |
| 6956 | # Step 8. Calculate exp(X)-1, |X| < 2^(-65). # |
| 6957 | # 8.1 If |X| < 2^(-16312), goto 8.3 # |
| 6958 | # 8.2 Restore FPCR; return ans := X - 2^(-16382). # |
| 6959 | # Exit. # |
| 6960 | # 8.3 X := X * 2^(140). # |
| 6961 | # 8.4 Restore FPCR; ans := ans - 2^(-16382). # |
| 6962 | # Return ans := ans*2^(140). Exit # |
| 6963 | # Notes: The idea is to return "X - tiny" under the user # |
| 6964 | # precision and rounding modes. To avoid unnecessary # |
| 6965 | # inefficiency, we stay away from denormalized numbers # |
| 6966 | # the best we can. For |X| >= 2^(-16312), the # |
| 6967 | # straightforward 8.2 generates the inexact exception as # |
| 6968 | # the case warrants. # |
| 6969 | # # |
| 6970 | # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # |
| 6971 | # p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # |
| 6972 | # Notes: a) In order to reduce memory access, the coefficients # |
| 6973 | # are made as "short" as possible: B1 (which is 1/2), B9 # |
| 6974 | # to B12 are single precision; B3 to B8 are double # |
| 6975 | # precision; and B2 is double extended. # |
| 6976 | # b) Even with the restriction above, # |
| 6977 | # |p - (exp(X)-1)| < |X| 2^(-70.6) # |
| 6978 | # for all |X| <= 0.251. # |
| 6979 | # Note that 0.251 is slightly bigger than 1/4. # |
| 6980 | # c) To fully preserve accuracy, the polynomial is # |
| 6981 | # computed as # |
| 6982 | # X + ( S*B1 + Q ) where S = X*X and # |
| 6983 | # Q = X*S*(B2 + X*(B3 + ... + X*B12)) # |
| 6984 | # d) To fully utilize the pipeline, Q is separated into # |
| 6985 | # two independent pieces of roughly equal complexity # |
| 6986 | # Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # |
| 6987 | # [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # |
| 6988 | # # |
| 6989 | # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # |
| 6990 | # 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # |
| 6991 | # practical purposes. Therefore, go to Step 1 of setox. # |
| 6992 | # 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # |
| 6993 | # purposes. # |
| 6994 | # ans := -1 # |
| 6995 | # Restore user FPCR # |
| 6996 | # Return ans := ans + 2^(-126). Exit. # |
| 6997 | # Notes: 10.2 will always create an inexact and return -1 + tiny # |
| 6998 | # in the user rounding precision and mode. # |
| 6999 | # # |
| 7000 | ######################################################################### |
| 7001 | |
| 7002 | L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 |
| 7003 | |
| 7004 | EEXPA3: long 0x3FA55555,0x55554CC1 |
| 7005 | EEXPA2: long 0x3FC55555,0x55554A54 |
| 7006 | |
| 7007 | EM1A4: long 0x3F811111,0x11174385 |
| 7008 | EM1A3: long 0x3FA55555,0x55554F5A |
| 7009 | |
| 7010 | EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 |
| 7011 | |
| 7012 | EM1B8: long 0x3EC71DE3,0xA5774682 |
| 7013 | EM1B7: long 0x3EFA01A0,0x19D7CB68 |
| 7014 | |
| 7015 | EM1B6: long 0x3F2A01A0,0x1A019DF3 |
| 7016 | EM1B5: long 0x3F56C16C,0x16C170E2 |
| 7017 | |
| 7018 | EM1B4: long 0x3F811111,0x11111111 |
| 7019 | EM1B3: long 0x3FA55555,0x55555555 |
| 7020 | |
| 7021 | EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB |
| 7022 | long 0x00000000 |
| 7023 | |
| 7024 | TWO140: long 0x48B00000,0x00000000 |
| 7025 | TWON140: |
| 7026 | long 0x37300000,0x00000000 |
| 7027 | |
| 7028 | EEXPTBL: |
| 7029 | long 0x3FFF0000,0x80000000,0x00000000,0x00000000 |
| 7030 | long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B |
| 7031 | long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 |
| 7032 | long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 |
| 7033 | long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C |
| 7034 | long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F |
| 7035 | long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 |
| 7036 | long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF |
| 7037 | long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF |
| 7038 | long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA |
| 7039 | long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 |
| 7040 | long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 |
| 7041 | long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 |
| 7042 | long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 |
| 7043 | long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D |
| 7044 | long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 |
| 7045 | long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD |
| 7046 | long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 |
| 7047 | long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 |
| 7048 | long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D |
| 7049 | long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 |
| 7050 | long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C |
| 7051 | long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 |
| 7052 | long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 |
| 7053 | long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 |
| 7054 | long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA |
| 7055 | long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A |
| 7056 | long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC |
| 7057 | long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC |
| 7058 | long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 |
| 7059 | long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 |
| 7060 | long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A |
| 7061 | long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 |
| 7062 | long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 |
| 7063 | long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC |
| 7064 | long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 |
| 7065 | long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 |
| 7066 | long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 |
| 7067 | long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 |
| 7068 | long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B |
| 7069 | long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 |
| 7070 | long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E |
| 7071 | long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 |
| 7072 | long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D |
| 7073 | long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 |
| 7074 | long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C |
| 7075 | long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 |
| 7076 | long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 |
| 7077 | long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F |
| 7078 | long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F |
| 7079 | long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 |
| 7080 | long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 |
| 7081 | long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B |
| 7082 | long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 |
| 7083 | long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A |
| 7084 | long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 |
| 7085 | long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 |
| 7086 | long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B |
| 7087 | long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 |
| 7088 | long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 |
| 7089 | long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 |
| 7090 | long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 |
| 7091 | long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 |
| 7092 | long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A |
| 7093 | |
| 7094 | set ADJFLAG,L_SCR2 |
| 7095 | set SCALE,FP_SCR0 |
| 7096 | set ADJSCALE,FP_SCR1 |
| 7097 | set SC,FP_SCR0 |
| 7098 | set ONEBYSC,FP_SCR1 |
| 7099 | |
| 7100 | global setox |
| 7101 | setox: |
| 7102 | #--entry point for EXP(X), here X is finite, non-zero, and not NaN's |
| 7103 | |
| 7104 | #--Step 1. |
| 7105 | mov.l (%a0),%d1 # load part of input X |
| 7106 | and.l &0x7FFF0000,%d1 # biased expo. of X |
| 7107 | cmp.l %d1,&0x3FBE0000 # 2^(-65) |
| 7108 | bge.b EXPC1 # normal case |
| 7109 | bra EXPSM |
| 7110 | |
| 7111 | EXPC1: |
| 7112 | #--The case |X| >= 2^(-65) |
| 7113 | mov.w 4(%a0),%d1 # expo. and partial sig. of |X| |
| 7114 | cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits |
| 7115 | blt.b EXPMAIN # normal case |
| 7116 | bra EEXPBIG |
| 7117 | |
| 7118 | EXPMAIN: |
| 7119 | #--Step 2. |
| 7120 | #--This is the normal branch: 2^(-65) <= |X| < 16380 log2. |
| 7121 | fmov.x (%a0),%fp0 # load input from (a0) |
| 7122 | |
| 7123 | fmov.x %fp0,%fp1 |
| 7124 | fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| 7125 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| 7126 | mov.l &0,ADJFLAG(%a6) |
| 7127 | fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| 7128 | lea EEXPTBL(%pc),%a1 |
| 7129 | fmov.l %d1,%fp0 # convert to floating-format |
| 7130 | |
| 7131 | mov.l %d1,L_SCR1(%a6) # save N temporarily |
| 7132 | and.l &0x3F,%d1 # D0 is J = N mod 64 |
| 7133 | lsl.l &4,%d1 |
| 7134 | add.l %d1,%a1 # address of 2^(J/64) |
| 7135 | mov.l L_SCR1(%a6),%d1 |
| 7136 | asr.l &6,%d1 # D0 is M |
| 7137 | add.w &0x3FFF,%d1 # biased expo. of 2^(M) |
| 7138 | mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB |
| 7139 | |
| 7140 | EXPCONT1: |
| 7141 | #--Step 3. |
| 7142 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, |
| 7143 | #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) |
| 7144 | fmov.x %fp0,%fp2 |
| 7145 | fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) |
| 7146 | fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 |
| 7147 | fadd.x %fp1,%fp0 # X + N*L1 |
| 7148 | fadd.x %fp2,%fp0 # fp0 is R, reduced arg. |
| 7149 | |
| 7150 | #--Step 4. |
| 7151 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL |
| 7152 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) |
| 7153 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R |
| 7154 | #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] |
| 7155 | |
| 7156 | fmov.x %fp0,%fp1 |
| 7157 | fmul.x %fp1,%fp1 # fp1 IS S = R*R |
| 7158 | |
| 7159 | fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 |
| 7160 | |
| 7161 | fmul.x %fp1,%fp2 # fp2 IS S*A5 |
| 7162 | fmov.x %fp1,%fp3 |
| 7163 | fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 |
| 7164 | |
| 7165 | fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 |
| 7166 | fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 |
| 7167 | |
| 7168 | fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) |
| 7169 | mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended |
| 7170 | mov.l &0x80000000,SCALE+4(%a6) |
| 7171 | clr.l SCALE+8(%a6) |
| 7172 | |
| 7173 | fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) |
| 7174 | |
| 7175 | fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) |
| 7176 | fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) |
| 7177 | |
| 7178 | fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) |
| 7179 | fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), |
| 7180 | |
| 7181 | fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) |
| 7182 | fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 |
| 7183 | |
| 7184 | #--Step 5 |
| 7185 | #--final reconstruction process |
| 7186 | #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) |
| 7187 | |
| 7188 | fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) |
| 7189 | fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| 7190 | fadd.s (%a1),%fp0 # accurate 2^(J/64) |
| 7191 | |
| 7192 | fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... |
| 7193 | mov.l ADJFLAG(%a6),%d1 |
| 7194 | |
| 7195 | #--Step 6 |
| 7196 | tst.l %d1 |
| 7197 | beq.b NORMAL |
| 7198 | ADJUST: |
| 7199 | fmul.x ADJSCALE(%a6),%fp0 |
| 7200 | NORMAL: |
| 7201 | fmov.l %d0,%fpcr # restore user FPCR |
| 7202 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 7203 | fmul.x SCALE(%a6),%fp0 # multiply 2^(M) |
| 7204 | bra t_catch |
| 7205 | |
| 7206 | EXPSM: |
| 7207 | #--Step 7 |
| 7208 | fmovm.x (%a0),&0x80 # load X |
| 7209 | fmov.l %d0,%fpcr |
| 7210 | fadd.s &0x3F800000,%fp0 # 1+X in user mode |
| 7211 | bra t_pinx2 |
| 7212 | |
| 7213 | EEXPBIG: |
| 7214 | #--Step 8 |
| 7215 | cmp.l %d1,&0x400CB27C # 16480 log2 |
| 7216 | bgt.b EXP2BIG |
| 7217 | #--Steps 8.2 -- 8.6 |
| 7218 | fmov.x (%a0),%fp0 # load input from (a0) |
| 7219 | |
| 7220 | fmov.x %fp0,%fp1 |
| 7221 | fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| 7222 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| 7223 | mov.l &1,ADJFLAG(%a6) |
| 7224 | fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| 7225 | lea EEXPTBL(%pc),%a1 |
| 7226 | fmov.l %d1,%fp0 # convert to floating-format |
| 7227 | mov.l %d1,L_SCR1(%a6) # save N temporarily |
| 7228 | and.l &0x3F,%d1 # D0 is J = N mod 64 |
| 7229 | lsl.l &4,%d1 |
| 7230 | add.l %d1,%a1 # address of 2^(J/64) |
| 7231 | mov.l L_SCR1(%a6),%d1 |
| 7232 | asr.l &6,%d1 # D0 is K |
| 7233 | mov.l %d1,L_SCR1(%a6) # save K temporarily |
| 7234 | asr.l &1,%d1 # D0 is M1 |
| 7235 | sub.l %d1,L_SCR1(%a6) # a1 is M |
| 7236 | add.w &0x3FFF,%d1 # biased expo. of 2^(M1) |
| 7237 | mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) |
| 7238 | mov.l &0x80000000,ADJSCALE+4(%a6) |
| 7239 | clr.l ADJSCALE+8(%a6) |
| 7240 | mov.l L_SCR1(%a6),%d1 # D0 is M |
| 7241 | add.w &0x3FFF,%d1 # biased expo. of 2^(M) |
| 7242 | bra.w EXPCONT1 # go back to Step 3 |
| 7243 | |
| 7244 | EXP2BIG: |
| 7245 | #--Step 9 |
| 7246 | tst.b (%a0) # is X positive or negative? |
| 7247 | bmi t_unfl2 |
| 7248 | bra t_ovfl2 |
| 7249 | |
| 7250 | global setoxd |
| 7251 | setoxd: |
| 7252 | #--entry point for EXP(X), X is denormalized |
| 7253 | mov.l (%a0),-(%sp) |
| 7254 | andi.l &0x80000000,(%sp) |
| 7255 | ori.l &0x00800000,(%sp) # sign(X)*2^(-126) |
| 7256 | |
| 7257 | fmov.s &0x3F800000,%fp0 |
| 7258 | |
| 7259 | fmov.l %d0,%fpcr |
| 7260 | fadd.s (%sp)+,%fp0 |
| 7261 | bra t_pinx2 |
| 7262 | |
| 7263 | global setoxm1 |
| 7264 | setoxm1: |
| 7265 | #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN |
| 7266 | |
| 7267 | #--Step 1. |
| 7268 | #--Step 1.1 |
| 7269 | mov.l (%a0),%d1 # load part of input X |
| 7270 | and.l &0x7FFF0000,%d1 # biased expo. of X |
| 7271 | cmp.l %d1,&0x3FFD0000 # 1/4 |
| 7272 | bge.b EM1CON1 # |X| >= 1/4 |
| 7273 | bra EM1SM |
| 7274 | |
| 7275 | EM1CON1: |
| 7276 | #--Step 1.3 |
| 7277 | #--The case |X| >= 1/4 |
| 7278 | mov.w 4(%a0),%d1 # expo. and partial sig. of |X| |
| 7279 | cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits |
| 7280 | ble.b EM1MAIN # 1/4 <= |X| <= 70log2 |
| 7281 | bra EM1BIG |
| 7282 | |
| 7283 | EM1MAIN: |
| 7284 | #--Step 2. |
| 7285 | #--This is the case: 1/4 <= |X| <= 70 log2. |
| 7286 | fmov.x (%a0),%fp0 # load input from (a0) |
| 7287 | |
| 7288 | fmov.x %fp0,%fp1 |
| 7289 | fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X |
| 7290 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| 7291 | fmov.l %fp0,%d1 # N = int( X * 64/log2 ) |
| 7292 | lea EEXPTBL(%pc),%a1 |
| 7293 | fmov.l %d1,%fp0 # convert to floating-format |
| 7294 | |
| 7295 | mov.l %d1,L_SCR1(%a6) # save N temporarily |
| 7296 | and.l &0x3F,%d1 # D0 is J = N mod 64 |
| 7297 | lsl.l &4,%d1 |
| 7298 | add.l %d1,%a1 # address of 2^(J/64) |
| 7299 | mov.l L_SCR1(%a6),%d1 |
| 7300 | asr.l &6,%d1 # D0 is M |
| 7301 | mov.l %d1,L_SCR1(%a6) # save a copy of M |
| 7302 | |
| 7303 | #--Step 3. |
| 7304 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, |
| 7305 | #--a0 points to 2^(J/64), D0 and a1 both contain M |
| 7306 | fmov.x %fp0,%fp2 |
| 7307 | fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) |
| 7308 | fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 |
| 7309 | fadd.x %fp1,%fp0 # X + N*L1 |
| 7310 | fadd.x %fp2,%fp0 # fp0 is R, reduced arg. |
| 7311 | add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M |
| 7312 | |
| 7313 | #--Step 4. |
| 7314 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL |
| 7315 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) |
| 7316 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R |
| 7317 | #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] |
| 7318 | |
| 7319 | fmov.x %fp0,%fp1 |
| 7320 | fmul.x %fp1,%fp1 # fp1 IS S = R*R |
| 7321 | |
| 7322 | fmov.s &0x3950097B,%fp2 # fp2 IS a6 |
| 7323 | |
| 7324 | fmul.x %fp1,%fp2 # fp2 IS S*A6 |
| 7325 | fmov.x %fp1,%fp3 |
| 7326 | fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 |
| 7327 | |
| 7328 | fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 |
| 7329 | fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 |
| 7330 | mov.w %d1,SC(%a6) # SC is 2^(M) in extended |
| 7331 | mov.l &0x80000000,SC+4(%a6) |
| 7332 | clr.l SC+8(%a6) |
| 7333 | |
| 7334 | fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) |
| 7335 | mov.l L_SCR1(%a6),%d1 # D0 is M |
| 7336 | neg.w %d1 # D0 is -M |
| 7337 | fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) |
| 7338 | add.w &0x3FFF,%d1 # biased expo. of 2^(-M) |
| 7339 | fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) |
| 7340 | fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) |
| 7341 | |
| 7342 | fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) |
| 7343 | or.w &0x8000,%d1 # signed/expo. of -2^(-M) |
| 7344 | mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) |
| 7345 | mov.l &0x80000000,ONEBYSC+4(%a6) |
| 7346 | clr.l ONEBYSC+8(%a6) |
| 7347 | fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) |
| 7348 | |
| 7349 | fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) |
| 7350 | fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) |
| 7351 | |
| 7352 | fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 |
| 7353 | |
| 7354 | fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| 7355 | |
| 7356 | #--Step 5 |
| 7357 | #--Compute 2^(J/64)*p |
| 7358 | |
| 7359 | fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) |
| 7360 | |
| 7361 | #--Step 6 |
| 7362 | #--Step 6.1 |
| 7363 | mov.l L_SCR1(%a6),%d1 # retrieve M |
| 7364 | cmp.l %d1,&63 |
| 7365 | ble.b MLE63 |
| 7366 | #--Step 6.2 M >= 64 |
| 7367 | fmov.s 12(%a1),%fp1 # fp1 is t |
| 7368 | fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc |
| 7369 | fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released |
| 7370 | fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) |
| 7371 | bra EM1SCALE |
| 7372 | MLE63: |
| 7373 | #--Step 6.3 M <= 63 |
| 7374 | cmp.l %d1,&-3 |
| 7375 | bge.b MGEN3 |
| 7376 | MLTN3: |
| 7377 | #--Step 6.4 M <= -4 |
| 7378 | fadd.s 12(%a1),%fp0 # p+t |
| 7379 | fadd.x (%a1),%fp0 # T+(p+t) |
| 7380 | fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) |
| 7381 | bra EM1SCALE |
| 7382 | MGEN3: |
| 7383 | #--Step 6.5 -3 <= M <= 63 |
| 7384 | fmov.x (%a1)+,%fp1 # fp1 is T |
| 7385 | fadd.s (%a1),%fp0 # fp0 is p+t |
| 7386 | fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc |
| 7387 | fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) |
| 7388 | |
| 7389 | EM1SCALE: |
| 7390 | #--Step 6.6 |
| 7391 | fmov.l %d0,%fpcr |
| 7392 | fmul.x SC(%a6),%fp0 |
| 7393 | bra t_inx2 |
| 7394 | |
| 7395 | EM1SM: |
| 7396 | #--Step 7 |X| < 1/4. |
| 7397 | cmp.l %d1,&0x3FBE0000 # 2^(-65) |
| 7398 | bge.b EM1POLY |
| 7399 | |
| 7400 | EM1TINY: |
| 7401 | #--Step 8 |X| < 2^(-65) |
| 7402 | cmp.l %d1,&0x00330000 # 2^(-16312) |
| 7403 | blt.b EM12TINY |
| 7404 | #--Step 8.2 |
| 7405 | mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) |
| 7406 | mov.l &0x80000000,SC+4(%a6) |
| 7407 | clr.l SC+8(%a6) |
| 7408 | fmov.x (%a0),%fp0 |
| 7409 | fmov.l %d0,%fpcr |
| 7410 | mov.b &FADD_OP,%d1 # last inst is ADD |
| 7411 | fadd.x SC(%a6),%fp0 |
