Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | NetWinder Floating Point Emulator |
| 3 | (c) Rebel.COM, 1998,1999 |
| 4 | (c) Philip Blundell, 1999 |
| 5 | |
| 6 | Direct questions, comments to Scott Bambrough <scottb@netwinder.org> |
| 7 | |
| 8 | This program is free software; you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation; either version 2 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | This program is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with this program; if not, write to the Free Software |
| 20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 21 | */ |
| 22 | |
| 23 | #include "fpa11.h" |
| 24 | #include "milieu.h" |
| 25 | #include "softfloat.h" |
| 26 | #include "fpopcode.h" |
| 27 | #include "fpa11.inl" |
| 28 | #include "fpmodule.h" |
| 29 | #include "fpmodule.inl" |
| 30 | |
| 31 | extern flag floatx80_is_nan(floatx80); |
| 32 | extern flag float64_is_nan( float64); |
| 33 | extern flag float32_is_nan( float32); |
| 34 | |
| 35 | void SetRoundingMode(const unsigned int opcode); |
| 36 | |
| 37 | unsigned int PerformFLT(const unsigned int opcode); |
| 38 | unsigned int PerformFIX(const unsigned int opcode); |
| 39 | |
| 40 | static unsigned int |
| 41 | PerformComparison(const unsigned int opcode); |
| 42 | |
| 43 | unsigned int EmulateCPRT(const unsigned int opcode) |
| 44 | { |
| 45 | unsigned int nRc = 1; |
| 46 | |
| 47 | //printk("EmulateCPRT(0x%08x)\n",opcode); |
| 48 | |
| 49 | if (opcode & 0x800000) |
| 50 | { |
| 51 | /* This is some variant of a comparison (PerformComparison will |
| 52 | sort out which one). Since most of the other CPRT |
| 53 | instructions are oddball cases of some sort or other it makes |
| 54 | sense to pull this out into a fast path. */ |
| 55 | return PerformComparison(opcode); |
| 56 | } |
| 57 | |
| 58 | /* Hint to GCC that we'd like a jump table rather than a load of CMPs */ |
| 59 | switch ((opcode & 0x700000) >> 20) |
| 60 | { |
| 61 | case FLT_CODE >> 20: nRc = PerformFLT(opcode); break; |
| 62 | case FIX_CODE >> 20: nRc = PerformFIX(opcode); break; |
| 63 | |
| 64 | case WFS_CODE >> 20: writeFPSR(readRegister(getRd(opcode))); break; |
| 65 | case RFS_CODE >> 20: writeRegister(getRd(opcode),readFPSR()); break; |
| 66 | |
| 67 | #if 0 /* We currently have no use for the FPCR, so there's no point |
| 68 | in emulating it. */ |
| 69 | case WFC_CODE >> 20: writeFPCR(readRegister(getRd(opcode))); |
| 70 | case RFC_CODE >> 20: writeRegister(getRd(opcode),readFPCR()); break; |
| 71 | #endif |
| 72 | |
| 73 | default: nRc = 0; |
| 74 | } |
| 75 | |
| 76 | return nRc; |
| 77 | } |
| 78 | |
| 79 | unsigned int PerformFLT(const unsigned int opcode) |
| 80 | { |
| 81 | FPA11 *fpa11 = GET_FPA11(); |
| 82 | |
| 83 | unsigned int nRc = 1; |
| 84 | SetRoundingMode(opcode); |
| 85 | |
| 86 | switch (opcode & MASK_ROUNDING_PRECISION) |
| 87 | { |
| 88 | case ROUND_SINGLE: |
| 89 | { |
| 90 | fpa11->fType[getFn(opcode)] = typeSingle; |