| 7412 | bra t_catch |
| 7413 | |
| 7414 | EM12TINY: |
| 7415 | #--Step 8.3 |
| 7416 | fmov.x (%a0),%fp0 |
| 7417 | fmul.d TWO140(%pc),%fp0 |
| 7418 | mov.l &0x80010000,SC(%a6) |
| 7419 | mov.l &0x80000000,SC+4(%a6) |
| 7420 | clr.l SC+8(%a6) |
| 7421 | fadd.x SC(%a6),%fp0 |
| 7422 | fmov.l %d0,%fpcr |
| 7423 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 7424 | fmul.d TWON140(%pc),%fp0 |
| 7425 | bra t_catch |
| 7426 | |
| 7427 | EM1POLY: |
| 7428 | #--Step 9 exp(X)-1 by a simple polynomial |
| 7429 | fmov.x (%a0),%fp0 # fp0 is X |
| 7430 | fmul.x %fp0,%fp0 # fp0 is S := X*X |
| 7431 | fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} |
| 7432 | fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 |
| 7433 | fmul.x %fp0,%fp1 # fp1 is S*B12 |
| 7434 | fmov.s &0x310F8290,%fp2 # fp2 is B11 |
| 7435 | fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 |
| 7436 | |
| 7437 | fmul.x %fp0,%fp2 # fp2 is S*B11 |
| 7438 | fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... |
| 7439 | |
| 7440 | fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... |
| 7441 | fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... |
| 7442 | |
| 7443 | fmul.x %fp0,%fp2 # fp2 is S*(B9+... |
| 7444 | fmul.x %fp0,%fp1 # fp1 is S*(B8+... |
| 7445 | |
| 7446 | fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... |
| 7447 | fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... |
| 7448 | |
| 7449 | fmul.x %fp0,%fp2 # fp2 is S*(B7+... |
| 7450 | fmul.x %fp0,%fp1 # fp1 is S*(B6+... |
| 7451 | |
| 7452 | fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... |
| 7453 | fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... |
| 7454 | |
| 7455 | fmul.x %fp0,%fp2 # fp2 is S*(B5+... |
| 7456 | fmul.x %fp0,%fp1 # fp1 is S*(B4+... |
| 7457 | |
| 7458 | fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... |
| 7459 | fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... |
| 7460 | |
| 7461 | fmul.x %fp0,%fp2 # fp2 is S*(B3+... |
| 7462 | fmul.x %fp0,%fp1 # fp1 is S*(B2+... |
| 7463 | |
| 7464 | fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) |
| 7465 | fmul.x (%a0),%fp1 # fp1 is X*S*(B2... |
| 7466 | |
| 7467 | fmul.s &0x3F000000,%fp0 # fp0 is S*B1 |
| 7468 | fadd.x %fp2,%fp1 # fp1 is Q |
| 7469 | |
| 7470 | fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} |
| 7471 | |
| 7472 | fadd.x %fp1,%fp0 # fp0 is S*B1+Q |
| 7473 | |
| 7474 | fmov.l %d0,%fpcr |
| 7475 | fadd.x (%a0),%fp0 |
| 7476 | bra t_inx2 |
| 7477 | |
| 7478 | EM1BIG: |
| 7479 | #--Step 10 |X| > 70 log2 |
| 7480 | mov.l (%a0),%d1 |
| 7481 | cmp.l %d1,&0 |
| 7482 | bgt.w EXPC1 |
| 7483 | #--Step 10.2 |
| 7484 | fmov.s &0xBF800000,%fp0 # fp0 is -1 |
| 7485 | fmov.l %d0,%fpcr |
| 7486 | fadd.s &0x00800000,%fp0 # -1 + 2^(-126) |
| 7487 | bra t_minx2 |
| 7488 | |
| 7489 | global setoxm1d |
| 7490 | setoxm1d: |
| 7491 | #--entry point for EXPM1(X), here X is denormalized |
| 7492 | #--Step 0. |
| 7493 | bra t_extdnrm |
| 7494 | |
| 7495 | ######################################################################### |
| 7496 | # sgetexp(): returns the exponent portion of the input argument. # |
| 7497 | # The exponent bias is removed and the exponent value is # |
| 7498 | # returned as an extended precision number in fp0. # |
| 7499 | # sgetexpd(): handles denormalized numbers. # |
| 7500 | # # |
| 7501 | # sgetman(): extracts the mantissa of the input argument. The # |
| 7502 | # mantissa is converted to an extended precision number w/ # |
| 7503 | # an exponent of $3fff and is returned in fp0. The range of # |
| 7504 | # the result is [1.0 - 2.0). # |
| 7505 | # sgetmand(): handles denormalized numbers. # |
| 7506 | # # |
| 7507 | # INPUT *************************************************************** # |
| 7508 | # a0 = pointer to extended precision input # |
| 7509 | # # |
| 7510 | # OUTPUT ************************************************************** # |
| 7511 | # fp0 = exponent(X) or mantissa(X) # |
| 7512 | # # |
| 7513 | ######################################################################### |
| 7514 | |
| 7515 | global sgetexp |
| 7516 | sgetexp: |
| 7517 | mov.w SRC_EX(%a0),%d0 # get the exponent |
| 7518 | bclr &0xf,%d0 # clear the sign bit |
| 7519 | subi.w &0x3fff,%d0 # subtract off the bias |
| 7520 | fmov.w %d0,%fp0 # return exp in fp0 |
| 7521 | blt.b sgetexpn # it's negative |
| 7522 | rts |
| 7523 | |
| 7524 | sgetexpn: |
| 7525 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 7526 | rts |
| 7527 | |
| 7528 | global sgetexpd |
| 7529 | sgetexpd: |
| 7530 | bsr.l norm # normalize |
| 7531 | neg.w %d0 # new exp = -(shft amt) |
| 7532 | subi.w &0x3fff,%d0 # subtract off the bias |
| 7533 | fmov.w %d0,%fp0 # return exp in fp0 |
| 7534 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 7535 | rts |
| 7536 | |
| 7537 | global sgetman |
| 7538 | sgetman: |
| 7539 | mov.w SRC_EX(%a0),%d0 # get the exp |
| 7540 | ori.w &0x7fff,%d0 # clear old exp |
| 7541 | bclr &0xe,%d0 # make it the new exp +-3fff |
| 7542 | |
| 7543 | # here, we build the result in a tmp location so as not to disturb the input |
| 7544 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc |
| 7545 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc |
| 7546 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| 7547 | fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 |
| 7548 | bmi.b sgetmann # it's negative |
| 7549 | rts |
| 7550 | |
| 7551 | sgetmann: |
| 7552 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 7553 | rts |
| 7554 | |
| 7555 | # |
| 7556 | # For denormalized numbers, shift the mantissa until the j-bit = 1, |
| 7557 | # then load the exponent with +/1 $3fff. |
| 7558 | # |
| 7559 | global sgetmand |
| 7560 | sgetmand: |
| 7561 | bsr.l norm # normalize exponent |
| 7562 | bra.b sgetman |
| 7563 | |
| 7564 | ######################################################################### |
| 7565 | # scosh(): computes the hyperbolic cosine of a normalized input # |
| 7566 | # scoshd(): computes the hyperbolic cosine of a denormalized input # |
| 7567 | # # |
| 7568 | # INPUT *************************************************************** # |
| 7569 | # a0 = pointer to extended precision input # |
| 7570 | # d0 = round precision,mode # |
| 7571 | # # |
| 7572 | # OUTPUT ************************************************************** # |
| 7573 | # fp0 = cosh(X) # |
| 7574 | # # |
| 7575 | # ACCURACY and MONOTONICITY ******************************************* # |
| 7576 | # The returned result is within 3 ulps in 64 significant bit, # |
| 7577 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 7578 | # rounded to double precision. The result is provably monotonic # |
| 7579 | # in double precision. # |
| 7580 | # # |
| 7581 | # ALGORITHM *********************************************************** # |
| 7582 | # # |
| 7583 | # COSH # |
| 7584 | # 1. If |X| > 16380 log2, go to 3. # |
| 7585 | # # |
| 7586 | # 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # |
| 7587 | # y = |X|, z = exp(Y), and # |
| 7588 | # cosh(X) = (1/2)*( z + 1/z ). # |
| 7589 | # Exit. # |
| 7590 | # # |
| 7591 | # 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # |
| 7592 | # # |
| 7593 | # 4. (16380 log2 < |X| <= 16480 log2) # |
| 7594 | # cosh(X) = sign(X) * exp(|X|)/2. # |
| 7595 | # However, invoking exp(|X|) may cause premature # |
| 7596 | # overflow. Thus, we calculate sinh(X) as follows: # |
| 7597 | # Y := |X| # |
| 7598 | # Fact := 2**(16380) # |
| 7599 | # Y' := Y - 16381 log2 # |
| 7600 | # cosh(X) := Fact * exp(Y'). # |
| 7601 | # Exit. # |
| 7602 | # # |
| 7603 | # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # |
| 7604 | # Huge*Huge to generate overflow and an infinity with # |
| 7605 | # the appropriate sign. Huge is the largest finite number # |
| 7606 | # in extended format. Exit. # |
| 7607 | # # |
| 7608 | ######################################################################### |
| 7609 | |
| 7610 | TWO16380: |
| 7611 | long 0x7FFB0000,0x80000000,0x00000000,0x00000000 |
| 7612 | |
| 7613 | global scosh |
| 7614 | scosh: |
| 7615 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 7616 | |
| 7617 | mov.l (%a0),%d1 |
| 7618 | mov.w 4(%a0),%d1 |
| 7619 | and.l &0x7FFFFFFF,%d1 |
| 7620 | cmp.l %d1,&0x400CB167 |
| 7621 | bgt.b COSHBIG |
| 7622 | |
| 7623 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 |
| 7624 | #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) |
| 7625 | |
| 7626 | fabs.x %fp0 # |X| |
| 7627 | |
| 7628 | mov.l %d0,-(%sp) |
| 7629 | clr.l %d0 |
| 7630 | fmovm.x &0x01,-(%sp) # save |X| to stack |
| 7631 | lea (%sp),%a0 # pass ptr to |X| |
| 7632 | bsr setox # FP0 IS EXP(|X|) |
| 7633 | add.l &0xc,%sp # erase |X| from stack |
| 7634 | fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) |
| 7635 | mov.l (%sp)+,%d0 |
| 7636 | |
| 7637 | fmov.s &0x3E800000,%fp1 # (1/4) |
| 7638 | fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) |
| 7639 | |
| 7640 | fmov.l %d0,%fpcr |
| 7641 | mov.b &FADD_OP,%d1 # last inst is ADD |
| 7642 | fadd.x %fp1,%fp0 |
| 7643 | bra t_catch |
| 7644 | |
| 7645 | COSHBIG: |
| 7646 | cmp.l %d1,&0x400CB2B3 |
| 7647 | bgt.b COSHHUGE |
| 7648 | |
| 7649 | fabs.x %fp0 |
| 7650 | fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) |
| 7651 | fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE |
| 7652 | |
| 7653 | mov.l %d0,-(%sp) |
| 7654 | clr.l %d0 |
| 7655 | fmovm.x &0x01,-(%sp) # save fp0 to stack |
| 7656 | lea (%sp),%a0 # pass ptr to fp0 |
| 7657 | bsr setox |
| 7658 | add.l &0xc,%sp # clear fp0 from stack |
| 7659 | mov.l (%sp)+,%d0 |
| 7660 | |
| 7661 | fmov.l %d0,%fpcr |
| 7662 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 7663 | fmul.x TWO16380(%pc),%fp0 |
| 7664 | bra t_catch |
| 7665 | |
| 7666 | COSHHUGE: |
| 7667 | bra t_ovfl2 |
| 7668 | |
| 7669 | global scoshd |
| 7670 | #--COSH(X) = 1 FOR DENORMALIZED X |
| 7671 | scoshd: |
| 7672 | fmov.s &0x3F800000,%fp0 |
| 7673 | |
| 7674 | fmov.l %d0,%fpcr |
| 7675 | fadd.s &0x00800000,%fp0 |
| 7676 | bra t_pinx2 |
| 7677 | |
| 7678 | ######################################################################### |
| 7679 | # ssinh(): computes the hyperbolic sine of a normalized input # |
| 7680 | # ssinhd(): computes the hyperbolic sine of a denormalized input # |
| 7681 | # # |
| 7682 | # INPUT *************************************************************** # |
| 7683 | # a0 = pointer to extended precision input # |
| 7684 | # d0 = round precision,mode # |
| 7685 | # # |
| 7686 | # OUTPUT ************************************************************** # |
| 7687 | # fp0 = sinh(X) # |
| 7688 | # # |
| 7689 | # ACCURACY and MONOTONICITY ******************************************* # |
| 7690 | # The returned result is within 3 ulps in 64 significant bit, # |
| 7691 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 7692 | # rounded to double precision. The result is provably monotonic # |
| 7693 | # in double precision. # |
| 7694 | # # |
| 7695 | # ALGORITHM *********************************************************** # |
| 7696 | # # |
| 7697 | # SINH # |
| 7698 | # 1. If |X| > 16380 log2, go to 3. # |
| 7699 | # # |
| 7700 | # 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # |
| 7701 | # y = |X|, sgn = sign(X), and z = expm1(Y), # |
| 7702 | # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # |
| 7703 | # Exit. # |
| 7704 | # # |
| 7705 | # 3. If |X| > 16480 log2, go to 5. # |
| 7706 | # # |
| 7707 | # 4. (16380 log2 < |X| <= 16480 log2) # |
| 7708 | # sinh(X) = sign(X) * exp(|X|)/2. # |
| 7709 | # However, invoking exp(|X|) may cause premature overflow. # |
| 7710 | # Thus, we calculate sinh(X) as follows: # |
| 7711 | # Y := |X| # |
| 7712 | # sgn := sign(X) # |
| 7713 | # sgnFact := sgn * 2**(16380) # |
| 7714 | # Y' := Y - 16381 log2 # |
| 7715 | # sinh(X) := sgnFact * exp(Y'). # |
| 7716 | # Exit. # |
| 7717 | # # |
| 7718 | # 5. (|X| > 16480 log2) sinh(X) must overflow. Return # |
| 7719 | # sign(X)*Huge*Huge to generate overflow and an infinity with # |
| 7720 | # the appropriate sign. Huge is the largest finite number in # |
| 7721 | # extended format. Exit. # |
| 7722 | # # |
| 7723 | ######################################################################### |
| 7724 | |
| 7725 | global ssinh |
| 7726 | ssinh: |
| 7727 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 7728 | |
| 7729 | mov.l (%a0),%d1 |
| 7730 | mov.w 4(%a0),%d1 |
| 7731 | mov.l %d1,%a1 # save (compacted) operand |
| 7732 | and.l &0x7FFFFFFF,%d1 |
| 7733 | cmp.l %d1,&0x400CB167 |
| 7734 | bgt.b SINHBIG |
| 7735 | |
| 7736 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 |
| 7737 | #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) |
| 7738 | |
| 7739 | fabs.x %fp0 # Y = |X| |
| 7740 | |
| 7741 | movm.l &0x8040,-(%sp) # {a1/d0} |
| 7742 | fmovm.x &0x01,-(%sp) # save Y on stack |
| 7743 | lea (%sp),%a0 # pass ptr to Y |
| 7744 | clr.l %d0 |
| 7745 | bsr setoxm1 # FP0 IS Z = EXPM1(Y) |
| 7746 | add.l &0xc,%sp # clear Y from stack |
| 7747 | fmov.l &0,%fpcr |
| 7748 | movm.l (%sp)+,&0x0201 # {a1/d0} |
| 7749 | |
| 7750 | fmov.x %fp0,%fp1 |
| 7751 | fadd.s &0x3F800000,%fp1 # 1+Z |
| 7752 | fmov.x %fp0,-(%sp) |
| 7753 | fdiv.x %fp1,%fp0 # Z/(1+Z) |
| 7754 | mov.l %a1,%d1 |
| 7755 | and.l &0x80000000,%d1 |
| 7756 | or.l &0x3F000000,%d1 |
| 7757 | fadd.x (%sp)+,%fp0 |
| 7758 | mov.l %d1,-(%sp) |
| 7759 | |
| 7760 | fmov.l %d0,%fpcr |
| 7761 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 7762 | fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set |
| 7763 | bra t_catch |
| 7764 | |
| 7765 | SINHBIG: |
| 7766 | cmp.l %d1,&0x400CB2B3 |
| 7767 | bgt t_ovfl |
| 7768 | fabs.x %fp0 |
| 7769 | fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) |
| 7770 | mov.l &0,-(%sp) |
| 7771 | mov.l &0x80000000,-(%sp) |
| 7772 | mov.l %a1,%d1 |
| 7773 | and.l &0x80000000,%d1 |
| 7774 | or.l &0x7FFB0000,%d1 |
| 7775 | mov.l %d1,-(%sp) # EXTENDED FMT |
| 7776 | fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE |
| 7777 | |
| 7778 | mov.l %d0,-(%sp) |
| 7779 | clr.l %d0 |
| 7780 | fmovm.x &0x01,-(%sp) # save fp0 on stack |
| 7781 | lea (%sp),%a0 # pass ptr to fp0 |
| 7782 | bsr setox |
| 7783 | add.l &0xc,%sp # clear fp0 from stack |
| 7784 | |
| 7785 | mov.l (%sp)+,%d0 |
| 7786 | fmov.l %d0,%fpcr |
| 7787 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 7788 | fmul.x (%sp)+,%fp0 # possible exception |
| 7789 | bra t_catch |
| 7790 | |
| 7791 | global ssinhd |
| 7792 | #--SINH(X) = X FOR DENORMALIZED X |
| 7793 | ssinhd: |
| 7794 | bra t_extdnrm |
| 7795 | |
| 7796 | ######################################################################### |
| 7797 | # stanh(): computes the hyperbolic tangent of a normalized input # |
| 7798 | # stanhd(): computes the hyperbolic tangent of a denormalized input # |
| 7799 | # # |
| 7800 | # INPUT *************************************************************** # |
| 7801 | # a0 = pointer to extended precision input # |
| 7802 | # d0 = round precision,mode # |
| 7803 | # # |
| 7804 | # OUTPUT ************************************************************** # |
| 7805 | # fp0 = tanh(X) # |
| 7806 | # # |
| 7807 | # ACCURACY and MONOTONICITY ******************************************* # |
| 7808 | # The returned result is within 3 ulps in 64 significant bit, # |
| 7809 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 7810 | # rounded to double precision. The result is provably monotonic # |
| 7811 | # in double precision. # |
| 7812 | # # |
| 7813 | # ALGORITHM *********************************************************** # |
| 7814 | # # |
| 7815 | # TANH # |
| 7816 | # 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # |
| 7817 | # # |
| 7818 | # 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # |
| 7819 | # sgn := sign(X), y := 2|X|, z := expm1(Y), and # |
| 7820 | # tanh(X) = sgn*( z/(2+z) ). # |
| 7821 | # Exit. # |
| 7822 | # # |
| 7823 | # 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # |
| 7824 | # go to 7. # |
| 7825 | # # |
| 7826 | # 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # |
| 7827 | # # |
| 7828 | # 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # |
| 7829 | # sgn := sign(X), y := 2|X|, z := exp(Y), # |
| 7830 | # tanh(X) = sgn - [ sgn*2/(1+z) ]. # |
| 7831 | # Exit. # |
| 7832 | # # |
| 7833 | # 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # |
| 7834 | # calculate Tanh(X) by # |
| 7835 | # sgn := sign(X), Tiny := 2**(-126), # |
| 7836 | # tanh(X) := sgn - sgn*Tiny. # |
| 7837 | # Exit. # |
| 7838 | # # |
| 7839 | # 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # |
| 7840 | # # |
| 7841 | ######################################################################### |
| 7842 | |
| 7843 | set X,FP_SCR0 |
| 7844 | set XFRAC,X+4 |
| 7845 | |
| 7846 | set SGN,L_SCR3 |
| 7847 | |
| 7848 | set V,FP_SCR0 |
| 7849 | |
| 7850 | global stanh |
| 7851 | stanh: |
| 7852 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 7853 | |
| 7854 | fmov.x %fp0,X(%a6) |
| 7855 | mov.l (%a0),%d1 |
| 7856 | mov.w 4(%a0),%d1 |
| 7857 | mov.l %d1,X(%a6) |
| 7858 | and.l &0x7FFFFFFF,%d1 |
| 7859 | cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? |
| 7860 | blt.w TANHBORS # yes |
| 7861 | cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? |
| 7862 | bgt.w TANHBORS # yes |
| 7863 | |
| 7864 | #--THIS IS THE USUAL CASE |
| 7865 | #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). |
| 7866 | |
| 7867 | mov.l X(%a6),%d1 |
| 7868 | mov.l %d1,SGN(%a6) |
| 7869 | and.l &0x7FFF0000,%d1 |
| 7870 | add.l &0x00010000,%d1 # EXPONENT OF 2|X| |
| 7871 | mov.l %d1,X(%a6) |
| 7872 | and.l &0x80000000,SGN(%a6) |
| 7873 | fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| |
| 7874 | |
| 7875 | mov.l %d0,-(%sp) |
| 7876 | clr.l %d0 |
| 7877 | fmovm.x &0x1,-(%sp) # save Y on stack |
| 7878 | lea (%sp),%a0 # pass ptr to Y |
| 7879 | bsr setoxm1 # FP0 IS Z = EXPM1(Y) |
| 7880 | add.l &0xc,%sp # clear Y from stack |
| 7881 | mov.l (%sp)+,%d0 |
| 7882 | |
| 7883 | fmov.x %fp0,%fp1 |
| 7884 | fadd.s &0x40000000,%fp1 # Z+2 |
| 7885 | mov.l SGN(%a6),%d1 |
| 7886 | fmov.x %fp1,V(%a6) |
| 7887 | eor.l %d1,V(%a6) |
| 7888 | |
| 7889 | fmov.l %d0,%fpcr # restore users round prec,mode |
| 7890 | fdiv.x V(%a6),%fp0 |
| 7891 | bra t_inx2 |
| 7892 | |
| 7893 | TANHBORS: |
| 7894 | cmp.l %d1,&0x3FFF8000 |
| 7895 | blt.w TANHSM |
| 7896 | |
| 7897 | cmp.l %d1,&0x40048AA1 |
| 7898 | bgt.w TANHHUGE |
| 7899 | |
| 7900 | #-- (5/2) LOG2 < |X| < 50 LOG2, |
| 7901 | #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), |
| 7902 | #--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. |
| 7903 | |
| 7904 | mov.l X(%a6),%d1 |
| 7905 | mov.l %d1,SGN(%a6) |
| 7906 | and.l &0x7FFF0000,%d1 |
| 7907 | add.l &0x00010000,%d1 # EXPO OF 2|X| |
| 7908 | mov.l %d1,X(%a6) # Y = 2|X| |
| 7909 | and.l &0x80000000,SGN(%a6) |
| 7910 | mov.l SGN(%a6),%d1 |
| 7911 | fmov.x X(%a6),%fp0 # Y = 2|X| |
| 7912 | |
| 7913 | mov.l %d0,-(%sp) |
| 7914 | clr.l %d0 |
| 7915 | fmovm.x &0x01,-(%sp) # save Y on stack |
| 7916 | lea (%sp),%a0 # pass ptr to Y |
| 7917 | bsr setox # FP0 IS EXP(Y) |
| 7918 | add.l &0xc,%sp # clear Y from stack |
| 7919 | mov.l (%sp)+,%d0 |
| 7920 | mov.l SGN(%a6),%d1 |
| 7921 | fadd.s &0x3F800000,%fp0 # EXP(Y)+1 |
| 7922 | |
| 7923 | eor.l &0xC0000000,%d1 # -SIGN(X)*2 |
| 7924 | fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT |
| 7925 | fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] |
| 7926 | |
| 7927 | mov.l SGN(%a6),%d1 |
| 7928 | or.l &0x3F800000,%d1 # SGN |
| 7929 | fmov.s %d1,%fp0 # SGN IN SGL FMT |
| 7930 | |
| 7931 | fmov.l %d0,%fpcr # restore users round prec,mode |
| 7932 | mov.b &FADD_OP,%d1 # last inst is ADD |
| 7933 | fadd.x %fp1,%fp0 |
| 7934 | bra t_inx2 |
| 7935 | |
| 7936 | TANHSM: |
| 7937 | fmov.l %d0,%fpcr # restore users round prec,mode |