| 91 | fpa11->fpreg[getFn(opcode)].fSingle = |
| 92 | int32_to_float32(readRegister(getRd(opcode))); |
| 93 | } |
| 94 | break; |
| 95 | |
| 96 | case ROUND_DOUBLE: |
| 97 | { |
| 98 | fpa11->fType[getFn(opcode)] = typeDouble; |
| 99 | fpa11->fpreg[getFn(opcode)].fDouble = |
| 100 | int32_to_float64(readRegister(getRd(opcode))); |
| 101 | } |
| 102 | break; |
| 103 | |
| 104 | case ROUND_EXTENDED: |
| 105 | { |
| 106 | fpa11->fType[getFn(opcode)] = typeExtended; |
| 107 | fpa11->fpreg[getFn(opcode)].fExtended = |
| 108 | int32_to_floatx80(readRegister(getRd(opcode))); |
| 109 | } |
| 110 | break; |
| 111 | |
| 112 | default: nRc = 0; |
| 113 | } |
| 114 | |
| 115 | return nRc; |
| 116 | } |
| 117 | |
| 118 | unsigned int PerformFIX(const unsigned int opcode) |
| 119 | { |
| 120 | FPA11 *fpa11 = GET_FPA11(); |
| 121 | unsigned int nRc = 1; |
| 122 | unsigned int Fn = getFm(opcode); |
| 123 | |
| 124 | SetRoundingMode(opcode); |
| 125 | |
| 126 | switch (fpa11->fType[Fn]) |
| 127 | { |
| 128 | case typeSingle: |
| 129 | { |
| 130 | writeRegister(getRd(opcode), |
| 131 | float32_to_int32(fpa11->fpreg[Fn].fSingle)); |
| 132 | } |
| 133 | break; |
| 134 | |
| 135 | case typeDouble: |
| 136 | { |
| 137 | writeRegister(getRd(opcode), |
| 138 | float64_to_int32(fpa11->fpreg[Fn].fDouble)); |
| 139 | } |
| 140 | break; |
| 141 | |
| 142 | case typeExtended: |
| 143 | { |
| 144 | writeRegister(getRd(opcode), |
| 145 | floatx80_to_int32(fpa11->fpreg[Fn].fExtended)); |
| 146 | } |
| 147 | break; |
| 148 | |
| 149 | default: nRc = 0; |
| 150 | } |
| 151 | |
| 152 | return nRc; |
| 153 | } |
| 154 | |
| 155 | |
| 156 | static unsigned int __inline__ |
| 157 | PerformComparisonOperation(floatx80 Fn, floatx80 Fm) |
| 158 | { |
| 159 | unsigned int flags = 0; |
| 160 | |
| 161 | /* test for less than condition */ |
| 162 | if (floatx80_lt(Fn,Fm)) |
| 163 | { |
| 164 | flags |= CC_NEGATIVE; |
| 165 | } |
| 166 | |
| 167 | /* test for equal condition */ |
| 168 | if (floatx80_eq(Fn,Fm)) |
| 169 | { |
| 170 | flags |= CC_ZERO; |
| 171 | } |
| 172 | |
| 173 | /* test for greater than or equal condition */ |
| 174 | if (floatx80_lt(Fm,Fn)) |
| 175 | { |
| 176 | flags |= CC_CARRY; |
| 177 | } |
| 178 | |
| 179 | writeConditionCodes(flags); |
| 180 | return 1; |
| 181 | } |
| 182 | |
| 183 | /* This instruction sets the flags N, Z, C, V in the FPSR. */ |
| 184 | |
| 185 | static unsigned int PerformComparison(const unsigned int opcode) |
| 186 | { |
| 187 | FPA11 *fpa11 = GET_FPA11(); |
| 188 | unsigned int Fn, Fm; |
| 189 | floatx80 rFn, rFm; |
| 190 | int e_flag = opcode & 0x400000; /* 1 if CxFE */ |
| 191 | int n_flag = opcode & 0x200000; /* 1 if CNxx */ |
| 192 | unsigned int flags = 0; |
| 193 | |
| 194 | //printk("PerformComparison(0x%08x)\n",opcode); |
| 195 | |
| 196 | Fn = getFn(opcode); |
| 197 | Fm = getFm(opcode); |
| 198 | |
| 199 | /* Check for unordered condition and convert all operands to 80-bit |