| 7938 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 7939 | fmov.x X(%a6),%fp0 # last inst - possible exception set |
| 7940 | bra t_catch |
| 7941 | |
| 7942 | #---RETURN SGN(X) - SGN(X)EPS |
| 7943 | TANHHUGE: |
| 7944 | mov.l X(%a6),%d1 |
| 7945 | and.l &0x80000000,%d1 |
| 7946 | or.l &0x3F800000,%d1 |
| 7947 | fmov.s %d1,%fp0 |
| 7948 | and.l &0x80000000,%d1 |
| 7949 | eor.l &0x80800000,%d1 # -SIGN(X)*EPS |
| 7950 | |
| 7951 | fmov.l %d0,%fpcr # restore users round prec,mode |
| 7952 | fadd.s %d1,%fp0 |
| 7953 | bra t_inx2 |
| 7954 | |
| 7955 | global stanhd |
| 7956 | #--TANH(X) = X FOR DENORMALIZED X |
| 7957 | stanhd: |
| 7958 | bra t_extdnrm |
| 7959 | |
| 7960 | ######################################################################### |
| 7961 | # slogn(): computes the natural logarithm of a normalized input # |
| 7962 | # slognd(): computes the natural logarithm of a denormalized input # |
| 7963 | # slognp1(): computes the log(1+X) of a normalized input # |
| 7964 | # slognp1d(): computes the log(1+X) of a denormalized input # |
| 7965 | # # |
| 7966 | # INPUT *************************************************************** # |
| 7967 | # a0 = pointer to extended precision input # |
| 7968 | # d0 = round precision,mode # |
| 7969 | # # |
| 7970 | # OUTPUT ************************************************************** # |
| 7971 | # fp0 = log(X) or log(1+X) # |
| 7972 | # # |
| 7973 | # ACCURACY and MONOTONICITY ******************************************* # |
| 7974 | # The returned result is within 2 ulps in 64 significant bit, # |
| 7975 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 7976 | # rounded to double precision. The result is provably monotonic # |
| 7977 | # in double precision. # |
| 7978 | # # |
| 7979 | # ALGORITHM *********************************************************** # |
| 7980 | # LOGN: # |
| 7981 | # Step 1. If |X-1| < 1/16, approximate log(X) by an odd # |
| 7982 | # polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # |
| 7983 | # move on to Step 2. # |
| 7984 | # # |
| 7985 | # Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # |
| 7986 | # seven significant bits of Y plus 2**(-7), i.e. # |
| 7987 | # F = 1.xxxxxx1 in base 2 where the six "x" match those # |
| 7988 | # of Y. Note that |Y-F| <= 2**(-7). # |
| 7989 | # # |
| 7990 | # Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # |
| 7991 | # polynomial in u, log(1+u) = poly. # |
| 7992 | # # |
| 7993 | # Step 4. Reconstruct # |
| 7994 | # log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # |
| 7995 | # by k*log(2) + (log(F) + poly). The values of log(F) are # |
| 7996 | # calculated beforehand and stored in the program. # |
| 7997 | # # |
| 7998 | # lognp1: # |
| 7999 | # Step 1: If |X| < 1/16, approximate log(1+X) by an odd # |
| 8000 | # polynomial in u where u = 2X/(2+X). Otherwise, move on # |
| 8001 | # to Step 2. # |
| 8002 | # # |
| 8003 | # Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # |
| 8004 | # in Step 2 of the algorithm for LOGN and compute # |
| 8005 | # log(1+X) as k*log(2) + log(F) + poly where poly # |
| 8006 | # approximates log(1+u), u = (Y-F)/F. # |
| 8007 | # # |
| 8008 | # Implementation Notes: # |
| 8009 | # Note 1. There are 64 different possible values for F, thus 64 # |
| 8010 | # log(F)'s need to be tabulated. Moreover, the values of # |
| 8011 | # 1/F are also tabulated so that the division in (Y-F)/F # |
| 8012 | # can be performed by a multiplication. # |
| 8013 | # # |
| 8014 | # Note 2. In Step 2 of lognp1, in order to preserved accuracy, # |
| 8015 | # the value Y-F has to be calculated carefully when # |
| 8016 | # 1/2 <= X < 3/2. # |
| 8017 | # # |
| 8018 | # Note 3. To fully exploit the pipeline, polynomials are usually # |
| 8019 | # separated into two parts evaluated independently before # |
| 8020 | # being added up. # |
| 8021 | # # |
| 8022 | ######################################################################### |
| 8023 | LOGOF2: |
| 8024 | long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 |
| 8025 | |
| 8026 | one: |
| 8027 | long 0x3F800000 |
| 8028 | zero: |
| 8029 | long 0x00000000 |
| 8030 | infty: |
| 8031 | long 0x7F800000 |
| 8032 | negone: |
| 8033 | long 0xBF800000 |
| 8034 | |
| 8035 | LOGA6: |
| 8036 | long 0x3FC2499A,0xB5E4040B |
| 8037 | LOGA5: |
| 8038 | long 0xBFC555B5,0x848CB7DB |
| 8039 | |
| 8040 | LOGA4: |
| 8041 | long 0x3FC99999,0x987D8730 |
| 8042 | LOGA3: |
| 8043 | long 0xBFCFFFFF,0xFF6F7E97 |
| 8044 | |
| 8045 | LOGA2: |
| 8046 | long 0x3FD55555,0x555555A4 |
| 8047 | LOGA1: |
| 8048 | long 0xBFE00000,0x00000008 |
| 8049 | |
| 8050 | LOGB5: |
| 8051 | long 0x3F175496,0xADD7DAD6 |
| 8052 | LOGB4: |
| 8053 | long 0x3F3C71C2,0xFE80C7E0 |
| 8054 | |
| 8055 | LOGB3: |
| 8056 | long 0x3F624924,0x928BCCFF |
| 8057 | LOGB2: |
| 8058 | long 0x3F899999,0x999995EC |
| 8059 | |
| 8060 | LOGB1: |
| 8061 | long 0x3FB55555,0x55555555 |
| 8062 | TWO: |
| 8063 | long 0x40000000,0x00000000 |
| 8064 | |
| 8065 | LTHOLD: |
| 8066 | long 0x3f990000,0x80000000,0x00000000,0x00000000 |
| 8067 | |
| 8068 | LOGTBL: |
| 8069 | long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 |
| 8070 | long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 |
| 8071 | long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 |
| 8072 | long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 |
| 8073 | long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 |
| 8074 | long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 |
| 8075 | long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 |
| 8076 | long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 |
| 8077 | long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 |
| 8078 | long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 |
| 8079 | long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 |
| 8080 | long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 |
| 8081 | long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 |
| 8082 | long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 |
| 8083 | long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 |
| 8084 | long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 |
| 8085 | long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 |
| 8086 | long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 |
| 8087 | long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 |
| 8088 | long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 |
| 8089 | long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 |
| 8090 | long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 |
| 8091 | long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 |
| 8092 | long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 |
| 8093 | long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 |
| 8094 | long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 |
| 8095 | long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 |
| 8096 | long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 |
| 8097 | long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 |
| 8098 | long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 |
| 8099 | long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 |
| 8100 | long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 |
| 8101 | long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 |
| 8102 | long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 |
| 8103 | long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 |
| 8104 | long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 |
| 8105 | long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 |
| 8106 | long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 |
| 8107 | long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 |
| 8108 | long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 |
| 8109 | long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 |
| 8110 | long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 |
| 8111 | long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 |
| 8112 | long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 |
| 8113 | long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 |
| 8114 | long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 |
| 8115 | long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 |
| 8116 | long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 |
| 8117 | long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 |
| 8118 | long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 |
| 8119 | long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 |
| 8120 | long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 |
| 8121 | long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 |
| 8122 | long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 |
| 8123 | long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 |
| 8124 | long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 |
| 8125 | long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 |
| 8126 | long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 |
| 8127 | long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 |
| 8128 | long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 |
| 8129 | long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 |
| 8130 | long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 |
| 8131 | long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 |
| 8132 | long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 |
| 8133 | long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 |
| 8134 | long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 |
| 8135 | long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 |
| 8136 | long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 |
| 8137 | long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 |
| 8138 | long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 |
| 8139 | long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 |
| 8140 | long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 |
| 8141 | long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 |
| 8142 | long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 |
| 8143 | long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 |
| 8144 | long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 |
| 8145 | long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 |
| 8146 | long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 |
| 8147 | long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 |
| 8148 | long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 |
| 8149 | long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 |
| 8150 | long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 |
| 8151 | long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 |
| 8152 | long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 |
| 8153 | long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 |
| 8154 | long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 |
| 8155 | long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 |
| 8156 | long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 |
| 8157 | long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 |
| 8158 | long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 |
| 8159 | long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 |
| 8160 | long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 |
| 8161 | long 0x3FFE0000,0x94458094,0x45809446,0x00000000 |
| 8162 | long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 |
| 8163 | long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 |
| 8164 | long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 |
| 8165 | long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 |
| 8166 | long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 |
| 8167 | long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 |
| 8168 | long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 |
| 8169 | long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 |
| 8170 | long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 |
| 8171 | long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 |
| 8172 | long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 |
| 8173 | long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 |
| 8174 | long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 |
| 8175 | long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 |
| 8176 | long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 |
| 8177 | long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 |
| 8178 | long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 |
| 8179 | long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 |
| 8180 | long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 |
| 8181 | long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 |
| 8182 | long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 |
| 8183 | long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 |
| 8184 | long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 |
| 8185 | long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 |
| 8186 | long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 |
| 8187 | long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 |
| 8188 | long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 |
| 8189 | long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 |
| 8190 | long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 |
| 8191 | long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 |
| 8192 | long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 |
| 8193 | long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 |
| 8194 | long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 |
| 8195 | long 0x3FFE0000,0x80808080,0x80808081,0x00000000 |
| 8196 | long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 |
| 8197 | |
| 8198 | set ADJK,L_SCR1 |
| 8199 | |
| 8200 | set X,FP_SCR0 |
| 8201 | set XDCARE,X+2 |
| 8202 | set XFRAC,X+4 |
| 8203 | |
| 8204 | set F,FP_SCR1 |
| 8205 | set FFRAC,F+4 |
| 8206 | |
| 8207 | set KLOG2,FP_SCR0 |
| 8208 | |
| 8209 | set SAVEU,FP_SCR0 |
| 8210 | |
| 8211 | global slogn |
| 8212 | #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S |
| 8213 | slogn: |
| 8214 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 8215 | mov.l &0x00000000,ADJK(%a6) |
| 8216 | |
| 8217 | LOGBGN: |
| 8218 | #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS |
| 8219 | #--A FINITE, NON-ZERO, NORMALIZED NUMBER. |
| 8220 | |
| 8221 | mov.l (%a0),%d1 |
| 8222 | mov.w 4(%a0),%d1 |
| 8223 | |
| 8224 | mov.l (%a0),X(%a6) |
| 8225 | mov.l 4(%a0),X+4(%a6) |
| 8226 | mov.l 8(%a0),X+8(%a6) |
| 8227 | |
| 8228 | cmp.l %d1,&0 # CHECK IF X IS NEGATIVE |
| 8229 | blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID |
| 8230 | # X IS POSITIVE, CHECK IF X IS NEAR 1 |
| 8231 | cmp.l %d1,&0x3ffef07d # IS X < 15/16? |
| 8232 | blt.b LOGMAIN # YES |
| 8233 | cmp.l %d1,&0x3fff8841 # IS X > 17/16? |
| 8234 | ble.w LOGNEAR1 # NO |
| 8235 | |
| 8236 | LOGMAIN: |
| 8237 | #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 |
| 8238 | |
| 8239 | #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. |
| 8240 | #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. |
| 8241 | #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) |
| 8242 | #-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). |
| 8243 | #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING |
| 8244 | #--LOG(1+U) CAN BE VERY EFFICIENT. |
| 8245 | #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO |
| 8246 | #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. |
| 8247 | |
| 8248 | #--GET K, Y, F, AND ADDRESS OF 1/F. |
| 8249 | asr.l &8,%d1 |
| 8250 | asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X |
| 8251 | sub.l &0x3FFF,%d1 # THIS IS K |
| 8252 | add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. |
| 8253 | lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) |
| 8254 | fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT |
| 8255 | |
| 8256 | #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F |
| 8257 | mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X |
| 8258 | mov.l XFRAC(%a6),FFRAC(%a6) |
| 8259 | and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y |
| 8260 | or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT |
| 8261 | mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F |
| 8262 | and.l &0x7E000000,%d1 |
| 8263 | asr.l &8,%d1 |
| 8264 | asr.l &8,%d1 |
| 8265 | asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT |
| 8266 | add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F |
| 8267 | |
| 8268 | fmov.x X(%a6),%fp0 |
| 8269 | mov.l &0x3fff0000,F(%a6) |
| 8270 | clr.l F+8(%a6) |
| 8271 | fsub.x F(%a6),%fp0 # Y-F |
| 8272 | fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY |
| 8273 | #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K |
| 8274 | #--REGISTERS SAVED: FPCR, FP1, FP2 |
| 8275 | |
| 8276 | LP1CONT1: |
| 8277 | #--AN RE-ENTRY POINT FOR LOGNP1 |
| 8278 | fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F |
| 8279 | fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY |
| 8280 | fmov.x %fp0,%fp2 |
| 8281 | fmul.x %fp2,%fp2 # FP2 IS V=U*U |
| 8282 | fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 |
| 8283 | |
| 8284 | #--LOG(1+U) IS APPROXIMATED BY |
| 8285 | #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS |
| 8286 | #--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] |
| 8287 | |
| 8288 | fmov.x %fp2,%fp3 |
| 8289 | fmov.x %fp2,%fp1 |
| 8290 | |
| 8291 | fmul.d LOGA6(%pc),%fp1 # V*A6 |
| 8292 | fmul.d LOGA5(%pc),%fp2 # V*A5 |
| 8293 | |
| 8294 | fadd.d LOGA4(%pc),%fp1 # A4+V*A6 |
| 8295 | fadd.d LOGA3(%pc),%fp2 # A3+V*A5 |
| 8296 | |
| 8297 | fmul.x %fp3,%fp1 # V*(A4+V*A6) |
| 8298 | fmul.x %fp3,%fp2 # V*(A3+V*A5) |
| 8299 | |
| 8300 | fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) |
| 8301 | fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) |
| 8302 | |
| 8303 | fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) |
| 8304 | add.l &16,%a0 # ADDRESS OF LOG(F) |
| 8305 | fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) |
| 8306 | |
| 8307 | fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) |
| 8308 | fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) |
| 8309 | |
| 8310 | fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) |
| 8311 | fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 |
| 8312 | fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) |
| 8313 | |
| 8314 | fmov.l %d0,%fpcr |
| 8315 | fadd.x KLOG2(%a6),%fp0 # FINAL ADD |
| 8316 | bra t_inx2 |
| 8317 | |
| 8318 | |
| 8319 | LOGNEAR1: |
| 8320 | |
| 8321 | # if the input is exactly equal to one, then exit through ld_pzero. |
| 8322 | # if these 2 lines weren't here, the correct answer would be returned |
| 8323 | # but the INEX2 bit would be set. |
| 8324 | fcmp.b %fp0,&0x1 # is it equal to one? |
| 8325 | fbeq.l ld_pzero # yes |
| 8326 | |
| 8327 | #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. |
| 8328 | fmov.x %fp0,%fp1 |
| 8329 | fsub.s one(%pc),%fp1 # FP1 IS X-1 |
| 8330 | fadd.s one(%pc),%fp0 # FP0 IS X+1 |
| 8331 | fadd.x %fp1,%fp1 # FP1 IS 2(X-1) |
| 8332 | #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL |
| 8333 | #--IN U, U = 2(X-1)/(X+1) = FP1/FP0 |
| 8334 | |
| 8335 | LP1CONT2: |
| 8336 | #--THIS IS AN RE-ENTRY POINT FOR LOGNP1 |
| 8337 | fdiv.x %fp0,%fp1 # FP1 IS U |
| 8338 | fmovm.x &0xc,-(%sp) # SAVE FP2-3 |
| 8339 | #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 |
| 8340 | #--LET V=U*U, W=V*V, CALCULATE |
| 8341 | #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY |
| 8342 | #--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) |
| 8343 | fmov.x %fp1,%fp0 |
| 8344 | fmul.x %fp0,%fp0 # FP0 IS V |
| 8345 | fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 |
| 8346 | fmov.x %fp0,%fp1 |
| 8347 | fmul.x %fp1,%fp1 # FP1 IS W |
| 8348 | |
| 8349 | fmov.d LOGB5(%pc),%fp3 |
| 8350 | fmov.d LOGB4(%pc),%fp2 |
| 8351 | |
| 8352 | fmul.x %fp1,%fp3 # W*B5 |
| 8353 | fmul.x %fp1,%fp2 # W*B4 |
| 8354 | |
| 8355 | fadd.d LOGB3(%pc),%fp3 # B3+W*B5 |
| 8356 | fadd.d LOGB2(%pc),%fp2 # B2+W*B4 |
| 8357 | |
| 8358 | fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED |
| 8359 | |
| 8360 | fmul.x %fp0,%fp2 # V*(B2+W*B4) |
| 8361 | |
| 8362 | fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) |
| 8363 | fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V |
| 8364 | |
| 8365 | fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED |
| 8366 | fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED |
| 8367 | |
| 8368 | fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) |
| 8369 | |
| 8370 | fmov.l %d0,%fpcr |
| 8371 | fadd.x SAVEU(%a6),%fp0 |
| 8372 | bra t_inx2 |
| 8373 | |
| 8374 | #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID |
| 8375 | LOGNEG: |
| 8376 | bra t_operr |
| 8377 | |
| 8378 | global slognd |
| 8379 | slognd: |
| 8380 | #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT |
| 8381 | |
| 8382 | mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 |
| 8383 | |
| 8384 | #----normalize the input value by left shifting k bits (k to be determined |
| 8385 | #----below), adjusting exponent and storing -k to ADJK |
| 8386 | #----the value TWOTO100 is no longer needed. |
| 8387 | #----Note that this code assumes the denormalized input is NON-ZERO. |
| 8388 | |
| 8389 | movm.l &0x3f00,-(%sp) # save some registers {d2-d7} |
| 8390 | mov.l (%a0),%d3 # D3 is exponent of smallest norm. # |
| 8391 | mov.l 4(%a0),%d4 |
| 8392 | mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) |
| 8393 | clr.l %d2 # D2 used for holding K |
| 8394 | |
| 8395 | tst.l %d4 |
| 8396 | bne.b Hi_not0 |
| 8397 | |
| 8398 | Hi_0: |
| 8399 | mov.l %d5,%d4 |
| 8400 | clr.l %d5 |
| 8401 | mov.l &32,%d2 |
| 8402 | clr.l %d6 |
| 8403 | bfffo %d4{&0:&32},%d6 |
| 8404 | lsl.l %d6,%d4 |
| 8405 | add.l %d6,%d2 # (D3,D4,D5) is normalized |
| 8406 | |
| 8407 | mov.l %d3,X(%a6) |
| 8408 | mov.l %d4,XFRAC(%a6) |
| 8409 | mov.l %d5,XFRAC+4(%a6) |
| 8410 | neg.l %d2 |
| 8411 | mov.l %d2,ADJK(%a6) |
| 8412 | fmov.x X(%a6),%fp0 |
| 8413 | movm.l (%sp)+,&0xfc # restore registers {d2-d7} |
| 8414 | lea X(%a6),%a0 |
| 8415 | bra.w LOGBGN # begin regular log(X) |
| 8416 | |
| 8417 | Hi_not0: |
| 8418 | clr.l %d6 |
| 8419 | bfffo %d4{&0:&32},%d6 # find first 1 |
| 8420 | mov.l %d6,%d2 # get k |
| 8421 | lsl.l %d6,%d4 |
| 8422 | mov.l %d5,%d7 # a copy of D5 |
| 8423 | lsl.l %d6,%d5 |
| 8424 | neg.l %d6 |
| 8425 | add.l &32,%d6 |
| 8426 | lsr.l %d6,%d7 |
| 8427 | or.l %d7,%d4 # (D3,D4,D5) normalized |
| 8428 | |
| 8429 | mov.l %d3,X(%a6) |
| 8430 | mov.l %d4,XFRAC(%a6) |
| 8431 | mov.l %d5,XFRAC+4(%a6) |
| 8432 | neg.l %d2 |
| 8433 | mov.l %d2,ADJK(%a6) |
| 8434 | fmov.x X(%a6),%fp0 |
| 8435 | movm.l (%sp)+,&0xfc # restore registers {d2-d7} |
| 8436 | lea X(%a6),%a0 |
| 8437 | bra.w LOGBGN # begin regular log(X) |
| 8438 | |
| 8439 | global slognp1 |
| 8440 | #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S |
| 8441 | slognp1: |
| 8442 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 8443 | fabs.x %fp0 # test magnitude |
| 8444 | fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold |
| 8445 | fbgt.w LP1REAL # if greater, continue |
| 8446 | fmov.l %d0,%fpcr |
| 8447 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 8448 | fmov.x (%a0),%fp0 # return signed argument |
| 8449 | bra t_catch |
| 8450 | |
| 8451 | LP1REAL: |
| 8452 | fmov.x (%a0),%fp0 # LOAD INPUT |
| 8453 | mov.l &0x00000000,ADJK(%a6) |
| 8454 | fmov.x %fp0,%fp1 # FP1 IS INPUT Z |
| 8455 | fadd.s one(%pc),%fp0 # X := ROUND(1+Z) |
| 8456 | fmov.x %fp0,X(%a6) |
| 8457 | mov.w XFRAC(%a6),XDCARE(%a6) |
| 8458 | mov.l X(%a6),%d1 |
| 8459 | cmp.l %d1,&0 |
| 8460 | ble.w LP1NEG0 # LOG OF ZERO OR -VE |
| 8461 | cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? |
| 8462 | blt.w LOGMAIN |
| 8463 | cmp.l %d1,&0x3fffc000 |
| 8464 | bgt.w LOGMAIN |
| 8465 | #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, |
| 8466 | #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, |
| 8467 | #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). |
| 8468 | |
| 8469 | LP1NEAR1: |
| 8470 | #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) |
| 8471 | cmp.l %d1,&0x3ffef07d |
| 8472 | blt.w LP1CARE |
| 8473 | cmp.l %d1,&0x3fff8841 |
| 8474 | bgt.w LP1CARE |
| 8475 | |
| 8476 | LP1ONE16: |
| 8477 | #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) |
| 8478 | #--WHERE U = 2Z/(2+Z) = 2Z/(1+X). |
| 8479 | fadd.x %fp1,%fp1 # FP1 IS 2Z |
| 8480 | fadd.s one(%pc),%fp0 # FP0 IS 1+X |
| 8481 | #--U = FP1/FP0 |
| 8482 | bra.w LP1CONT2 |
| 8483 | |
| 8484 | LP1CARE: |
| 8485 | #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE |
| 8486 | #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST |
| 8487 | #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], |
| 8488 | #--THERE ARE ONLY TWO CASES. |
| 8489 | #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z |
| 8490 | #--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z |
| 8491 | #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF |
| 8492 | #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. |
| 8493 | |
| 8494 | mov.l XFRAC(%a6),FFRAC(%a6) |
| 8495 | and.l &0xFE000000,FFRAC(%a6) |
| 8496 | or.l &0x01000000,FFRAC(%a6) # F OBTAINED |
| 8497 | cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 |
| 8498 | bge.b KISZERO |
| 8499 | |
| 8500 | KISNEG1: |
| 8501 | fmov.s TWO(%pc),%fp0 |
| 8502 | mov.l &0x3fff0000,F(%a6) |
| 8503 | clr.l F+8(%a6) |
| 8504 | fsub.x F(%a6),%fp0 # 2-F |
| 8505 | mov.l FFRAC(%a6),%d1 |
| 8506 | and.l &0x7E000000,%d1 |
| 8507 | asr.l &8,%d1 |
| 8508 | asr.l &8,%d1 |
| 8509 | asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F |
| 8510 | fadd.x %fp1,%fp1 # GET 2Z |
| 8511 | fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} |
| 8512 | fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z |
| 8513 | lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F |
| 8514 | add.l %d1,%a0 |
| 8515 | fmov.s negone(%pc),%fp1 # FP1 IS K = -1 |
| 8516 | bra.w LP1CONT1 |
| 8517 | |
| 8518 | KISZERO: |
| 8519 | fmov.s one(%pc),%fp0 |
| 8520 | mov.l &0x3fff0000,F(%a6) |
| 8521 | clr.l F+8(%a6) |
| 8522 | fsub.x F(%a6),%fp0 # 1-F |
| 8523 | mov.l FFRAC(%a6),%d1 |
| 8524 | and.l &0x7E000000,%d1 |
| 8525 | asr.l &8,%d1 |
| 8526 | asr.l &8,%d1 |
| 8527 | asr.l &4,%d1 |
| 8528 | fadd.x %fp1,%fp0 # FP0 IS Y-F |
| 8529 | fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} |
| 8530 | lea LOGTBL(%pc),%a0 |
| 8531 | add.l %d1,%a0 # A0 IS ADDRESS OF 1/F |
| 8532 | fmov.s zero(%pc),%fp1 # FP1 IS K = 0 |
| 8533 | bra.w LP1CONT1 |
| 8534 | |
| 8535 | LP1NEG0: |
| 8536 | #--FPCR SAVED. D0 IS X IN COMPACT FORM. |
| 8537 | cmp.l %d1,&0 |
| 8538 | blt.b LP1NEG |
| 8539 | LP1ZERO: |
| 8540 | fmov.s negone(%pc),%fp0 |
| 8541 | |
| 8542 | fmov.l %d0,%fpcr |
| 8543 | bra t_dz |
| 8544 | |
| 8545 | LP1NEG: |
| 8546 | fmov.s zero(%pc),%fp0 |
| 8547 | |
| 8548 | fmov.l %d0,%fpcr |
| 8549 | bra t_operr |
| 8550 | |
| 8551 | global slognp1d |
| 8552 | #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT |
| 8553 | # Simply return the denorm |
| 8554 | slognp1d: |
| 8555 | bra t_extdnrm |
| 8556 | |
| 8557 | ######################################################################### |
| 8558 | # satanh(): computes the inverse hyperbolic tangent of a norm input # |
| 8559 | # satanhd(): computes the inverse hyperbolic tangent of a denorm input # |
| 8560 | # # |
| 8561 | # INPUT *************************************************************** # |
| 8562 | # a0 = pointer to extended precision input # |
| 8563 | # d0 = round precision,mode # |
| 8564 | # # |
| 8565 | # OUTPUT ************************************************************** # |
| 8566 | # fp0 = arctanh(X) # |
| 8567 | # # |
| 8568 | # ACCURACY and MONOTONICITY ******************************************* # |
| 8569 | # The returned result is within 3 ulps in 64 significant bit, # |
| 8570 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 8571 | # rounded to double precision. The result is provably monotonic # |
| 8572 | # in double precision. # |
| 8573 | # # |
| 8574 | # ALGORITHM *********************************************************** # |
| 8575 | # # |
| 8576 | # ATANH # |
| 8577 | # 1. If |X| >= 1, go to 3. # |
| 8578 | # # |
| 8579 | # 2. (|X| < 1) Calculate atanh(X) by # |
| 8580 | # sgn := sign(X) # |
| 8581 | # y := |X| # |
| 8582 | # z := 2y/(1-y) # |
| 8583 | # atanh(X) := sgn * (1/2) * logp1(z) # |
| 8584 | # Exit. # |
| 8585 | # # |
| 8586 | # 3. If |X| > 1, go to 5. # |
| 8587 | # # |
| 8588 | # 4. (|X| = 1) Generate infinity with an appropriate sign and # |
| 8589 | # divide-by-zero by # |
| 8590 | # sgn := sign(X) # |
| 8591 | # atan(X) := sgn / (+0). # |
| 8592 | # Exit. # |
| 8593 | # # |
| 8594 | # 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # |
| 8595 | # Exit. # |
| 8596 | # # |
| 8597 | ######################################################################### |
| 8598 | |
| 8599 | global satanh |
| 8600 | satanh: |
| 8601 | mov.l (%a0),%d1 |
| 8602 | mov.w 4(%a0),%d1 |
| 8603 | and.l &0x7FFFFFFF,%d1 |
| 8604 | cmp.l %d1,&0x3FFF8000 |
| 8605 | bge.b ATANHBIG |
| 8606 | |
| 8607 | #--THIS IS THE USUAL CASE, |X| < 1 |
| 8608 | #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). |
| 8609 | |
| 8610 | fabs.x (%a0),%fp0 # Y = |X| |
| 8611 | fmov.x %fp0,%fp1 |
| 8612 | fneg.x %fp1 # -Y |
| 8613 | fadd.x %fp0,%fp0 # 2Y |
| 8614 | fadd.s &0x3F800000,%fp1 # 1-Y |
| 8615 | fdiv.x %fp1,%fp0 # 2Y/(1-Y) |
| 8616 | mov.l (%a0),%d1 |
| 8617 | and.l &0x80000000,%d1 |
| 8618 | or.l &0x3F000000,%d1 # SIGN(X)*HALF |
| 8619 | mov.l %d1,-(%sp) |
| 8620 | |
| 8621 | mov.l %d0,-(%sp) # save rnd prec,mode |
| 8622 | clr.l %d0 # pass ext prec,RN |
| 8623 | fmovm.x &0x01,-(%sp) # save Z on stack |
| 8624 | lea (%sp),%a0 # pass ptr to Z |
| 8625 | bsr slognp1 # LOG1P(Z) |
| 8626 | add.l &0xc,%sp # clear Z from stack |
| 8627 | |
| 8628 | mov.l (%sp)+,%d0 # fetch old prec,mode |
| 8629 | fmov.l %d0,%fpcr # load it |
| 8630 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 8631 | fmul.s (%sp)+,%fp0 |
| 8632 | bra t_catch |
| 8633 | |
| 8634 | ATANHBIG: |
| 8635 | fabs.x (%a0),%fp0 # |X| |
| 8636 | fcmp.s %fp0,&0x3F800000 |
| 8637 | fbgt t_operr |
| 8638 | bra t_dz |
| 8639 | |
| 8640 | global satanhd |
| 8641 | #--ATANH(X) = X FOR DENORMALIZED X |
| 8642 | satanhd: |
| 8643 | bra t_extdnrm |
| 8644 | |
| 8645 | ######################################################################### |
| 8646 | # slog10(): computes the base-10 logarithm of a normalized input # |
| 8647 | # slog10d(): computes the base-10 logarithm of a denormalized input # |
| 8648 | # slog2(): computes the base-2 logarithm of a normalized input # |
| 8649 | # slog2d(): computes the base-2 logarithm of a denormalized input # |
| 8650 | # # |
| 8651 | # INPUT *************************************************************** # |
| 8652 | # a0 = pointer to extended precision input # |
| 8653 | # d0 = round precision,mode # |
| 8654 | # # |
| 8655 | # OUTPUT ************************************************************** # |
| 8656 | # fp0 = log_10(X) or log_2(X) # |
| 8657 | # # |
| 8658 | # ACCURACY and MONOTONICITY ******************************************* # |
| 8659 | # The returned result is within 1.7 ulps in 64 significant bit, # |
| 8660 | # i.e. within 0.5003 ulp to 53 bits if the result is subsequently # |
| 8661 | # rounded to double precision. The result is provably monotonic # |
| 8662 | # in double precision. # |
| 8663 | # # |
| 8664 | # ALGORITHM *********************************************************** # |
| 8665 | # # |
| 8666 | # slog10d: # |
| 8667 | # # |
| 8668 | # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| 8669 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| 8670 | # Notes: Default means round-to-nearest mode, no floating-point # |
| 8671 | # traps, and precision control = double extended. # |
| 8672 | # # |
| 8673 | # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # |
| 8674 | # Notes: Even if X is denormalized, log(X) is always normalized. # |
| 8675 | # # |
| 8676 | # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # |
| 8677 | # 2.1 Restore the user FPCR # |
| 8678 | # 2.2 Return ans := Y * INV_L10. # |
| 8679 | # # |
| 8680 | # slog10: # |
| 8681 | # # |
| 8682 | # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| 8683 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| 8684 | # Notes: Default means round-to-nearest mode, no floating-point # |
| 8685 | # traps, and precision control = double extended. # |
| 8686 | # # |
| 8687 | # Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # |
| 8688 | # # |
| 8689 | # Step 2. Compute log_10(X) = log(X) * (1/log(10)). # |
| 8690 | # 2.1 Restore the user FPCR # |
| 8691 | # 2.2 Return ans := Y * INV_L10. # |
| 8692 | # # |
| 8693 | # sLog2d: # |
| 8694 | # # |
| 8695 | # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| 8696 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| 8697 | # Notes: Default means round-to-nearest mode, no floating-point # |
| 8698 | # traps, and precision control = double extended. # |
| 8699 | # # |
| 8700 | # Step 1. Call slognd to obtain Y = log(X), the natural log of X. # |
| 8701 | # Notes: Even if X is denormalized, log(X) is always normalized. # |
| 8702 | # # |
| 8703 | # Step 2. Compute log_10(X) = log(X) * (1/log(2)). # |
| 8704 | # 2.1 Restore the user FPCR # |
| 8705 | # 2.2 Return ans := Y * INV_L2. # |
| 8706 | # # |
| 8707 | # sLog2: # |
| 8708 | # # |
| 8709 | # Step 0. If X < 0, create a NaN and raise the invalid operation # |
| 8710 | # flag. Otherwise, save FPCR in D1; set FpCR to default. # |
| 8711 | # Notes: Default means round-to-nearest mode, no floating-point # |
| 8712 | # traps, and precision control = double extended. # |
| 8713 | # # |
| 8714 | # Step 1. If X is not an integer power of two, i.e., X != 2^k, # |
| 8715 | # go to Step 3. # |
| 8716 | # # |
| 8717 | # Step 2. Return k. # |
| 8718 | # 2.1 Get integer k, X = 2^k. # |
| 8719 | # 2.2 Restore the user FPCR. # |
| 8720 | # 2.3 Return ans := convert-to-double-extended(k). # |
| 8721 | # # |
| 8722 | # Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # |
| 8723 | # # |
| 8724 | # Step 4. Compute log_2(X) = log(X) * (1/log(2)). # |
| 8725 | # 4.1 Restore the user FPCR # |
| 8726 | # 4.2 Return ans := Y * INV_L2. # |
| 8727 | # # |
| 8728 | ######################################################################### |
| 8729 | |
| 8730 | INV_L10: |
| 8731 | long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 |
| 8732 | |
| 8733 | INV_L2: |
| 8734 | long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 |
| 8735 | |
| 8736 | global slog10 |
| 8737 | #--entry point for Log10(X), X is normalized |
| 8738 | slog10: |
| 8739 | fmov.b &0x1,%fp0 |
| 8740 | fcmp.x %fp0,(%a0) # if operand == 1, |
| 8741 | fbeq.l ld_pzero # return an EXACT zero |
| 8742 | |
| 8743 | mov.l (%a0),%d1 |
| 8744 | blt.w invalid |
| 8745 | mov.l %d0,-(%sp) |
| 8746 | clr.l %d0 |
| 8747 | bsr slogn # log(X), X normal. |
| 8748 | fmov.l (%sp)+,%fpcr |
| 8749 | fmul.x INV_L10(%pc),%fp0 |
| 8750 | bra t_inx2 |
| 8751 | |
| 8752 | global slog10d |
| 8753 | #--entry point for Log10(X), X is denormalized |
| 8754 | slog10d: |
| 8755 | mov.l (%a0),%d1 |
| 8756 | blt.w invalid |
| 8757 | mov.l %d0,-(%sp) |
| 8758 | clr.l %d0 |
| 8759 | bsr slognd # log(X), X denorm. |
| 8760 | fmov.l (%sp)+,%fpcr |
| 8761 | fmul.x INV_L10(%pc),%fp0 |
| 8762 | bra t_minx2 |
| 8763 | |
| 8764 | global slog2 |
| 8765 | #--entry point for Log2(X), X is normalized |
| 8766 | slog2: |
| 8767 | mov.l (%a0),%d1 |
| 8768 | blt.w invalid |
| 8769 | |
| 8770 | mov.l 8(%a0),%d1 |
| 8771 | bne.b continue # X is not 2^k |
| 8772 | |
| 8773 | mov.l 4(%a0),%d1 |
| 8774 | and.l &0x7FFFFFFF,%d1 |
| 8775 | bne.b continue |
| 8776 | |
| 8777 | #--X = 2^k. |
| 8778 | mov.w (%a0),%d1 |
| 8779 | and.l &0x00007FFF,%d1 |
| 8780 | sub.l &0x3FFF,%d1 |
| 8781 | beq.l ld_pzero |
| 8782 | fmov.l %d0,%fpcr |
| 8783 | fmov.l %d1,%fp0 |
| 8784 | bra t_inx2 |
| 8785 | |
| 8786 | continue: |
| 8787 | mov.l %d0,-(%sp) |
| 8788 | clr.l %d0 |
| 8789 | bsr slogn # log(X), X normal. |
| 8790 | fmov.l (%sp)+,%fpcr |
| 8791 | fmul.x INV_L2(%pc),%fp0 |
| 8792 | bra t_inx2 |
| 8793 | |
| 8794 | invalid: |
| 8795 | bra t_operr |
| 8796 | |
| 8797 | global slog2d |
| 8798 | #--entry point for Log2(X), X is denormalized |
| 8799 | slog2d: |
| 8800 | mov.l (%a0),%d1 |
| 8801 | blt.w invalid |
| 8802 | mov.l %d0,-(%sp) |
| 8803 | clr.l %d0 |
| 8804 | bsr slognd # log(X), X denorm. |
| 8805 | fmov.l (%sp)+,%fpcr |
| 8806 | fmul.x INV_L2(%pc),%fp0 |
| 8807 | bra t_minx2 |
| 8808 | |
| 8809 | ######################################################################### |
| 8810 | # stwotox(): computes 2**X for a normalized input # |
| 8811 | # stwotoxd(): computes 2**X for a denormalized input # |
| 8812 | # stentox(): computes 10**X for a normalized input # |
| 8813 | # stentoxd(): computes 10**X for a denormalized input # |
| 8814 | # # |
| 8815 | # INPUT *************************************************************** # |
| 8816 | # a0 = pointer to extended precision input # |
| 8817 | # d0 = round precision,mode # |
| 8818 | # # |
| 8819 | # OUTPUT ************************************************************** # |
| 8820 | # fp0 = 2**X or 10**X # |
| 8821 | # # |
| 8822 | # ACCURACY and MONOTONICITY ******************************************* # |
| 8823 | # The returned result is within 2 ulps in 64 significant bit, # |
| 8824 | # i.e. within 0.5001 ulp to 53 bits if the result is subsequently # |
| 8825 | # rounded to double precision. The result is provably monotonic # |
| 8826 | # in double precision. # |
| 8827 | # # |
| 8828 | # ALGORITHM *********************************************************** # |
| 8829 | # # |
| 8830 | # twotox # |
| 8831 | # 1. If |X| > 16480, go to ExpBig. # |
| 8832 | # # |
| 8833 | # 2. If |X| < 2**(-70), go to ExpSm. # |
| 8834 | # # |
| 8835 | # 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # |
| 8836 | # decompose N as # |
| 8837 | # N = 64(M + M') + j, j = 0,1,2,...,63. # |
| 8838 | # # |
| 8839 | # 4. Overwrite r := r * log2. Then # |
| 8840 | # 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # |
| 8841 | # Go to expr to compute that expression. # |
| 8842 | # # |
| 8843 | # tentox # |
| 8844 | # 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # |
| 8845 | # # |
| 8846 | # 2. If |X| < 2**(-70), go to ExpSm. # |
| 8847 | # # |
| 8848 | # 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # |
| 8849 | # N := round-to-int(y). Decompose N as # |
| 8850 | # N = 64(M + M') + j, j = 0,1,2,...,63. # |
| 8851 | # # |
| 8852 | # 4. Define r as # |
| 8853 | # r := ((X - N*L1)-N*L2) * L10 # |
| 8854 | # where L1, L2 are the leading and trailing parts of # |
| 8855 | # log_10(2)/64 and L10 is the natural log of 10. Then # |
| 8856 | # 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # |
| 8857 | # Go to expr to compute that expression. # |
| 8858 | # # |
| 8859 | # expr # |
| 8860 | # 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # |
| 8861 | # # |
| 8862 | # 2. Overwrite Fact1 and Fact2 by # |
| 8863 | # Fact1 := 2**(M) * Fact1 # |
| 8864 | # Fact2 := 2**(M) * Fact2 # |
| 8865 | # Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # |
| 8866 | # # |
| 8867 | # 3. Calculate P where 1 + P approximates exp(r): # |
| 8868 | # P = r + r*r*(A1+r*(A2+...+r*A5)). # |