| 200 | format. |
| 201 | ?? Might be some mileage in avoiding this conversion if possible. |
| 202 | Eg, if both operands are 32-bit, detect this and do a 32-bit |
| 203 | comparison (cheaper than an 80-bit one). */ |
| 204 | switch (fpa11->fType[Fn]) |
| 205 | { |
| 206 | case typeSingle: |
| 207 | //printk("single.\n"); |
| 208 | if (float32_is_nan(fpa11->fpreg[Fn].fSingle)) |
| 209 | goto unordered; |
| 210 | rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); |
| 211 | break; |
| 212 | |
| 213 | case typeDouble: |
| 214 | //printk("double.\n"); |
| 215 | if (float64_is_nan(fpa11->fpreg[Fn].fDouble)) |
| 216 | goto unordered; |
| 217 | rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); |
| 218 | break; |
| 219 | |
| 220 | case typeExtended: |
| 221 | //printk("extended.\n"); |
| 222 | if (floatx80_is_nan(fpa11->fpreg[Fn].fExtended)) |
| 223 | goto unordered; |
| 224 | rFn = fpa11->fpreg[Fn].fExtended; |
| 225 | break; |
| 226 | |
| 227 | default: return 0; |
| 228 | } |
| 229 | |
| 230 | if (CONSTANT_FM(opcode)) |
| 231 | { |
| 232 | //printk("Fm is a constant: #%d.\n",Fm); |
| 233 | rFm = getExtendedConstant(Fm); |
| 234 | if (floatx80_is_nan(rFm)) |
| 235 | goto unordered; |
| 236 | } |
| 237 | else |
| 238 | { |
| 239 | //printk("Fm = r%d which contains a ",Fm); |
| 240 | switch (fpa11->fType[Fm]) |
| 241 | { |
| 242 | case typeSingle: |
| 243 | //printk("single.\n"); |
| 244 | if (float32_is_nan(fpa11->fpreg[Fm].fSingle)) |
| 245 | goto unordered; |
| 246 | rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); |
| 247 | break; |
| 248 | |
| 249 | case typeDouble: |
| 250 | //printk("double.\n"); |
| 251 | if (float64_is_nan(fpa11->fpreg[Fm].fDouble)) |
| 252 | goto unordered; |
| 253 | rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); |
| 254 | break; |
| 255 | |
| 256 | case typeExtended: |
| 257 | //printk("extended.\n"); |
| 258 | if (floatx80_is_nan(fpa11->fpreg[Fm].fExtended)) |
| 259 | goto unordered; |
| 260 | rFm = fpa11->fpreg[Fm].fExtended; |
| 261 | break; |
| 262 | |
| 263 | default: return 0; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | if (n_flag) |
| 268 | { |
| 269 | rFm.high ^= 0x8000; |
| 270 | } |
| 271 | |
| 272 | return PerformComparisonOperation(rFn,rFm); |
| 273 | |
| 274 | unordered: |
| 275 | /* ?? The FPA data sheet is pretty vague about this, in particular |
| 276 | about whether the non-E comparisons can ever raise exceptions. |
| 277 | This implementation is based on a combination of what it says in |
| 278 | the data sheet, observation of how the Acorn emulator actually |
| 279 | behaves (and how programs expect it to) and guesswork. */ |
| 280 | flags |= CC_OVERFLOW; |
| 281 | flags &= ~(CC_ZERO | CC_NEGATIVE); |
| 282 | |
| 283 | if (BIT_AC & readFPSR()) flags |= CC_CARRY; |
| 284 | |
| 285 | if (e_flag) float_raise(float_flag_invalid); |
| 286 | |
| 287 | writeConditionCodes(flags); |
| 288 | return 1; |
| 289 | } |