| 8869 | # # |
| 8870 | # 4. Let AdjFact := 2**(M'). Return # |
| 8871 | # AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # |
| 8872 | # Exit. # |
| 8873 | # # |
| 8874 | # ExpBig # |
| 8875 | # 1. Generate overflow by Huge * Huge if X > 0; otherwise, # |
| 8876 | # generate underflow by Tiny * Tiny. # |
| 8877 | # # |
| 8878 | # ExpSm # |
| 8879 | # 1. Return 1 + X. # |
| 8880 | # # |
| 8881 | ######################################################################### |
| 8882 | |
| 8883 | L2TEN64: |
| 8884 | long 0x406A934F,0x0979A371 # 64LOG10/LOG2 |
| 8885 | L10TWO1: |
| 8886 | long 0x3F734413,0x509F8000 # LOG2/64LOG10 |
| 8887 | |
| 8888 | L10TWO2: |
| 8889 | long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 |
| 8890 | |
| 8891 | LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 |
| 8892 | |
| 8893 | LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 |
| 8894 | |
| 8895 | EXPA5: long 0x3F56C16D,0x6F7BD0B2 |
| 8896 | EXPA4: long 0x3F811112,0x302C712C |
| 8897 | EXPA3: long 0x3FA55555,0x55554CC1 |
| 8898 | EXPA2: long 0x3FC55555,0x55554A54 |
| 8899 | EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 |
| 8900 | |
| 8901 | TEXPTBL: |
| 8902 | long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 |
| 8903 | long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA |
| 8904 | long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 |
| 8905 | long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 |
| 8906 | long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA |
| 8907 | long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C |
| 8908 | long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 |
| 8909 | long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA |
| 8910 | long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 |
| 8911 | long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 |
| 8912 | long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 |
| 8913 | long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 |
| 8914 | long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D |
| 8915 | long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 |
| 8916 | long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B |
| 8917 | long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 |
| 8918 | long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A |
| 8919 | long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B |
| 8920 | long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF |
| 8921 | long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA |
| 8922 | long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD |
| 8923 | long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E |
| 8924 | long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B |
| 8925 | long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB |
| 8926 | long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB |
| 8927 | long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 |
| 8928 | long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C |
| 8929 | long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 |
| 8930 | long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 |
| 8931 | long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 |
| 8932 | long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F |
| 8933 | long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C |
| 8934 | long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB |
| 8935 | long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB |
| 8936 | long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C |
| 8937 | long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA |
| 8938 | long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD |
| 8939 | long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 |
| 8940 | long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A |
| 8941 | long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 |
| 8942 | long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB |
| 8943 | long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 |
| 8944 | long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C |
| 8945 | long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 |
| 8946 | long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 |
| 8947 | long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE |
| 8948 | long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 |
| 8949 | long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 |
| 8950 | long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A |
| 8951 | long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 |
| 8952 | long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 |
| 8953 | long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 |
| 8954 | long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 |
| 8955 | long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE |
| 8956 | long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 |
| 8957 | long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F |
| 8958 | long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A |
| 8959 | long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A |
| 8960 | long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC |
| 8961 | long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F |
| 8962 | long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A |
| 8963 | long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 |
| 8964 | long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B |
| 8965 | long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 |
| 8966 | |
| 8967 | set INT,L_SCR1 |
| 8968 | |
| 8969 | set X,FP_SCR0 |
| 8970 | set XDCARE,X+2 |
| 8971 | set XFRAC,X+4 |
| 8972 | |
| 8973 | set ADJFACT,FP_SCR0 |
| 8974 | |
| 8975 | set FACT1,FP_SCR0 |
| 8976 | set FACT1HI,FACT1+4 |
| 8977 | set FACT1LOW,FACT1+8 |
| 8978 | |
| 8979 | set FACT2,FP_SCR1 |
| 8980 | set FACT2HI,FACT2+4 |
| 8981 | set FACT2LOW,FACT2+8 |
| 8982 | |
| 8983 | global stwotox |
| 8984 | #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| 8985 | stwotox: |
| 8986 | fmovm.x (%a0),&0x80 # LOAD INPUT |
| 8987 | |
| 8988 | mov.l (%a0),%d1 |
| 8989 | mov.w 4(%a0),%d1 |
| 8990 | fmov.x %fp0,X(%a6) |
| 8991 | and.l &0x7FFFFFFF,%d1 |
| 8992 | |
| 8993 | cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? |
| 8994 | bge.b TWOOK1 |
| 8995 | bra.w EXPBORS |
| 8996 | |
| 8997 | TWOOK1: |
| 8998 | cmp.l %d1,&0x400D80C0 # |X| > 16480? |
| 8999 | ble.b TWOMAIN |
| 9000 | bra.w EXPBORS |
| 9001 | |
| 9002 | TWOMAIN: |
| 9003 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 |
| 9004 | |
| 9005 | fmov.x %fp0,%fp1 |
| 9006 | fmul.s &0x42800000,%fp1 # 64 * X |
| 9007 | fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) |
| 9008 | mov.l %d2,-(%sp) |
| 9009 | lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) |
| 9010 | fmov.l INT(%a6),%fp1 # N --> FLOATING FMT |
| 9011 | mov.l INT(%a6),%d1 |
| 9012 | mov.l %d1,%d2 |
| 9013 | and.l &0x3F,%d1 # D0 IS J |
| 9014 | asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) |
| 9015 | add.l %d1,%a1 # ADDRESS FOR 2^(J/64) |
| 9016 | asr.l &6,%d2 # d2 IS L, N = 64L + J |
| 9017 | mov.l %d2,%d1 |
| 9018 | asr.l &1,%d1 # D0 IS M |
| 9019 | sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J |
| 9020 | add.l &0x3FFF,%d2 |
| 9021 | |
| 9022 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), |
| 9023 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. |
| 9024 | #--ADJFACT = 2^(M'). |
| 9025 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. |
| 9026 | |
| 9027 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| 9028 | |
| 9029 | fmul.s &0x3C800000,%fp1 # (1/64)*N |
| 9030 | mov.l (%a1)+,FACT1(%a6) |
| 9031 | mov.l (%a1)+,FACT1HI(%a6) |
| 9032 | mov.l (%a1)+,FACT1LOW(%a6) |
| 9033 | mov.w (%a1)+,FACT2(%a6) |
| 9034 | |
| 9035 | fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) |
| 9036 | |
| 9037 | mov.w (%a1)+,FACT2HI(%a6) |
| 9038 | clr.w FACT2HI+2(%a6) |
| 9039 | clr.l FACT2LOW(%a6) |
| 9040 | add.w %d1,FACT1(%a6) |
| 9041 | fmul.x LOG2(%pc),%fp0 # FP0 IS R |
| 9042 | add.w %d1,FACT2(%a6) |
| 9043 | |
| 9044 | bra.w expr |
| 9045 | |
| 9046 | EXPBORS: |
| 9047 | #--FPCR, D0 SAVED |
| 9048 | cmp.l %d1,&0x3FFF8000 |
| 9049 | bgt.b TEXPBIG |
| 9050 | |
| 9051 | #--|X| IS SMALL, RETURN 1 + X |
| 9052 | |
| 9053 | fmov.l %d0,%fpcr # restore users round prec,mode |
| 9054 | fadd.s &0x3F800000,%fp0 # RETURN 1 + X |
| 9055 | bra t_pinx2 |
| 9056 | |
| 9057 | TEXPBIG: |
| 9058 | #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW |
| 9059 | #--REGISTERS SAVE SO FAR ARE FPCR AND D0 |
| 9060 | mov.l X(%a6),%d1 |
| 9061 | cmp.l %d1,&0 |
| 9062 | blt.b EXPNEG |
| 9063 | |
| 9064 | bra t_ovfl2 # t_ovfl expects positive value |
| 9065 | |
| 9066 | EXPNEG: |
| 9067 | bra t_unfl2 # t_unfl expects positive value |
| 9068 | |
| 9069 | global stwotoxd |
| 9070 | stwotoxd: |
| 9071 | #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT |
| 9072 | |
| 9073 | fmov.l %d0,%fpcr # set user's rounding mode/precision |
| 9074 | fmov.s &0x3F800000,%fp0 # RETURN 1 + X |
| 9075 | mov.l (%a0),%d1 |
| 9076 | or.l &0x00800001,%d1 |
| 9077 | fadd.s %d1,%fp0 |
| 9078 | bra t_pinx2 |
| 9079 | |
| 9080 | global stentox |
| 9081 | #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S |
| 9082 | stentox: |
| 9083 | fmovm.x (%a0),&0x80 # LOAD INPUT |
| 9084 | |
| 9085 | mov.l (%a0),%d1 |
| 9086 | mov.w 4(%a0),%d1 |
| 9087 | fmov.x %fp0,X(%a6) |
| 9088 | and.l &0x7FFFFFFF,%d1 |
| 9089 | |
| 9090 | cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? |
| 9091 | bge.b TENOK1 |
| 9092 | bra.w EXPBORS |
| 9093 | |
| 9094 | TENOK1: |
| 9095 | cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? |
| 9096 | ble.b TENMAIN |
| 9097 | bra.w EXPBORS |
| 9098 | |
| 9099 | TENMAIN: |
| 9100 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 |
| 9101 | |
| 9102 | fmov.x %fp0,%fp1 |
| 9103 | fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 |
| 9104 | fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) |
| 9105 | mov.l %d2,-(%sp) |
| 9106 | lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) |
| 9107 | fmov.l INT(%a6),%fp1 # N --> FLOATING FMT |
| 9108 | mov.l INT(%a6),%d1 |
| 9109 | mov.l %d1,%d2 |
| 9110 | and.l &0x3F,%d1 # D0 IS J |
| 9111 | asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) |
| 9112 | add.l %d1,%a1 # ADDRESS FOR 2^(J/64) |
| 9113 | asr.l &6,%d2 # d2 IS L, N = 64L + J |
| 9114 | mov.l %d2,%d1 |
| 9115 | asr.l &1,%d1 # D0 IS M |
| 9116 | sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J |
| 9117 | add.l &0x3FFF,%d2 |
| 9118 | |
| 9119 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), |
| 9120 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. |
| 9121 | #--ADJFACT = 2^(M'). |
| 9122 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. |
| 9123 | fmovm.x &0x0c,-(%sp) # save fp2/fp3 |
| 9124 | |
| 9125 | fmov.x %fp1,%fp2 |
| 9126 | |
| 9127 | fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD |
| 9128 | mov.l (%a1)+,FACT1(%a6) |
| 9129 | |
| 9130 | fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL |
| 9131 | |
| 9132 | mov.l (%a1)+,FACT1HI(%a6) |
| 9133 | mov.l (%a1)+,FACT1LOW(%a6) |
| 9134 | fsub.x %fp1,%fp0 # X - N L_LEAD |
| 9135 | mov.w (%a1)+,FACT2(%a6) |
| 9136 | |
| 9137 | fsub.x %fp2,%fp0 # X - N L_TRAIL |
| 9138 | |
| 9139 | mov.w (%a1)+,FACT2HI(%a6) |
| 9140 | clr.w FACT2HI+2(%a6) |
| 9141 | clr.l FACT2LOW(%a6) |
| 9142 | |
| 9143 | fmul.x LOG10(%pc),%fp0 # FP0 IS R |
| 9144 | add.w %d1,FACT1(%a6) |
| 9145 | add.w %d1,FACT2(%a6) |
| 9146 | |
| 9147 | expr: |
| 9148 | #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. |
| 9149 | #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). |
| 9150 | #--FP0 IS R. THE FOLLOWING CODE COMPUTES |
| 9151 | #-- 2**(M'+M) * 2**(J/64) * EXP(R) |
| 9152 | |
| 9153 | fmov.x %fp0,%fp1 |
| 9154 | fmul.x %fp1,%fp1 # FP1 IS S = R*R |
| 9155 | |
| 9156 | fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 |
| 9157 | fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 |
| 9158 | |
| 9159 | fmul.x %fp1,%fp2 # FP2 IS S*A5 |
| 9160 | fmul.x %fp1,%fp3 # FP3 IS S*A4 |
| 9161 | |
| 9162 | fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 |
| 9163 | fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 |
| 9164 | |
| 9165 | fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) |
| 9166 | fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) |
| 9167 | |
| 9168 | fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) |
| 9169 | fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) |
| 9170 | |
| 9171 | fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) |
| 9172 | fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) |
| 9173 | fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 |
| 9174 | |
| 9175 | fmovm.x (%sp)+,&0x30 # restore fp2/fp3 |
| 9176 | |
| 9177 | #--FINAL RECONSTRUCTION PROCESS |
| 9178 | #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) |
| 9179 | |
| 9180 | fmul.x FACT1(%a6),%fp0 |
| 9181 | fadd.x FACT2(%a6),%fp0 |
| 9182 | fadd.x FACT1(%a6),%fp0 |
| 9183 | |
| 9184 | fmov.l %d0,%fpcr # restore users round prec,mode |
| 9185 | mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT |
| 9186 | mov.l (%sp)+,%d2 |
| 9187 | mov.l &0x80000000,ADJFACT+4(%a6) |
| 9188 | clr.l ADJFACT+8(%a6) |
| 9189 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 9190 | fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT |
| 9191 | bra t_catch |
| 9192 | |
| 9193 | global stentoxd |
| 9194 | stentoxd: |
| 9195 | #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT |
| 9196 | |
| 9197 | fmov.l %d0,%fpcr # set user's rounding mode/precision |
| 9198 | fmov.s &0x3F800000,%fp0 # RETURN 1 + X |
| 9199 | mov.l (%a0),%d1 |
| 9200 | or.l &0x00800001,%d1 |
| 9201 | fadd.s %d1,%fp0 |
| 9202 | bra t_pinx2 |
| 9203 | |
| 9204 | ######################################################################### |
| 9205 | # sscale(): computes the destination operand scaled by the source # |
| 9206 | # operand. If the absoulute value of the source operand is # |
| 9207 | # >= 2^14, an overflow or underflow is returned. # |
| 9208 | # # |
| 9209 | # INPUT *************************************************************** # |
| 9210 | # a0 = pointer to double-extended source operand X # |
| 9211 | # a1 = pointer to double-extended destination operand Y # |
| 9212 | # # |
| 9213 | # OUTPUT ************************************************************** # |
| 9214 | # fp0 = scale(X,Y) # |
| 9215 | # # |
| 9216 | ######################################################################### |
| 9217 | |
| 9218 | set SIGN, L_SCR1 |
| 9219 | |
| 9220 | global sscale |
| 9221 | sscale: |
| 9222 | mov.l %d0,-(%sp) # store off ctrl bits for now |
| 9223 | |
| 9224 | mov.w DST_EX(%a1),%d1 # get dst exponent |
| 9225 | smi.b SIGN(%a6) # use SIGN to hold dst sign |
| 9226 | andi.l &0x00007fff,%d1 # strip sign from dst exp |
| 9227 | |
| 9228 | mov.w SRC_EX(%a0),%d0 # check src bounds |
| 9229 | andi.w &0x7fff,%d0 # clr src sign bit |
| 9230 | cmpi.w %d0,&0x3fff # is src ~ ZERO? |
| 9231 | blt.w src_small # yes |
| 9232 | cmpi.w %d0,&0x400c # no; is src too big? |
| 9233 | bgt.w src_out # yes |
| 9234 | |
| 9235 | # |
| 9236 | # Source is within 2^14 range. |
| 9237 | # |
| 9238 | src_ok: |
| 9239 | fintrz.x SRC(%a0),%fp0 # calc int of src |
| 9240 | fmov.l %fp0,%d0 # int src to d0 |
| 9241 | # don't want any accrued bits from the fintrz showing up later since |
| 9242 | # we may need to read the fpsr for the last fp op in t_catch2(). |
| 9243 | fmov.l &0x0,%fpsr |
| 9244 | |
| 9245 | tst.b DST_HI(%a1) # is dst denormalized? |
| 9246 | bmi.b sok_norm |
| 9247 | |
| 9248 | # the dst is a DENORM. normalize the DENORM and add the adjustment to |
| 9249 | # the src value. then, jump to the norm part of the routine. |
| 9250 | sok_dnrm: |
| 9251 | mov.l %d0,-(%sp) # save src for now |
| 9252 | |
| 9253 | mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy |
| 9254 | mov.l DST_HI(%a1),FP_SCR0_HI(%a6) |
| 9255 | mov.l DST_LO(%a1),FP_SCR0_LO(%a6) |
| 9256 | |
| 9257 | lea FP_SCR0(%a6),%a0 # pass ptr to DENORM |
| 9258 | bsr.l norm # normalize the DENORM |
| 9259 | neg.l %d0 |
| 9260 | add.l (%sp)+,%d0 # add adjustment to src |
| 9261 | |
| 9262 | fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM |
| 9263 | |
| 9264 | cmpi.w %d0,&-0x3fff # is the shft amt really low? |
| 9265 | bge.b sok_norm2 # thank goodness no |
| 9266 | |
| 9267 | # the multiply factor that we're trying to create should be a denorm |
| 9268 | # for the multiply to work. therefore, we're going to actually do a |
| 9269 | # multiply with a denorm which will cause an unimplemented data type |
| 9270 | # exception to be put into the machine which will be caught and corrected |
| 9271 | # later. we don't do this with the DENORMs above because this method |
| 9272 | # is slower. but, don't fret, I don't see it being used much either. |
| 9273 | fmov.l (%sp)+,%fpcr # restore user fpcr |
| 9274 | mov.l &0x80000000,%d1 # load normalized mantissa |
| 9275 | subi.l &-0x3fff,%d0 # how many should we shift? |
| 9276 | neg.l %d0 # make it positive |
| 9277 | cmpi.b %d0,&0x20 # is it > 32? |
| 9278 | bge.b sok_dnrm_32 # yes |
| 9279 | lsr.l %d0,%d1 # no; bit stays in upper lw |
| 9280 | clr.l -(%sp) # insert zero low mantissa |
| 9281 | mov.l %d1,-(%sp) # insert new high mantissa |
| 9282 | clr.l -(%sp) # make zero exponent |
| 9283 | bra.b sok_norm_cont |
| 9284 | sok_dnrm_32: |
| 9285 | subi.b &0x20,%d0 # get shift count |
| 9286 | lsr.l %d0,%d1 # make low mantissa longword |
| 9287 | mov.l %d1,-(%sp) # insert new low mantissa |
| 9288 | clr.l -(%sp) # insert zero high mantissa |
| 9289 | clr.l -(%sp) # make zero exponent |
| 9290 | bra.b sok_norm_cont |
| 9291 | |
| 9292 | # the src will force the dst to a DENORM value or worse. so, let's |
| 9293 | # create an fp multiply that will create the result. |
| 9294 | sok_norm: |
| 9295 | fmovm.x DST(%a1),&0x80 # load fp0 with normalized src |
| 9296 | sok_norm2: |
| 9297 | fmov.l (%sp)+,%fpcr # restore user fpcr |
| 9298 | |
| 9299 | addi.w &0x3fff,%d0 # turn src amt into exp value |
| 9300 | swap %d0 # put exponent in high word |
| 9301 | clr.l -(%sp) # insert new exponent |
| 9302 | mov.l &0x80000000,-(%sp) # insert new high mantissa |
| 9303 | mov.l %d0,-(%sp) # insert new lo mantissa |
| 9304 | |
| 9305 | sok_norm_cont: |
| 9306 | fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 |
| 9307 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 9308 | fmul.x (%sp)+,%fp0 # do the multiply |
| 9309 | bra t_catch2 # catch any exceptions |
| 9310 | |
| 9311 | # |
| 9312 | # Source is outside of 2^14 range. Test the sign and branch |
| 9313 | # to the appropriate exception handler. |
| 9314 | # |
| 9315 | src_out: |
| 9316 | mov.l (%sp)+,%d0 # restore ctrl bits |
| 9317 | exg %a0,%a1 # swap src,dst ptrs |
| 9318 | tst.b SRC_EX(%a1) # is src negative? |
| 9319 | bmi t_unfl # yes; underflow |
| 9320 | bra t_ovfl_sc # no; overflow |
| 9321 | |
| 9322 | # |
| 9323 | # The source input is below 1, so we check for denormalized numbers |
| 9324 | # and set unfl. |
| 9325 | # |
| 9326 | src_small: |
| 9327 | tst.b DST_HI(%a1) # is dst denormalized? |
| 9328 | bpl.b ssmall_done # yes |
| 9329 | |
| 9330 | mov.l (%sp)+,%d0 |
| 9331 | fmov.l %d0,%fpcr # no; load control bits |
| 9332 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 9333 | fmov.x DST(%a1),%fp0 # simply return dest |
| 9334 | bra t_catch2 |
| 9335 | ssmall_done: |
| 9336 | mov.l (%sp)+,%d0 # load control bits into d1 |
| 9337 | mov.l %a1,%a0 # pass ptr to dst |
| 9338 | bra t_resdnrm |
| 9339 | |
| 9340 | ######################################################################### |
| 9341 | # smod(): computes the fp MOD of the input values X,Y. # |
| 9342 | # srem(): computes the fp (IEEE) REM of the input values X,Y. # |
| 9343 | # # |
| 9344 | # INPUT *************************************************************** # |
| 9345 | # a0 = pointer to extended precision input X # |
| 9346 | # a1 = pointer to extended precision input Y # |
| 9347 | # d0 = round precision,mode # |
| 9348 | # # |
| 9349 | # The input operands X and Y can be either normalized or # |
| 9350 | # denormalized. # |
| 9351 | # # |
| 9352 | # OUTPUT ************************************************************** # |
| 9353 | # fp0 = FREM(X,Y) or FMOD(X,Y) # |
| 9354 | # # |
| 9355 | # ALGORITHM *********************************************************** # |
| 9356 | # # |
| 9357 | # Step 1. Save and strip signs of X and Y: signX := sign(X), # |
| 9358 | # signY := sign(Y), X := |X|, Y := |Y|, # |
| 9359 | # signQ := signX EOR signY. Record whether MOD or REM # |
| 9360 | # is requested. # |
| 9361 | # # |
| 9362 | # Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # |
| 9363 | # If (L < 0) then # |
| 9364 | # R := X, go to Step 4. # |
| 9365 | # else # |
| 9366 | # R := 2^(-L)X, j := L. # |
| 9367 | # endif # |
| 9368 | # # |
| 9369 | # Step 3. Perform MOD(X,Y) # |
| 9370 | # 3.1 If R = Y, go to Step 9. # |
| 9371 | # 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # |
| 9372 | # 3.3 If j = 0, go to Step 4. # |
| 9373 | # 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # |
| 9374 | # Step 3.1. # |
| 9375 | # # |
| 9376 | # Step 4. At this point, R = X - QY = MOD(X,Y). Set # |
| 9377 | # Last_Subtract := false (used in Step 7 below). If # |
| 9378 | # MOD is requested, go to Step 6. # |
| 9379 | # # |
| 9380 | # Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # |
| 9381 | # 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # |
| 9382 | # Step 6. # |
| 9383 | # 5.2 If R > Y/2, then { set Last_Subtract := true, # |
| 9384 | # Q := Q + 1, Y := signY*Y }. Go to Step 6. # |
| 9385 | # 5.3 This is the tricky case of R = Y/2. If Q is odd, # |
| 9386 | # then { Q := Q + 1, signX := -signX }. # |
| 9387 | # # |
| 9388 | # Step 6. R := signX*R. # |
| 9389 | # # |
| 9390 | # Step 7. If Last_Subtract = true, R := R - Y. # |
| 9391 | # # |
| 9392 | # Step 8. Return signQ, last 7 bits of Q, and R as required. # |
| 9393 | # # |
| 9394 | # Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # |
| 9395 | # X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # |
| 9396 | # R := 0. Return signQ, last 7 bits of Q, and R. # |
| 9397 | # # |
| 9398 | ######################################################################### |
| 9399 | |
| 9400 | set Mod_Flag,L_SCR3 |
| 9401 | set Sc_Flag,L_SCR3+1 |
| 9402 | |
| 9403 | set SignY,L_SCR2 |
| 9404 | set SignX,L_SCR2+2 |
| 9405 | set SignQ,L_SCR3+2 |
| 9406 | |
| 9407 | set Y,FP_SCR0 |
| 9408 | set Y_Hi,Y+4 |
| 9409 | set Y_Lo,Y+8 |
| 9410 | |
| 9411 | set R,FP_SCR1 |
| 9412 | set R_Hi,R+4 |
| 9413 | set R_Lo,R+8 |
| 9414 | |
| 9415 | Scale: |
| 9416 | long 0x00010000,0x80000000,0x00000000,0x00000000 |
| 9417 | |
| 9418 | global smod |
| 9419 | smod: |
| 9420 | clr.b FPSR_QBYTE(%a6) |
| 9421 | mov.l %d0,-(%sp) # save ctrl bits |
| 9422 | clr.b Mod_Flag(%a6) |
| 9423 | bra.b Mod_Rem |
| 9424 | |
| 9425 | global srem |
| 9426 | srem: |
| 9427 | clr.b FPSR_QBYTE(%a6) |
| 9428 | mov.l %d0,-(%sp) # save ctrl bits |
| 9429 | mov.b &0x1,Mod_Flag(%a6) |
| 9430 | |
| 9431 | Mod_Rem: |
| 9432 | #..Save sign of X and Y |
| 9433 | movm.l &0x3f00,-(%sp) # save data registers |
| 9434 | mov.w SRC_EX(%a0),%d3 |
| 9435 | mov.w %d3,SignY(%a6) |
| 9436 | and.l &0x00007FFF,%d3 # Y := |Y| |
| 9437 | |
| 9438 | # |
| 9439 | mov.l SRC_HI(%a0),%d4 |
| 9440 | mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| |
| 9441 | |
| 9442 | tst.l %d3 |
| 9443 | bne.b Y_Normal |
| 9444 | |
| 9445 | mov.l &0x00003FFE,%d3 # $3FFD + 1 |
| 9446 | tst.l %d4 |
| 9447 | bne.b HiY_not0 |
| 9448 | |
| 9449 | HiY_0: |
| 9450 | mov.l %d5,%d4 |
| 9451 | clr.l %d5 |
| 9452 | sub.l &32,%d3 |
| 9453 | clr.l %d6 |
| 9454 | bfffo %d4{&0:&32},%d6 |
| 9455 | lsl.l %d6,%d4 |
| 9456 | sub.l %d6,%d3 # (D3,D4,D5) is normalized |
| 9457 | # ...with bias $7FFD |
| 9458 | bra.b Chk_X |
| 9459 | |
| 9460 | HiY_not0: |
| 9461 | clr.l %d6 |
| 9462 | bfffo %d4{&0:&32},%d6 |
| 9463 | sub.l %d6,%d3 |
| 9464 | lsl.l %d6,%d4 |
| 9465 | mov.l %d5,%d7 # a copy of D5 |
| 9466 | lsl.l %d6,%d5 |
| 9467 | neg.l %d6 |
| 9468 | add.l &32,%d6 |
| 9469 | lsr.l %d6,%d7 |
| 9470 | or.l %d7,%d4 # (D3,D4,D5) normalized |
| 9471 | # ...with bias $7FFD |
| 9472 | bra.b Chk_X |
| 9473 | |
| 9474 | Y_Normal: |
| 9475 | add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized |
| 9476 | # ...with bias $7FFD |
| 9477 | |
| 9478 | Chk_X: |
| 9479 | mov.w DST_EX(%a1),%d0 |
| 9480 | mov.w %d0,SignX(%a6) |
| 9481 | mov.w SignY(%a6),%d1 |
| 9482 | eor.l %d0,%d1 |
| 9483 | and.l &0x00008000,%d1 |
| 9484 | mov.w %d1,SignQ(%a6) # sign(Q) obtained |
| 9485 | and.l &0x00007FFF,%d0 |
| 9486 | mov.l DST_HI(%a1),%d1 |
| 9487 | mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| |
| 9488 | tst.l %d0 |
| 9489 | bne.b X_Normal |
| 9490 | mov.l &0x00003FFE,%d0 |
| 9491 | tst.l %d1 |
| 9492 | bne.b HiX_not0 |
| 9493 | |
| 9494 | HiX_0: |
| 9495 | mov.l %d2,%d1 |
| 9496 | clr.l %d2 |
| 9497 | sub.l &32,%d0 |
| 9498 | clr.l %d6 |
| 9499 | bfffo %d1{&0:&32},%d6 |
| 9500 | lsl.l %d6,%d1 |
| 9501 | sub.l %d6,%d0 # (D0,D1,D2) is normalized |
| 9502 | # ...with bias $7FFD |
| 9503 | bra.b Init |
| 9504 | |
| 9505 | HiX_not0: |
| 9506 | clr.l %d6 |
| 9507 | bfffo %d1{&0:&32},%d6 |
| 9508 | sub.l %d6,%d0 |
| 9509 | lsl.l %d6,%d1 |
| 9510 | mov.l %d2,%d7 # a copy of D2 |
| 9511 | lsl.l %d6,%d2 |
| 9512 | neg.l %d6 |
| 9513 | add.l &32,%d6 |
| 9514 | lsr.l %d6,%d7 |
| 9515 | or.l %d7,%d1 # (D0,D1,D2) normalized |
| 9516 | # ...with bias $7FFD |
| 9517 | bra.b Init |
| 9518 | |
| 9519 | X_Normal: |
| 9520 | add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized |
| 9521 | # ...with bias $7FFD |
| 9522 | |
| 9523 | Init: |
| 9524 | # |
| 9525 | mov.l %d3,L_SCR1(%a6) # save biased exp(Y) |
| 9526 | mov.l %d0,-(%sp) # save biased exp(X) |
| 9527 | sub.l %d3,%d0 # L := expo(X)-expo(Y) |
| 9528 | |
| 9529 | clr.l %d6 # D6 := carry <- 0 |
| 9530 | clr.l %d3 # D3 is Q |
| 9531 | mov.l &0,%a1 # A1 is k; j+k=L, Q=0 |
| 9532 | |
| 9533 | #..(Carry,D1,D2) is R |
| 9534 | tst.l %d0 |
| 9535 | bge.b Mod_Loop_pre |
| 9536 | |
| 9537 | #..expo(X) < expo(Y). Thus X = mod(X,Y) |
| 9538 | # |
| 9539 | mov.l (%sp)+,%d0 # restore d0 |
| 9540 | bra.w Get_Mod |
| 9541 | |
| 9542 | Mod_Loop_pre: |
| 9543 | addq.l &0x4,%sp # erase exp(X) |
| 9544 | #..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L |
| 9545 | Mod_Loop: |
| 9546 | tst.l %d6 # test carry bit |
| 9547 | bgt.b R_GT_Y |
| 9548 | |
| 9549 | #..At this point carry = 0, R = (D1,D2), Y = (D4,D5) |
| 9550 | cmp.l %d1,%d4 # compare hi(R) and hi(Y) |
| 9551 | bne.b R_NE_Y |
| 9552 | cmp.l %d2,%d5 # compare lo(R) and lo(Y) |
| 9553 | bne.b R_NE_Y |
| 9554 | |
| 9555 | #..At this point, R = Y |
| 9556 | bra.w Rem_is_0 |
| 9557 | |
| 9558 | R_NE_Y: |
| 9559 | #..use the borrow of the previous compare |
| 9560 | bcs.b R_LT_Y # borrow is set iff R < Y |
| 9561 | |
| 9562 | R_GT_Y: |
| 9563 | #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 |
| 9564 | #..and Y < (D1,D2) < 2Y. Either way, perform R - Y |
| 9565 | sub.l %d5,%d2 # lo(R) - lo(Y) |
| 9566 | subx.l %d4,%d1 # hi(R) - hi(Y) |
| 9567 | clr.l %d6 # clear carry |
| 9568 | addq.l &1,%d3 # Q := Q + 1 |
| 9569 | |
| 9570 | R_LT_Y: |
| 9571 | #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. |
| 9572 | tst.l %d0 # see if j = 0. |
| 9573 | beq.b PostLoop |
| 9574 | |
| 9575 | add.l %d3,%d3 # Q := 2Q |
| 9576 | add.l %d2,%d2 # lo(R) = 2lo(R) |
| 9577 | roxl.l &1,%d1 # hi(R) = 2hi(R) + carry |
| 9578 | scs %d6 # set Carry if 2(R) overflows |
| 9579 | addq.l &1,%a1 # k := k+1 |
| 9580 | subq.l &1,%d0 # j := j - 1 |
| 9581 | #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. |
| 9582 | |
| 9583 | bra.b Mod_Loop |
| 9584 | |
| 9585 | PostLoop: |
| 9586 | #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. |
| 9587 | |
| 9588 | #..normalize R. |
| 9589 | mov.l L_SCR1(%a6),%d0 # new biased expo of R |
| 9590 | tst.l %d1 |
| 9591 | bne.b HiR_not0 |
| 9592 | |
| 9593 | HiR_0: |
| 9594 | mov.l %d2,%d1 |
| 9595 | clr.l %d2 |
| 9596 | sub.l &32,%d0 |
| 9597 | clr.l %d6 |
| 9598 | bfffo %d1{&0:&32},%d6 |
| 9599 | lsl.l %d6,%d1 |
| 9600 | sub.l %d6,%d0 # (D0,D1,D2) is normalized |
| 9601 | # ...with bias $7FFD |
| 9602 | bra.b Get_Mod |
| 9603 | |
| 9604 | HiR_not0: |
| 9605 | clr.l %d6 |
| 9606 | bfffo %d1{&0:&32},%d6 |
| 9607 | bmi.b Get_Mod # already normalized |
| 9608 | sub.l %d6,%d0 |
| 9609 | lsl.l %d6,%d1 |
| 9610 | mov.l %d2,%d7 # a copy of D2 |
| 9611 | lsl.l %d6,%d2 |
| 9612 | neg.l %d6 |
| 9613 | add.l &32,%d6 |
| 9614 | lsr.l %d6,%d7 |
| 9615 | or.l %d7,%d1 # (D0,D1,D2) normalized |
| 9616 | |
| 9617 | # |
| 9618 | Get_Mod: |
| 9619 | cmp.l %d0,&0x000041FE |
| 9620 | bge.b No_Scale |
| 9621 | Do_Scale: |
| 9622 | mov.w %d0,R(%a6) |
| 9623 | mov.l %d1,R_Hi(%a6) |
| 9624 | mov.l %d2,R_Lo(%a6) |
| 9625 | mov.l L_SCR1(%a6),%d6 |
| 9626 | mov.w %d6,Y(%a6) |
| 9627 | mov.l %d4,Y_Hi(%a6) |
| 9628 | mov.l %d5,Y_Lo(%a6) |
| 9629 | fmov.x R(%a6),%fp0 # no exception |
| 9630 | mov.b &1,Sc_Flag(%a6) |
| 9631 | bra.b ModOrRem |
| 9632 | No_Scale: |
| 9633 | mov.l %d1,R_Hi(%a6) |
| 9634 | mov.l %d2,R_Lo(%a6) |
| 9635 | sub.l &0x3FFE,%d0 |
| 9636 | mov.w %d0,R(%a6) |
| 9637 | mov.l L_SCR1(%a6),%d6 |
| 9638 | sub.l &0x3FFE,%d6 |
| 9639 | mov.l %d6,L_SCR1(%a6) |
| 9640 | fmov.x R(%a6),%fp0 |
| 9641 | mov.w %d6,Y(%a6) |
| 9642 | mov.l %d4,Y_Hi(%a6) |
| 9643 | mov.l %d5,Y_Lo(%a6) |
| 9644 | clr.b Sc_Flag(%a6) |
| 9645 | |
| 9646 | # |
| 9647 | ModOrRem: |
| 9648 | tst.b Mod_Flag(%a6) |
| 9649 | beq.b Fix_Sign |
| 9650 | |
| 9651 | mov.l L_SCR1(%a6),%d6 # new biased expo(Y) |
| 9652 | subq.l &1,%d6 # biased expo(Y/2) |
| 9653 | cmp.l %d0,%d6 |
| 9654 | blt.b Fix_Sign |
| 9655 | bgt.b Last_Sub |
| 9656 | |
| 9657 | cmp.l %d1,%d4 |
| 9658 | bne.b Not_EQ |
| 9659 | cmp.l %d2,%d5 |
| 9660 | bne.b Not_EQ |
| 9661 | bra.w Tie_Case |
| 9662 | |
| 9663 | Not_EQ: |
| 9664 | bcs.b Fix_Sign |
| 9665 | |
| 9666 | Last_Sub: |
| 9667 | # |
| 9668 | fsub.x Y(%a6),%fp0 # no exceptions |
| 9669 | addq.l &1,%d3 # Q := Q + 1 |
| 9670 | |
| 9671 | # |
| 9672 | Fix_Sign: |
| 9673 | #..Get sign of X |
| 9674 | mov.w SignX(%a6),%d6 |
| 9675 | bge.b Get_Q |
| 9676 | fneg.x %fp0 |
| 9677 | |
| 9678 | #..Get Q |
| 9679 | # |
| 9680 | Get_Q: |
| 9681 | clr.l %d6 |
| 9682 | mov.w SignQ(%a6),%d6 # D6 is sign(Q) |
| 9683 | mov.l &8,%d7 |
| 9684 | lsr.l %d7,%d6 |
| 9685 | and.l &0x0000007F,%d3 # 7 bits of Q |
| 9686 | or.l %d6,%d3 # sign and bits of Q |
| 9687 | # swap %d3 |
| 9688 | # fmov.l %fpsr,%d6 |
| 9689 | # and.l &0xFF00FFFF,%d6 |
| 9690 | # or.l %d3,%d6 |
| 9691 | # fmov.l %d6,%fpsr # put Q in fpsr |
| 9692 | mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr |
| 9693 | |
| 9694 | # |
| 9695 | Restore: |
| 9696 | movm.l (%sp)+,&0xfc # {%d2-%d7} |
| 9697 | mov.l (%sp)+,%d0 |
| 9698 | fmov.l %d0,%fpcr |
| 9699 | tst.b Sc_Flag(%a6) |
| 9700 | beq.b Finish |
| 9701 | mov.b &FMUL_OP,%d1 # last inst is MUL |
| 9702 | fmul.x Scale(%pc),%fp0 # may cause underflow |
| 9703 | bra t_catch2 |
| 9704 | # the '040 package did this apparently to see if the dst operand for the |
| 9705 | # preceding fmul was a denorm. but, it better not have been since the |
| 9706 | # algorithm just got done playing with fp0 and expected no exceptions |
| 9707 | # as a result. trust me... |
| 9708 | # bra t_avoid_unsupp # check for denorm as a |
| 9709 | # ;result of the scaling |
| 9710 | |
| 9711 | Finish: |
| 9712 | mov.b &FMOV_OP,%d1 # last inst is MOVE |
| 9713 | fmov.x %fp0,%fp0 # capture exceptions & round |
| 9714 | bra t_catch2 |
| 9715 | |
| 9716 | Rem_is_0: |
| 9717 | #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) |
| 9718 | addq.l &1,%d3 |
| 9719 | cmp.l %d0,&8 # D0 is j |
| 9720 | bge.b Q_Big |
| 9721 | |
| 9722 | lsl.l %d0,%d3 |
| 9723 | bra.b Set_R_0 |
| 9724 | |
| 9725 | Q_Big: |
| 9726 | clr.l %d3 |
| 9727 | |
| 9728 | Set_R_0: |
| 9729 | fmov.s &0x00000000,%fp0 |
| 9730 | clr.b Sc_Flag(%a6) |
| 9731 | bra.w Fix_Sign |
| 9732 | |
| 9733 | Tie_Case: |
| 9734 | #..Check parity of Q |
| 9735 | mov.l %d3,%d6 |
| 9736 | and.l &0x00000001,%d6 |
| 9737 | tst.l %d6 |
| 9738 | beq.w Fix_Sign # Q is even |
| 9739 | |
| 9740 | #..Q is odd, Q := Q + 1, signX := -signX |
| 9741 | addq.l &1,%d3 |
| 9742 | mov.w SignX(%a6),%d6 |
| 9743 | eor.l &0x00008000,%d6 |
| 9744 | mov.w %d6,SignX(%a6) |
| 9745 | bra.w Fix_Sign |
| 9746 | |
| 9747 | ######################################################################### |
| 9748 | # XDEF **************************************************************** # |
| 9749 | # tag(): return the optype of the input ext fp number # |
| 9750 | # # |
| 9751 | # This routine is used by the 060FPLSP. # |
| 9752 | # # |
| 9753 | # XREF **************************************************************** # |
| 9754 | # None # |
| 9755 | # # |
| 9756 | # INPUT *************************************************************** # |
| 9757 | # a0 = pointer to extended precision operand # |
| 9758 | # # |
| 9759 | # OUTPUT ************************************************************** # |
| 9760 | # d0 = value of type tag # |
| 9761 | # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # |
| 9762 | # # |
| 9763 | # ALGORITHM *********************************************************** # |
| 9764 | # Simply test the exponent, j-bit, and mantissa values to # |
| 9765 | # determine the type of operand. # |
| 9766 | # If it's an unnormalized zero, alter the operand and force it # |
| 9767 | # to be a normal zero. # |
| 9768 | # # |
| 9769 | ######################################################################### |
| 9770 | |
| 9771 | global tag |
| 9772 | tag: |
| 9773 | mov.w FTEMP_EX(%a0), %d0 # extract exponent |
| 9774 | andi.w &0x7fff, %d0 # strip off sign |
| 9775 | cmpi.w %d0, &0x7fff # is (EXP == MAX)? |
| 9776 | beq.b inf_or_nan_x |
| 9777 | not_inf_or_nan_x: |
| 9778 | btst &0x7,FTEMP_HI(%a0) |
| 9779 | beq.b not_norm_x |
| 9780 | is_norm_x: |
| 9781 | mov.b &NORM, %d0 |
| 9782 | rts |
| 9783 | not_norm_x: |
| 9784 | tst.w %d0 # is exponent = 0? |
| 9785 | bne.b is_unnorm_x |
| 9786 | not_unnorm_x: |
| 9787 | tst.l FTEMP_HI(%a0) |
| 9788 | bne.b is_denorm_x |
| 9789 | tst.l FTEMP_LO(%a0) |
| 9790 | bne.b is_denorm_x |
| 9791 | is_zero_x: |
| 9792 | mov.b &ZERO, %d0 |
| 9793 | rts |
| 9794 | is_denorm_x: |
| 9795 | mov.b &DENORM, %d0 |
| 9796 | rts |
| 9797 | is_unnorm_x: |
| 9798 | bsr.l unnorm_fix # convert to norm,denorm,or zero |
| 9799 | rts |
| 9800 | is_unnorm_reg_x: |
| 9801 | mov.b &UNNORM, %d0 |
| 9802 | rts |
| 9803 | inf_or_nan_x: |
| 9804 | tst.l FTEMP_LO(%a0) |
| 9805 | bne.b is_nan_x |
| 9806 | mov.l FTEMP_HI(%a0), %d0 |
| 9807 | and.l &0x7fffffff, %d0 # msb is a don't care! |
| 9808 | bne.b is_nan_x |
| 9809 | is_inf_x: |
| 9810 | mov.b &INF, %d0 |
| 9811 | rts |
| 9812 | is_nan_x: |
| 9813 | mov.b &QNAN, %d0 |
| 9814 | rts |
| 9815 | |
| 9816 | ############################################################# |
| 9817 | |
| 9818 | qnan: long 0x7fff0000, 0xffffffff, 0xffffffff |
| 9819 | |
| 9820 | ######################################################################### |
| 9821 | # XDEF **************************************************************** # |
| 9822 | # t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. # |
| 9823 | # t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. # |
| 9824 | # # |
| 9825 | # These rouitnes are used by the 060FPLSP package. # |
| 9826 | # # |
| 9827 | # XREF **************************************************************** # |
| 9828 | # None # |
| 9829 | # # |
| 9830 | # INPUT *************************************************************** # |
| 9831 | # a0 = pointer to extended precision source operand. # |
| 9832 | # # |
| 9833 | # OUTPUT ************************************************************** # |
| 9834 | # fp0 = default DZ result. # |
| 9835 | # # |
| 9836 | # ALGORITHM *********************************************************** # |
| 9837 | # Transcendental emulation for the 060FPLSP has detected that # |
| 9838 | # a DZ exception should occur for the instruction. If DZ is disabled, # |
| 9839 | # return the default result. # |
| 9840 | # If DZ is enabled, the dst operand should be returned unscathed # |
| 9841 | # in fp0 while fp1 is used to create a DZ exception so that the # |
| 9842 | # operating system can log that such an event occurred. # |
| 9843 | # # |
| 9844 | ######################################################################### |
| 9845 | |
| 9846 | global t_dz |
| 9847 | t_dz: |
| 9848 | tst.b SRC_EX(%a0) # check sign for neg or pos |
| 9849 | bpl.b dz_pinf # branch if pos sign |
| 9850 | |
| 9851 | global t_dz2 |
| 9852 | t_dz2: |
| 9853 | ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ |
| 9854 | |
| 9855 | btst &dz_bit,FPCR_ENABLE(%a6) |
| 9856 | bne.b dz_minf_ena |
| 9857 | |
| 9858 | # dz is disabled. return a -INF. |
| 9859 | fmov.s &0xff800000,%fp0 # return -INF |
| 9860 | rts |
| 9861 | |
| 9862 | # dz is enabled. create a dz exception so the user can record it |
| 9863 | # but use fp1 instead. return the dst operand unscathed in fp0. |
| 9864 | dz_minf_ena: |
| 9865 | fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed |
| 9866 | fmov.l USER_FPCR(%a6),%fpcr |
| 9867 | fmov.s &0xbf800000,%fp1 # load -1 |
| 9868 | fdiv.s &0x00000000,%fp1 # -1 / 0 |
| 9869 | rts |
| 9870 | |
| 9871 | dz_pinf: |
| 9872 | ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ |
| 9873 | |
| 9874 | btst &dz_bit,FPCR_ENABLE(%a6) |
| 9875 | bne.b dz_pinf_ena |
| 9876 | |
| 9877 | # dz is disabled. return a +INF. |
| 9878 | fmov.s &0x7f800000,%fp0 # return +INF |
| 9879 | rts |
| 9880 | |
| 9881 | # dz is enabled. create a dz exception so the user can record it |
| 9882 | # but use fp1 instead. return the dst operand unscathed in fp0. |
| 9883 | dz_pinf_ena: |
| 9884 | fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed |
| 9885 | fmov.l USER_FPCR(%a6),%fpcr |
| 9886 | fmov.s &0x3f800000,%fp1 # load +1 |
| 9887 | fdiv.s &0x00000000,%fp1 # +1 / 0 |
| 9888 | rts |
| 9889 | |
| 9890 | ######################################################################### |
| 9891 | # XDEF **************************************************************** # |
| 9892 | # t_operr(): Handle 060FPLSP OPERR exception during emulation. # |
| 9893 | # # |
| 9894 | # This routine is used by the 060FPLSP package. # |
| 9895 | # # |
| 9896 | # XREF **************************************************************** # |
| 9897 | # None. # |
| 9898 | # # |
| 9899 | # INPUT *************************************************************** # |
| 9900 | # fp1 = source operand # |
| 9901 | # # |
| 9902 | # OUTPUT ************************************************************** # |
| 9903 | # fp0 = default result # |
| 9904 | # fp1 = unchanged # |
| 9905 | # # |
| 9906 | # ALGORITHM *********************************************************** # |
| 9907 | # An operand error should occur as the result of transcendental # |
| 9908 | # emulation in the 060FPLSP. If OPERR is disabled, just return a NAN # |
| 9909 | # in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 # |
| 9910 | # and the source operand in fp1. Use fp2 to create an OPERR exception # |
| 9911 | # so that the operating system can log the event. # |
| 9912 | # # |
| 9913 | ######################################################################### |
| 9914 | |
| 9915 | global t_operr |
| 9916 | t_operr: |
| 9917 | ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP |
| 9918 | |
| 9919 | btst &operr_bit,FPCR_ENABLE(%a6) |
| 9920 | bne.b operr_ena |
| 9921 | |
| 9922 | # operr is disabled. return a QNAN in fp0 |
| 9923 | fmovm.x qnan(%pc),&0x80 # return QNAN |
| 9924 | rts |
| 9925 | |
| 9926 | # operr is enabled. create an operr exception so the user can record it |
| 9927 | # but use fp2 instead. return the dst operand unscathed in fp0. |
| 9928 | operr_ena: |
| 9929 | fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed |
| 9930 | fmov.l USER_FPCR(%a6),%fpcr |
| 9931 | fmovm.x &0x04,-(%sp) # save fp2 |
| 9932 | fmov.s &0x7f800000,%fp2 # load +INF |
| 9933 | fmul.s &0x00000000,%fp2 # +INF x 0 |
| 9934 | fmovm.x (%sp)+,&0x20 # restore fp2 |
| 9935 | rts |
| 9936 | |
| 9937 | pls_huge: |
| 9938 | long 0x7ffe0000,0xffffffff,0xffffffff |
| 9939 | mns_huge: |
| 9940 | long 0xfffe0000,0xffffffff,0xffffffff |
| 9941 | pls_tiny: |
| 9942 | long 0x00000000,0x80000000,0x00000000 |
| 9943 | mns_tiny: |
| 9944 | long 0x80000000,0x80000000,0x00000000 |
| 9945 | |
| 9946 | ######################################################################### |
| 9947 | # XDEF **************************************************************** # |
| 9948 | # t_unfl(): Handle 060FPLSP underflow exception during emulation. # |
| 9949 | # t_unfl2(): Handle 060FPLSP underflow exception during # |
| 9950 | # emulation. result always positive. # |
| 9951 | # # |
| 9952 | # This routine is used by the 060FPLSP package. # |
| 9953 | # # |
| 9954 | # XREF **************************************************************** # |
| 9955 | # None. # |
| 9956 | # # |
| 9957 | # INPUT *************************************************************** # |
| 9958 | # a0 = pointer to extended precision source operand # |
| 9959 | # # |
| 9960 | # OUTPUT ************************************************************** # |
| 9961 | # fp0 = default underflow result # |
| 9962 | # # |
| 9963 | # ALGORITHM *********************************************************** # |
| 9964 | # An underflow should occur as the result of transcendental # |
| 9965 | # emulation in the 060FPLSP. Create an underflow by using "fmul" # |
| 9966 | # and two very small numbers of appropriate sign so the operating # |
| 9967 | # system can log the event. # |
| 9968 | # # |
| 9969 | ######################################################################### |
| 9970 | |
| 9971 | global t_unfl |
| 9972 | t_unfl: |
| 9973 | tst.b SRC_EX(%a0) |
| 9974 | bpl.b unf_pos |
| 9975 | |
| 9976 | global t_unfl2 |
| 9977 | t_unfl2: |
| 9978 | ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX |
| 9979 | |
| 9980 | fmov.l USER_FPCR(%a6),%fpcr |
| 9981 | fmovm.x mns_tiny(%pc),&0x80 |
| 9982 | fmul.x pls_tiny(%pc),%fp0 |
| 9983 | |
| 9984 | fmov.l %fpsr,%d0 |
| 9985 | rol.l &0x8,%d0 |
| 9986 | mov.b %d0,FPSR_CC(%a6) |
| 9987 | rts |
| 9988 | unf_pos: |
| 9989 | ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX |
| 9990 | |
| 9991 | fmov.l USER_FPCR(%a6),%fpcr |
| 9992 | fmovm.x pls_tiny(%pc),&0x80 |
| 9993 | fmul.x %fp0,%fp0 |
| 9994 | |
| 9995 | fmov.l %fpsr,%d0 |
| 9996 | rol.l &0x8,%d0 |
| 9997 | mov.b %d0,FPSR_CC(%a6) |
| 9998 | rts |
| 9999 | |
| 10000 | ######################################################################### |
| 10001 | # XDEF **************************************************************** # |
| 10002 | # t_ovfl(): Handle 060FPLSP overflow exception during emulation. # |
| 10003 | # (monadic) # |
| 10004 | # t_ovfl2(): Handle 060FPLSP overflow exception during # |
| 10005 | # emulation. result always positive. (dyadic) # |
| 10006 | # t_ovfl_sc(): Handle 060FPLSP overflow exception during # |
| 10007 | # emulation for "fscale". # |
| 10008 | # # |
| 10009 | # This routine is used by the 060FPLSP package. # |
| 10010 | # # |
| 10011 | # XREF **************************************************************** # |
| 10012 | # None. # |
| 10013 | # # |
| 10014 | # INPUT *************************************************************** # |
| 10015 | # a0 = pointer to extended precision source operand # |
| 10016 | # # |
| 10017 | # OUTPUT ************************************************************** # |
| 10018 | # fp0 = default underflow result # |
| 10019 | # # |
| 10020 | # ALGORITHM *********************************************************** # |
| 10021 | # An overflow should occur as the result of transcendental # |
| 10022 | # emulation in the 060FPLSP. Create an overflow by using "fmul" # |
| 10023 | # and two very lareg numbers of appropriate sign so the operating # |
| 10024 | # system can log the event. # |
| 10025 | # For t_ovfl_sc() we take special care not to lose the INEX2 bit. # |
| 10026 | # # |
| 10027 | ######################################################################### |
| 10028 | |
| 10029 | global t_ovfl_sc |
| 10030 | t_ovfl_sc: |
| 10031 | ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX |
| 10032 | |
| 10033 | mov.b %d0,%d1 # fetch rnd prec,mode |
| 10034 | andi.b &0xc0,%d1 # extract prec |
| 10035 | beq.w ovfl_work |
| 10036 | |
| 10037 | # dst op is a DENORM. we have to normalize the mantissa to see if the |
| 10038 | # result would be inexact for the given precision. make a copy of the |
| 10039 | # dst so we don't screw up the version passed to us. |
| 10040 | mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) |
| 10041 | mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) |
| 10042 | mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) |
| 10043 | lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 |
| 10044 | movm.l &0xc080,-(%sp) # save d0-d1/a0 |
| 10045 | bsr.l norm # normalize mantissa |
| 10046 | movm.l (%sp)+,&0x0103 # restore d0-d1/a0 |
| 10047 | |
| 10048 | cmpi.b %d1,&0x40 # is precision sgl? |
| 10049 | bne.b ovfl_sc_dbl # no; dbl |
| 10050 | ovfl_sc_sgl: |
| 10051 | tst.l LOCAL_LO(%a0) # is lo lw of sgl set? |
| 10052 | bne.b ovfl_sc_inx # yes |
| 10053 | tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? |
| 10054 | bne.b ovfl_sc_inx # yes |
| 10055 | bra.w ovfl_work # don't set INEX2 |
| 10056 | ovfl_sc_dbl: |
| 10057 | mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of |
| 10058 | andi.l &0x7ff,%d1 # dbl mantissa set? |
| 10059 | beq.w ovfl_work # no; don't set INEX2 |
| 10060 | ovfl_sc_inx: |
| 10061 | ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 |
| 10062 | bra.b ovfl_work # continue |
| 10063 | |
| 10064 | global t_ovfl |
| 10065 | t_ovfl: |
| 10066 | ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX |
| 10067 | ovfl_work: |
| 10068 | tst.b SRC_EX(%a0) |
| 10069 | bpl.b ovfl_p |
| 10070 | ovfl_m: |
| 10071 | fmov.l USER_FPCR(%a6),%fpcr |
| 10072 | fmovm.x mns_huge(%pc),&0x80 |
| 10073 | fmul.x pls_huge(%pc),%fp0 |
| 10074 | |
| 10075 | fmov.l %fpsr,%d0 |
| 10076 | rol.l &0x8,%d0 |
| 10077 | ori.b &neg_mask,%d0 |
| 10078 | mov.b %d0,FPSR_CC(%a6) |
| 10079 | rts |
| 10080 | ovfl_p: |
| 10081 | fmov.l USER_FPCR(%a6),%fpcr |
| 10082 | fmovm.x pls_huge(%pc),&0x80 |
| 10083 | fmul.x pls_huge(%pc),%fp0 |
| 10084 | |
| 10085 | fmov.l %fpsr,%d0 |
| 10086 | rol.l &0x8,%d0 |
| 10087 | mov.b %d0,FPSR_CC(%a6) |
| 10088 | rts |
| 10089 | |
| 10090 | global t_ovfl2 |
| 10091 | t_ovfl2: |
| 10092 | ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX |
| 10093 | fmov.l USER_FPCR(%a6),%fpcr |
| 10094 | fmovm.x pls_huge(%pc),&0x80 |
| 10095 | fmul.x pls_huge(%pc),%fp0 |
| 10096 | |
| 10097 | fmov.l %fpsr,%d0 |
| 10098 | rol.l &0x8,%d0 |
| 10099 | mov.b %d0,FPSR_CC(%a6) |
| 10100 | rts |
| 10101 | |
| 10102 | ######################################################################### |
| 10103 | # XDEF **************************************************************** # |
| 10104 | # t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # |
| 10105 | # emulation. # |
| 10106 | # t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # |
| 10107 | # emulation. # |
| 10108 | # # |
| 10109 | # These routines are used by the 060FPLSP package. # |
| 10110 | # # |
| 10111 | # XREF **************************************************************** # |
| 10112 | # None. # |
| 10113 | # # |
| 10114 | # INPUT *************************************************************** # |
| 10115 | # fp0 = default underflow or overflow result # |
| 10116 | # # |
| 10117 | # OUTPUT ************************************************************** # |
| 10118 | # fp0 = default result # |
| 10119 | # # |
| 10120 | # ALGORITHM *********************************************************** # |
| 10121 | # If an overflow or underflow occurred during the last # |
| 10122 | # instruction of transcendental 060FPLSP emulation, then it has already # |
| 10123 | # occurred and has been logged. Now we need to see if an inexact # |
| 10124 | # exception should occur. # |
| 10125 | # # |
| 10126 | ######################################################################### |
| 10127 | |
| 10128 | global t_catch2 |
| 10129 | t_catch2: |
| 10130 | fmov.l %fpsr,%d0 |
| 10131 | or.l %d0,USER_FPSR(%a6) |
| 10132 | bra.b inx2_work |
| 10133 | |
| 10134 | global t_catch |
| 10135 | t_catch: |
| 10136 | fmov.l %fpsr,%d0 |
| 10137 | or.l %d0,USER_FPSR(%a6) |
| 10138 | |
| 10139 | ######################################################################### |
| 10140 | # XDEF **************************************************************** # |
| 10141 | # t_inx2(): Handle inexact 060FPLSP exception during emulation. # |
| 10142 | # t_pinx2(): Handle inexact 060FPLSP exception for "+" results. # |
| 10143 | # t_minx2(): Handle inexact 060FPLSP exception for "-" results. # |
| 10144 | # # |
| 10145 | # XREF **************************************************************** # |
| 10146 | # None. # |
| 10147 | # # |
| 10148 | # INPUT *************************************************************** # |
| 10149 | # fp0 = default result # |
| 10150 | # # |
| 10151 | # OUTPUT ************************************************************** # |
| 10152 | # fp0 = default result # |
| 10153 | # # |
| 10154 | # ALGORITHM *********************************************************** # |
| 10155 | # The last instruction of transcendental emulation for the # |
| 10156 | # 060FPLSP should be inexact. So, if inexact is enabled, then we create # |
| 10157 | # the event here by adding a large and very small number together # |
| 10158 | # so that the operating system can log the event. # |
| 10159 | # Must check, too, if the result was zero, in which case we just # |
| 10160 | # set the FPSR bits and return. # |
| 10161 | # # |
| 10162 | ######################################################################### |
| 10163 | |
| 10164 | global t_inx2 |
| 10165 | t_inx2: |
| 10166 | fblt.w t_minx2 |
| 10167 | fbeq.w inx2_zero |
| 10168 | |
| 10169 | global t_pinx2 |
| 10170 | t_pinx2: |
| 10171 | ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX |
| 10172 | bra.b inx2_work |
| 10173 | |
| 10174 | global t_minx2 |
| 10175 | t_minx2: |
| 10176 | ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) |
| 10177 | |
| 10178 | inx2_work: |
| 10179 | btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? |
| 10180 | bne.b inx2_work_ena # yes |
| 10181 | rts |
| 10182 | inx2_work_ena: |
| 10183 | fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions |
| 10184 | fmov.s &0x3f800000,%fp1 # load +1 |
| 10185 | fadd.x pls_tiny(%pc),%fp1 # cause exception |
| 10186 | rts |
| 10187 | |
| 10188 | inx2_zero: |
| 10189 | mov.b &z_bmask,FPSR_CC(%a6) |
| 10190 | ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX |
| 10191 | rts |
| 10192 | |
| 10193 | ######################################################################### |
| 10194 | # XDEF **************************************************************** # |
| 10195 | # t_extdnrm(): Handle DENORM inputs in 060FPLSP. # |
| 10196 | # t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". # |
| 10197 | # # |
| 10198 | # This routine is used by the 060FPLSP package. # |
| 10199 | # # |
| 10200 | # XREF **************************************************************** # |
| 10201 | # None. # |
| 10202 | # # |
| 10203 | # INPUT *************************************************************** # |
| 10204 | # a0 = pointer to extended precision input operand # |
| 10205 | # # |
| 10206 | # OUTPUT ************************************************************** # |
| 10207 | # fp0 = default result # |
| 10208 | # # |
| 10209 | # ALGORITHM *********************************************************** # |
| 10210 | # For all functions that have a denormalized input and that # |
| 10211 | # f(x)=x, this is the entry point. # |
| 10212 | # DENORM value is moved using "fmove" which triggers an exception # |
| 10213 | # if enabled so the operating system can log the event. # |
| 10214 | # # |
| 10215 | ######################################################################### |
| 10216 | |
| 10217 | global t_extdnrm |
| 10218 | t_extdnrm: |
| 10219 | fmov.l USER_FPCR(%a6),%fpcr |
| 10220 | fmov.x SRC_EX(%a0),%fp0 |
| 10221 | fmov.l %fpsr,%d0 |
| 10222 | ori.l &unfinx_mask,%d0 |
| 10223 | or.l %d0,USER_FPSR(%a6) |
| 10224 | rts |
| 10225 | |
| 10226 | global t_resdnrm |
| 10227 | t_resdnrm: |
| 10228 | fmov.l USER_FPCR(%a6),%fpcr |
| 10229 | fmov.x SRC_EX(%a0),%fp0 |
| 10230 | fmov.l %fpsr,%d0 |
| 10231 | or.l %d0,USER_FPSR(%a6) |
| 10232 | rts |
| 10233 | |
| 10234 | ########################################## |
| 10235 | |
| 10236 | # |
| 10237 | # sto_cos: |
| 10238 | # This is used by fsincos library emulation. The correct |
| 10239 | # values are already in fp0 and fp1 so we do nothing here. |
| 10240 | # |
| 10241 | global sto_cos |
| 10242 | sto_cos: |
| 10243 | rts |
| 10244 | |
| 10245 | ########################################## |
| 10246 | |
| 10247 | # |
| 10248 | # dst_qnan --- force result when destination is a NaN |
| 10249 | # |
| 10250 | global dst_qnan |
| 10251 | dst_qnan: |
| 10252 | fmov.x DST(%a1),%fp0 |
| 10253 | tst.b DST_EX(%a1) |
| 10254 | bmi.b dst_qnan_m |
| 10255 | dst_qnan_p: |
| 10256 | mov.b &nan_bmask,FPSR_CC(%a6) |
| 10257 | rts |
| 10258 | dst_qnan_m: |
| 10259 | mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) |
| 10260 | rts |
| 10261 | |
| 10262 | # |
| 10263 | # src_qnan --- force result when source is a NaN |
| 10264 | # |
| 10265 | global src_qnan |
| 10266 | src_qnan: |
| 10267 | fmov.x SRC(%a0),%fp0 |
| 10268 | tst.b SRC_EX(%a0) |
| 10269 | bmi.b src_qnan_m |
| 10270 | src_qnan_p: |
| 10271 | mov.b &nan_bmask,FPSR_CC(%a6) |
| 10272 | rts |
| 10273 | src_qnan_m: |
| 10274 | mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) |
| 10275 | rts |
| 10276 | |
| 10277 | ########################################## |
| 10278 | |
| 10279 | # |
| 10280 | # Native instruction support |
| 10281 | # |
| 10282 | # Some systems may need entry points even for 68060 native |
| 10283 | # instructions. These routines are provided for |
| 10284 | # convenience. |
| 10285 | # |
| 10286 | global _fadds_ |
| 10287 | _fadds_: |
| 10288 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10289 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10290 | fmov.s 0x8(%sp),%fp0 # load sgl dst |
| 10291 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10292 | fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src |
| 10293 | rts |
| 10294 | |
| 10295 | global _faddd_ |
| 10296 | _faddd_: |
| 10297 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10298 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10299 | fmov.d 0x8(%sp),%fp0 # load dbl dst |
| 10300 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10301 | fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src |
| 10302 | rts |
| 10303 | |
| 10304 | global _faddx_ |
| 10305 | _faddx_: |
| 10306 | fmovm.x 0x4(%sp),&0x80 # load ext dst |
| 10307 | fadd.x 0x10(%sp),%fp0 # fadd w/ ext src |
| 10308 | rts |
| 10309 | |
| 10310 | global _fsubs_ |
| 10311 | _fsubs_: |
| 10312 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10313 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10314 | fmov.s 0x8(%sp),%fp0 # load sgl dst |
| 10315 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10316 | fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src |
| 10317 | rts |
| 10318 | |
| 10319 | global _fsubd_ |
| 10320 | _fsubd_: |
| 10321 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10322 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10323 | fmov.d 0x8(%sp),%fp0 # load dbl dst |
| 10324 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10325 | fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src |
| 10326 | rts |
| 10327 | |
| 10328 | global _fsubx_ |
| 10329 | _fsubx_: |
| 10330 | fmovm.x 0x4(%sp),&0x80 # load ext dst |
| 10331 | fsub.x 0x10(%sp),%fp0 # fsub w/ ext src |
| 10332 | rts |
| 10333 | |
| 10334 | global _fmuls_ |
| 10335 | _fmuls_: |
| 10336 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10337 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10338 | fmov.s 0x8(%sp),%fp0 # load sgl dst |
| 10339 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10340 | fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src |
| 10341 | rts |
| 10342 | |
| 10343 | global _fmuld_ |
| 10344 | _fmuld_: |
| 10345 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10346 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10347 | fmov.d 0x8(%sp),%fp0 # load dbl dst |
| 10348 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10349 | fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src |
| 10350 | rts |
| 10351 | |
| 10352 | global _fmulx_ |
| 10353 | _fmulx_: |
| 10354 | fmovm.x 0x4(%sp),&0x80 # load ext dst |
| 10355 | fmul.x 0x10(%sp),%fp0 # fmul w/ ext src |
| 10356 | rts |
| 10357 | |
| 10358 | global _fdivs_ |
| 10359 | _fdivs_: |
| 10360 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10361 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10362 | fmov.s 0x8(%sp),%fp0 # load sgl dst |
| 10363 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10364 | fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src |
| 10365 | rts |
| 10366 | |
| 10367 | global _fdivd_ |
| 10368 | _fdivd_: |
| 10369 | fmov.l %fpcr,-(%sp) # save fpcr |
| 10370 | fmov.l &0x00000000,%fpcr # clear fpcr for load |
| 10371 | fmov.d 0x8(%sp),%fp0 # load dbl dst |
| 10372 | fmov.l (%sp)+,%fpcr # restore fpcr |
| 10373 | fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src |
| 10374 | rts |
| 10375 | |
| 10376 | global _fdivx_ |
| 10377 | _fdivx_: |
| 10378 | fmovm.x 0x4(%sp),&0x80 # load ext dst |
| 10379 | fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src |
| 10380 | rts |
| 10381 | |
| 10382 | global _fabss_ |
| 10383 | _fabss_: |
| 10384 | fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src |
| 10385 | rts |
| 10386 | |
| 10387 | global _fabsd_ |
| 10388 | _fabsd_: |
| 10389 | fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src |
| 10390 | rts |
| 10391 | |
| 10392 | global _fabsx_ |
| 10393 | _fabsx_: |
| 10394 | fabs.x 0x4(%sp),%fp0 # fabs w/ ext src |
| 10395 | rts |
| 10396 | |
| 10397 | global _fnegs_ |
| 10398 | _fnegs_: |
| 10399 | fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src |
| 10400 | rts |
| 10401 | |
| 10402 | global _fnegd_ |
| 10403 | _fnegd_: |
| 10404 | fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src |
| 10405 | rts |
| 10406 | |
| 10407 | global _fnegx_ |
| 10408 | _fnegx_: |
| 10409 | fneg.x 0x4(%sp),%fp0 # fneg w/ ext src |
| 10410 | rts |
| 10411 | |
| 10412 | global _fsqrts_ |
| 10413 | _fsqrts_: |
| 10414 | fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src |
| 10415 | rts |
| 10416 | |
| 10417 | global _fsqrtd_ |
| 10418 | _fsqrtd_: |
| 10419 | fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src |
| 10420 | rts |
| 10421 | |
| 10422 | global _fsqrtx_ |
| 10423 | _fsqrtx_: |
| 10424 | fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src |
| 10425 | rts |
| 10426 | |
| 10427 | global _fints_ |
| 10428 | _fints_: |
| 10429 | fint.s 0x4(%sp),%fp0 # fint w/ sgl src |
| 10430 | rts |
| 10431 | |
| 10432 | global _fintd_ |
| 10433 | _fintd_: |
| 10434 | fint.d 0x4(%sp),%fp0 # fint w/ dbl src |
| 10435 | rts |
| 10436 | |
| 10437 | global _fintx_ |
| 10438 | _fintx_: |
| 10439 | fint.x 0x4(%sp),%fp0 # fint w/ ext src |
| 10440 | rts |
| 10441 | |
| 10442 | global _fintrzs_ |
| 10443 | _fintrzs_: |
| 10444 | fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src |
| 10445 | rts |
| 10446 | |
| 10447 | global _fintrzd_ |
| 10448 | _fintrzd_: |
| 10449 | fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src |
| 10450 | rts |
| 10451 | |
| 10452 | global _fintrzx_ |
| 10453 | _fintrzx_: |
| 10454 | fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src |
| 10455 | rts |
| 10456 | |
| 10457 | ######################################################################## |
| 10458 | |
| 10459 | ######################################################################### |
| 10460 | # src_zero(): Return signed zero according to sign of src operand. # |
| 10461 | ######################################################################### |
| 10462 | global src_zero |
| 10463 | src_zero: |
| 10464 | tst.b SRC_EX(%a0) # get sign of src operand |
| 10465 | bmi.b ld_mzero # if neg, load neg zero |
| 10466 | |
| 10467 | # |
| 10468 | # ld_pzero(): return a positive zero. |
| 10469 | # |
| 10470 | global ld_pzero |
| 10471 | ld_pzero: |
| 10472 | fmov.s &0x00000000,%fp0 # load +0 |
| 10473 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 10474 | rts |
| 10475 | |
| 10476 | # ld_mzero(): return a negative zero. |
| 10477 | global ld_mzero |
| 10478 | ld_mzero: |
| 10479 | fmov.s &0x80000000,%fp0 # load -0 |
| 10480 | mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits |
| 10481 | rts |
| 10482 | |
| 10483 | ######################################################################### |
| 10484 | # dst_zero(): Return signed zero according to sign of dst operand. # |
| 10485 | ######################################################################### |
| 10486 | global dst_zero |
| 10487 | dst_zero: |
| 10488 | tst.b DST_EX(%a1) # get sign of dst operand |
| 10489 | bmi.b ld_mzero # if neg, load neg zero |
| 10490 | bra.b ld_pzero # load positive zero |
| 10491 | |
| 10492 | ######################################################################### |
| 10493 | # src_inf(): Return signed inf according to sign of src operand. # |
| 10494 | ######################################################################### |
| 10495 | global src_inf |
| 10496 | src_inf: |
| 10497 | tst.b SRC_EX(%a0) # get sign of src operand |
| 10498 | bmi.b ld_minf # if negative branch |
| 10499 | |
| 10500 | # |
| 10501 | # ld_pinf(): return a positive infinity. |
| 10502 | # |
| 10503 | global ld_pinf |
| 10504 | ld_pinf: |
| 10505 | fmov.s &0x7f800000,%fp0 # load +INF |
| 10506 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit |
| 10507 | rts |
| 10508 | |
| 10509 | # |
| 10510 | # ld_minf():return a negative infinity. |
| 10511 | # |
| 10512 | global ld_minf |
| 10513 | ld_minf: |
| 10514 | fmov.s &0xff800000,%fp0 # load -INF |
| 10515 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| 10516 | rts |
| 10517 | |
| 10518 | ######################################################################### |
| 10519 | # dst_inf(): Return signed inf according to sign of dst operand. # |
| 10520 | ######################################################################### |
| 10521 | global dst_inf |
| 10522 | dst_inf: |
| 10523 | tst.b DST_EX(%a1) # get sign of dst operand |
| 10524 | bmi.b ld_minf # if negative branch |
| 10525 | bra.b ld_pinf |
| 10526 | |
| 10527 | global szr_inf |
| 10528 | ################################################################# |
| 10529 | # szr_inf(): Return +ZERO for a negative src operand or # |
| 10530 | # +INF for a positive src operand. # |
| 10531 | # Routine used for fetox, ftwotox, and ftentox. # |
| 10532 | ################################################################# |
| 10533 | szr_inf: |
| 10534 | tst.b SRC_EX(%a0) # check sign of source |
| 10535 | bmi.b ld_pzero |
| 10536 | bra.b ld_pinf |
| 10537 | |
| 10538 | ######################################################################### |
| 10539 | # sopr_inf(): Return +INF for a positive src operand or # |
| 10540 | # jump to operand error routine for a negative src operand. # |
| 10541 | # Routine used for flogn, flognp1, flog10, and flog2. # |
| 10542 | ######################################################################### |
| 10543 | global sopr_inf |
| 10544 | sopr_inf: |
| 10545 | tst.b SRC_EX(%a0) # check sign of source |
| 10546 | bmi.w t_operr |
| 10547 | bra.b ld_pinf |
| 10548 | |
| 10549 | ################################################################# |
| 10550 | # setoxm1i(): Return minus one for a negative src operand or # |
| 10551 | # positive infinity for a positive src operand. # |
| 10552 | # Routine used for fetoxm1. # |
| 10553 | ################################################################# |
| 10554 | global setoxm1i |
| 10555 | setoxm1i: |
| 10556 | tst.b SRC_EX(%a0) # check sign of source |
| 10557 | bmi.b ld_mone |
| 10558 | bra.b ld_pinf |
| 10559 | |
| 10560 | ######################################################################### |
| 10561 | # src_one(): Return signed one according to sign of src operand. # |
| 10562 | ######################################################################### |
| 10563 | global src_one |
| 10564 | src_one: |
| 10565 | tst.b SRC_EX(%a0) # check sign of source |
| 10566 | bmi.b ld_mone |
| 10567 | |
| 10568 | # |
| 10569 | # ld_pone(): return positive one. |
| 10570 | # |
| 10571 | global ld_pone |
| 10572 | ld_pone: |
| 10573 | fmov.s &0x3f800000,%fp0 # load +1 |
| 10574 | clr.b FPSR_CC(%a6) |
| 10575 | rts |
| 10576 | |
| 10577 | # |
| 10578 | # ld_mone(): return negative one. |
| 10579 | # |
| 10580 | global ld_mone |
| 10581 | ld_mone: |
| 10582 | fmov.s &0xbf800000,%fp0 # load -1 |
| 10583 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 10584 | rts |
| 10585 | |
| 10586 | ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 |
| 10587 | mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 |
| 10588 | |
| 10589 | ################################################################# |
| 10590 | # spi_2(): Return signed PI/2 according to sign of src operand. # |
| 10591 | ################################################################# |
| 10592 | global spi_2 |
| 10593 | spi_2: |
| 10594 | tst.b SRC_EX(%a0) # check sign of source |
| 10595 | bmi.b ld_mpi2 |
| 10596 | |
| 10597 | # |
| 10598 | # ld_ppi2(): return positive PI/2. |
| 10599 | # |
| 10600 | global ld_ppi2 |
| 10601 | ld_ppi2: |
| 10602 | fmov.l %d0,%fpcr |
| 10603 | fmov.x ppiby2(%pc),%fp0 # load +pi/2 |
| 10604 | bra.w t_pinx2 # set INEX2 |
| 10605 | |
| 10606 | # |
| 10607 | # ld_mpi2(): return negative PI/2. |
| 10608 | # |
| 10609 | global ld_mpi2 |
| 10610 | ld_mpi2: |
| 10611 | fmov.l %d0,%fpcr |
| 10612 | fmov.x mpiby2(%pc),%fp0 # load -pi/2 |
| 10613 | bra.w t_minx2 # set INEX2 |
| 10614 | |
| 10615 | #################################################### |
| 10616 | # The following routines give support for fsincos. # |
| 10617 | #################################################### |
| 10618 | |
| 10619 | # |
| 10620 | # ssincosz(): When the src operand is ZERO, store a one in the |
| 10621 | # cosine register and return a ZERO in fp0 w/ the same sign |
| 10622 | # as the src operand. |
| 10623 | # |
| 10624 | global ssincosz |
| 10625 | ssincosz: |
| 10626 | fmov.s &0x3f800000,%fp1 |
| 10627 | tst.b SRC_EX(%a0) # test sign |
| 10628 | bpl.b sincoszp |
| 10629 | fmov.s &0x80000000,%fp0 # return sin result in fp0 |
| 10630 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) |
| 10631 | rts |
| 10632 | sincoszp: |
| 10633 | fmov.s &0x00000000,%fp0 # return sin result in fp0 |
| 10634 | mov.b &z_bmask,FPSR_CC(%a6) |
| 10635 | rts |
| 10636 | |
| 10637 | # |
| 10638 | # ssincosi(): When the src operand is INF, store a QNAN in the cosine |
| 10639 | # register and jump to the operand error routine for negative |
| 10640 | # src operands. |
| 10641 | # |
| 10642 | global ssincosi |
| 10643 | ssincosi: |
| 10644 | fmov.x qnan(%pc),%fp1 # load NAN |
| 10645 | bra.w t_operr |
| 10646 | |
| 10647 | # |
| 10648 | # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine |
| 10649 | # register and branch to the src QNAN routine. |
| 10650 | # |
| 10651 | global ssincosqnan |
| 10652 | ssincosqnan: |
| 10653 | fmov.x LOCAL_EX(%a0),%fp1 |
| 10654 | bra.w src_qnan |
| 10655 | |
| 10656 | ######################################################################## |
| 10657 | |
| 10658 | global smod_sdnrm |
| 10659 | global smod_snorm |
| 10660 | smod_sdnrm: |
| 10661 | smod_snorm: |
| 10662 | mov.b DTAG(%a6),%d1 |
| 10663 | beq.l smod |
| 10664 | cmpi.b %d1,&ZERO |
| 10665 | beq.w smod_zro |
| 10666 | cmpi.b %d1,&INF |
| 10667 | beq.l t_operr |
| 10668 | cmpi.b %d1,&DENORM |
| 10669 | beq.l smod |
| 10670 | bra.l dst_qnan |
| 10671 | |
| 10672 | global smod_szero |
| 10673 | smod_szero: |
| 10674 | mov.b DTAG(%a6),%d1 |
| 10675 | beq.l t_operr |
| 10676 | cmpi.b %d1,&ZERO |
| 10677 | beq.l t_operr |
| 10678 | cmpi.b %d1,&INF |
| 10679 | beq.l t_operr |
| 10680 | cmpi.b %d1,&DENORM |
| 10681 | beq.l t_operr |
| 10682 | bra.l dst_qnan |
| 10683 | |
| 10684 | global smod_sinf |
| 10685 | smod_sinf: |
| 10686 | mov.b DTAG(%a6),%d1 |
| 10687 | beq.l smod_fpn |
| 10688 | cmpi.b %d1,&ZERO |
| 10689 | beq.l smod_zro |
| 10690 | cmpi.b %d1,&INF |
| 10691 | beq.l t_operr |
| 10692 | cmpi.b %d1,&DENORM |
| 10693 | beq.l smod_fpn |
| 10694 | bra.l dst_qnan |
| 10695 | |
| 10696 | smod_zro: |
| 10697 | srem_zro: |
| 10698 | mov.b SRC_EX(%a0),%d1 # get src sign |
| 10699 | mov.b DST_EX(%a1),%d0 # get dst sign |
| 10700 | eor.b %d0,%d1 # get qbyte sign |
| 10701 | andi.b &0x80,%d1 |
| 10702 | mov.b %d1,FPSR_QBYTE(%a6) |
| 10703 | tst.b %d0 |
| 10704 | bpl.w ld_pzero |
| 10705 | bra.w ld_mzero |
| 10706 | |
| 10707 | smod_fpn: |
| 10708 | srem_fpn: |
| 10709 | clr.b FPSR_QBYTE(%a6) |
| 10710 | mov.l %d0,-(%sp) |
| 10711 | mov.b SRC_EX(%a0),%d1 # get src sign |
| 10712 | mov.b DST_EX(%a1),%d0 # get dst sign |
| 10713 | eor.b %d0,%d1 # get qbyte sign |
| 10714 | andi.b &0x80,%d1 |
| 10715 | mov.b %d1,FPSR_QBYTE(%a6) |
| 10716 | cmpi.b DTAG(%a6),&DENORM |
| 10717 | bne.b smod_nrm |
| 10718 | lea DST(%a1),%a0 |
| 10719 | mov.l (%sp)+,%d0 |
| 10720 | bra t_resdnrm |
| 10721 | smod_nrm: |
| 10722 | fmov.l (%sp)+,%fpcr |
| 10723 | fmov.x DST(%a1),%fp0 |
| 10724 | tst.b DST_EX(%a1) |
| 10725 | bmi.b smod_nrm_neg |
| 10726 | rts |
| 10727 | |
| 10728 | smod_nrm_neg: |
| 10729 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code |
| 10730 | rts |
| 10731 | |
| 10732 | ######################################################################### |
| 10733 | global srem_snorm |
| 10734 | global srem_sdnrm |
| 10735 | srem_sdnrm: |
| 10736 | srem_snorm: |
| 10737 | mov.b DTAG(%a6),%d1 |
| 10738 | beq.l srem |
| 10739 | cmpi.b %d1,&ZERO |
| 10740 | beq.w srem_zro |
| 10741 | cmpi.b %d1,&INF |
| 10742 | beq.l t_operr |
| 10743 | cmpi.b %d1,&DENORM |
| 10744 | beq.l srem |
| 10745 | bra.l dst_qnan |
| 10746 | |
| 10747 | global srem_szero |
| 10748 | srem_szero: |
| 10749 | mov.b DTAG(%a6),%d1 |
| 10750 | beq.l t_operr |
| 10751 | cmpi.b %d1,&ZERO |
| 10752 | beq.l t_operr |
| 10753 | cmpi.b %d1,&INF |
| 10754 | beq.l t_operr |
| 10755 | cmpi.b %d1,&DENORM |
| 10756 | beq.l t_operr |
| 10757 | bra.l dst_qnan |
| 10758 | |
| 10759 | global srem_sinf |
| 10760 | srem_sinf: |
| 10761 | mov.b DTAG(%a6),%d1 |
| 10762 | beq.w srem_fpn |
| 10763 | cmpi.b %d1,&ZERO |
| 10764 | beq.w srem_zro |
| 10765 | cmpi.b %d1,&INF |
| 10766 | beq.l t_operr |
| 10767 | cmpi.b %d1,&DENORM |
| 10768 | beq.l srem_fpn |
| 10769 | bra.l dst_qnan |
| 10770 | |
| 10771 | ######################################################################### |
| 10772 | |
| 10773 | global sscale_snorm |
| 10774 | global sscale_sdnrm |
| 10775 | sscale_snorm: |
| 10776 | sscale_sdnrm: |
| 10777 | mov.b DTAG(%a6),%d1 |
| 10778 | beq.l sscale |
| 10779 | cmpi.b %d1,&ZERO |
| 10780 | beq.l dst_zero |
| 10781 | cmpi.b %d1,&INF |
| 10782 | beq.l dst_inf |
| 10783 | cmpi.b %d1,&DENORM |
| 10784 | beq.l sscale |
| 10785 | bra.l dst_qnan |
| 10786 | |
| 10787 | global sscale_szero |
| 10788 | sscale_szero: |
| 10789 | mov.b DTAG(%a6),%d1 |
| 10790 | beq.l sscale |
| 10791 | cmpi.b %d1,&ZERO |
| 10792 | beq.l dst_zero |
| 10793 | cmpi.b %d1,&INF |
| 10794 | beq.l dst_inf |
| 10795 | cmpi.b %d1,&DENORM |
| 10796 | beq.l sscale |
| 10797 | bra.l dst_qnan |
| 10798 | |
| 10799 | global sscale_sinf |
| 10800 | sscale_sinf: |
| 10801 | mov.b DTAG(%a6),%d1 |
| 10802 | beq.l t_operr |
| 10803 | cmpi.b %d1,&QNAN |
| 10804 | beq.l dst_qnan |
| 10805 | bra.l t_operr |
| 10806 | |
| 10807 | ######################################################################## |
| 10808 | |
| 10809 | global sop_sqnan |
| 10810 | sop_sqnan: |
| 10811 | mov.b DTAG(%a6),%d1 |
| 10812 | cmpi.b %d1,&QNAN |
| 10813 | beq.l dst_qnan |
| 10814 | bra.l src_qnan |
| 10815 | |
| 10816 | ######################################################################### |
| 10817 | # norm(): normalize the mantissa of an extended precision input. the # |
| 10818 | # input operand should not be normalized already. # |
| 10819 | # # |
| 10820 | # XDEF **************************************************************** # |
| 10821 | # norm() # |
| 10822 | # # |
| 10823 | # XREF **************************************************************** # |
| 10824 | # none # |
| 10825 | # # |
| 10826 | # INPUT *************************************************************** # |
| 10827 | # a0 = pointer fp extended precision operand to normalize # |
| 10828 | # # |
| 10829 | # OUTPUT ************************************************************** # |
| 10830 | # d0 = number of bit positions the mantissa was shifted # |
| 10831 | # a0 = the input operand's mantissa is normalized; the exponent # |
| 10832 | # is unchanged. # |
| 10833 | # # |
| 10834 | ######################################################################### |
| 10835 | global norm |
| 10836 | norm: |
| 10837 | mov.l %d2, -(%sp) # create some temp regs |
| 10838 | mov.l %d3, -(%sp) |
| 10839 | |
| 10840 | mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) |
| 10841 | mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) |
| 10842 | |
| 10843 | bfffo %d0{&0:&32}, %d2 # how many places to shift? |
| 10844 | beq.b norm_lo # hi(man) is all zeroes! |
| 10845 | |
| 10846 | norm_hi: |
| 10847 | lsl.l %d2, %d0 # left shift hi(man) |
| 10848 | bfextu %d1{&0:%d2}, %d3 # extract lo bits |
| 10849 | |
| 10850 | or.l %d3, %d0 # create hi(man) |
| 10851 | lsl.l %d2, %d1 # create lo(man) |
| 10852 | |
| 10853 | mov.l %d0, FTEMP_HI(%a0) # store new hi(man) |
| 10854 | mov.l %d1, FTEMP_LO(%a0) # store new lo(man) |
| 10855 | |
| 10856 | mov.l %d2, %d0 # return shift amount |
| 10857 | |
| 10858 | mov.l (%sp)+, %d3 # restore temp regs |
| 10859 | mov.l (%sp)+, %d2 |
| 10860 | |
| 10861 | rts |
| 10862 | |
| 10863 | norm_lo: |
| 10864 | bfffo %d1{&0:&32}, %d2 # how many places to shift? |
| 10865 | lsl.l %d2, %d1 # shift lo(man) |
| 10866 | add.l &32, %d2 # add 32 to shft amount |
| 10867 | |
| 10868 | mov.l %d1, FTEMP_HI(%a0) # store hi(man) |
| 10869 | clr.l FTEMP_LO(%a0) # lo(man) is now zero |
| 10870 | |
| 10871 | mov.l %d2, %d0 # return shift amount |
| 10872 | |
| 10873 | mov.l (%sp)+, %d3 # restore temp regs |
| 10874 | mov.l (%sp)+, %d2 |
| 10875 | |
| 10876 | rts |
| 10877 | |
| 10878 | ######################################################################### |
| 10879 | # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # |
| 10880 | # - returns corresponding optype tag # |
| 10881 | # # |
| 10882 | # XDEF **************************************************************** # |
| 10883 | # unnorm_fix() # |
| 10884 | # # |
| 10885 | # XREF **************************************************************** # |
| 10886 | # norm() - normalize the mantissa # |
| 10887 | # # |
| 10888 | # INPUT *************************************************************** # |
| 10889 | # a0 = pointer to unnormalized extended precision number # |
| 10890 | # # |
| 10891 | # OUTPUT ************************************************************** # |
| 10892 | # d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # |
| 10893 | # a0 = input operand has been converted to a norm, denorm, or # |
| 10894 | # zero; both the exponent and mantissa are changed. # |
| 10895 | # # |
| 10896 | ######################################################################### |
| 10897 | |
| 10898 | global unnorm_fix |
| 10899 | unnorm_fix: |
| 10900 | bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? |
| 10901 | bne.b unnorm_shift # hi(man) is not all zeroes |
| 10902 | |
| 10903 | # |
| 10904 | # hi(man) is all zeroes so see if any bits in lo(man) are set |
| 10905 | # |
| 10906 | unnorm_chk_lo: |
| 10907 | bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? |
| 10908 | beq.w unnorm_zero # yes |
| 10909 | |
| 10910 | add.w &32, %d0 # no; fix shift distance |
| 10911 | |
| 10912 | # |
| 10913 | # d0 = # shifts needed for complete normalization |
| 10914 | # |
| 10915 | unnorm_shift: |
| 10916 | clr.l %d1 # clear top word |
| 10917 | mov.w FTEMP_EX(%a0), %d1 # extract exponent |
| 10918 | and.w &0x7fff, %d1 # strip off sgn |
| 10919 | |
| 10920 | cmp.w %d0, %d1 # will denorm push exp < 0? |
| 10921 | bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 |
| 10922 | |
| 10923 | # |
| 10924 | # exponent would not go < 0. therefore, number stays normalized |
| 10925 | # |
| 10926 | sub.w %d0, %d1 # shift exponent value |
| 10927 | mov.w FTEMP_EX(%a0), %d0 # load old exponent |
| 10928 | and.w &0x8000, %d0 # save old sign |
| 10929 | or.w %d0, %d1 # {sgn,new exp} |
| 10930 | mov.w %d1, FTEMP_EX(%a0) # insert new exponent |
| 10931 | |
| 10932 | bsr.l norm # normalize UNNORM |
| 10933 | |
| 10934 | mov.b &NORM, %d0 # return new optype tag |
| 10935 | rts |
| 10936 | |
| 10937 | # |
| 10938 | # exponent would go < 0, so only denormalize until exp = 0 |
| 10939 | # |
| 10940 | unnorm_nrm_zero: |
| 10941 | cmp.b %d1, &32 # is exp <= 32? |
| 10942 | bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent |
| 10943 | |
| 10944 | bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) |
| 10945 | mov.l %d0, FTEMP_HI(%a0) # save new hi(man) |
| 10946 | |
| 10947 | mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) |
| 10948 | lsl.l %d1, %d0 # extract new lo(man) |
| 10949 | mov.l %d0, FTEMP_LO(%a0) # save new lo(man) |
| 10950 | |
| 10951 | and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 |
| 10952 | |
| 10953 | mov.b &DENORM, %d0 # return new optype tag |
| 10954 | rts |
| 10955 | |
| 10956 | # |
| 10957 | # only mantissa bits set are in lo(man) |
| 10958 | # |
| 10959 | unnorm_nrm_zero_lrg: |
| 10960 | sub.w &32, %d1 # adjust shft amt by 32 |
| 10961 | |
| 10962 | mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) |
| 10963 | lsl.l %d1, %d0 # left shift lo(man) |
| 10964 | |
| 10965 | mov.l %d0, FTEMP_HI(%a0) # store new hi(man) |
| 10966 | clr.l FTEMP_LO(%a0) # lo(man) = 0 |
| 10967 | |
| 10968 | and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 |
| 10969 | |
| 10970 | mov.b &DENORM, %d0 # return new optype tag |
| 10971 | rts |
| 10972 | |
| 10973 | # |
| 10974 | # whole mantissa is zero so this UNNORM is actually a zero |
| 10975 | # |
| 10976 | unnorm_zero: |
| 10977 | and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero |
| 10978 | |
| 10979 | mov.b &ZERO, %d0 # fix optype tag |
| 10980 | rts |