Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Physical mapping layer for MTD using the Axis partitiontable format |
| 3 | * |
| 4 | * Copyright (c) 2001, 2002 Axis Communications AB |
| 5 | * |
| 6 | * This file is under the GPL. |
| 7 | * |
| 8 | * First partition is always sector 0 regardless of if we find a partitiontable |
| 9 | * or not. In the start of the next sector, there can be a partitiontable that |
| 10 | * tells us what other partitions to define. If there isn't, we use a default |
| 11 | * partition split defined below. |
| 12 | * |
| 13 | * $Log: axisflashmap.c,v $ |
| 14 | * Revision 1.10 2004/08/16 12:37:22 starvik |
| 15 | * Merge of Linux 2.6.8 |
| 16 | * |
| 17 | * Revision 1.8 2004/05/14 07:58:03 starvik |
| 18 | * Merge of changes from 2.4 |
| 19 | * |
| 20 | * Revision 1.6 2003/07/04 08:27:37 starvik |
| 21 | * Merge of Linux 2.5.74 |
| 22 | * |
| 23 | * Revision 1.5 2002/12/11 13:13:57 starvik |
| 24 | * Added arch/ to v10 specific includes |
| 25 | * Added fix from Linux 2.4 in serial.c (flush_to_flip_buffer) |
| 26 | * |
| 27 | * Revision 1.4 2002/11/20 11:56:10 starvik |
| 28 | * Merge of Linux 2.5.48 |
| 29 | * |
| 30 | * Revision 1.3 2002/11/13 14:54:13 starvik |
| 31 | * Copied from linux 2.4 |
| 32 | * |
| 33 | * Revision 1.28 2002/10/01 08:08:43 jonashg |
| 34 | * The first partition ends at the start of the partition table. |
| 35 | * |
| 36 | * Revision 1.27 2002/08/21 09:23:13 jonashg |
| 37 | * Speling. |
| 38 | * |
| 39 | * Revision 1.26 2002/08/21 08:35:20 jonashg |
| 40 | * Cosmetic change to printouts. |
| 41 | * |
| 42 | * Revision 1.25 2002/08/21 08:15:42 jonashg |
| 43 | * Made it compile even without CONFIG_MTD_CONCAT defined. |
| 44 | * |
| 45 | * Revision 1.24 2002/08/20 13:12:35 jonashg |
| 46 | * * New approach to probing. Probe cse0 and cse1 separately and (mtd)concat |
| 47 | * the results. |
| 48 | * * Removed compile time tests concerning how the mtdram driver has been |
| 49 | * configured. The user will know about the misconfiguration at runtime |
| 50 | * instead. (The old approach made it impossible to use mtdram for anything |
| 51 | * else than RAM boot). |
| 52 | * |
| 53 | * Revision 1.23 2002/05/13 12:12:28 johana |
| 54 | * Allow compile without CONFIG_MTD_MTDRAM but warn at compiletime and |
| 55 | * be informative at runtime. |
| 56 | * |
| 57 | * Revision 1.22 2002/05/13 10:24:44 johana |
| 58 | * Added #if checks on MTDRAM CONFIG |
| 59 | * |
| 60 | * Revision 1.21 2002/05/06 16:05:20 johana |
| 61 | * Removed debug printout. |
| 62 | * |
| 63 | * Revision 1.20 2002/05/06 16:03:00 johana |
| 64 | * No more cramfs as root hack in generic code. |
| 65 | * It's handled by axisflashmap using mtdram. |
| 66 | * |
| 67 | * Revision 1.19 2002/03/15 17:10:28 bjornw |
| 68 | * Changed comment about cached access since we changed this before |
| 69 | * |
| 70 | * Revision 1.18 2002/03/05 17:06:15 jonashg |
| 71 | * Try amd_flash probe before cfi_probe since amd_flash driver can handle two |
| 72 | * (or more) flash chips of different model and the cfi driver cannot. |
| 73 | * |
| 74 | * Revision 1.17 2001/11/12 19:42:38 pkj |
| 75 | * Fixed compiler warnings. |
| 76 | * |
| 77 | * Revision 1.16 2001/11/08 11:18:58 jonashg |
| 78 | * Always read from uncached address to avoid problems with flushing |
| 79 | * cachelines after write and MTD-erase. No performance loss have been |
| 80 | * seen yet. |
| 81 | * |
| 82 | * Revision 1.15 2001/10/19 12:41:04 jonashg |
| 83 | * Name of probe has changed in MTD. |
| 84 | * |
| 85 | * Revision 1.14 2001/09/21 07:14:10 jonashg |
| 86 | * Made root filesystem (cramfs) use mtdblock driver when booting from flash. |
| 87 | * |
| 88 | * Revision 1.13 2001/08/15 13:57:35 jonashg |
| 89 | * Entire MTD updated to the linux 2.4.7 version. |
| 90 | * |
| 91 | * Revision 1.12 2001/06/11 09:50:30 jonashg |
| 92 | * Oops, 2MB is 0x200000 bytes. |
| 93 | * |
| 94 | * Revision 1.11 2001/06/08 11:39:44 jonashg |
| 95 | * Changed sizes and offsets in axis_default_partitions to use |
| 96 | * CONFIG_ETRAX_PTABLE_SECTOR. |
| 97 | * |
| 98 | * Revision 1.10 2001/05/29 09:42:03 jonashg |
| 99 | * Use macro for end marker length instead of sizeof. |
| 100 | * |
| 101 | * Revision 1.9 2001/05/29 08:52:52 jonashg |
| 102 | * Gave names to the magic fours (size of the ptable end marker). |
| 103 | * |
| 104 | * Revision 1.8 2001/05/28 15:36:20 jonashg |
| 105 | * * Removed old comment about ptable location in flash (it's a CONFIG_ option). |
| 106 | * * Variable ptable was initialized twice to the same value. |
| 107 | * |
| 108 | * Revision 1.7 2001/04/05 13:41:46 markusl |
| 109 | * Updated according to review remarks |
| 110 | * |
| 111 | * Revision 1.6 2001/03/07 09:21:21 bjornw |
| 112 | * No need to waste .data |
| 113 | * |
| 114 | * Revision 1.5 2001/03/06 16:27:01 jonashg |
| 115 | * Probe the entire flash area for flash devices. |
| 116 | * |
| 117 | * Revision 1.4 2001/02/23 12:47:15 bjornw |
| 118 | * Uncached flash in LOW_MAP moved from 0xe to 0x8 |
| 119 | * |
| 120 | * Revision 1.3 2001/02/16 12:11:45 jonashg |
| 121 | * MTD driver amd_flash is now included in MTD CVS repository. |
| 122 | * (It's now in drivers/mtd). |
| 123 | * |
| 124 | * Revision 1.2 2001/02/09 11:12:22 jonashg |
| 125 | * Support for AMD compatible non-CFI flash chips. |
| 126 | * Only tested with Toshiba TC58FVT160 so far. |
| 127 | * |
| 128 | * Revision 1.1 2001/01/12 17:01:18 bjornw |
| 129 | * * Added axisflashmap.c, a physical mapping for MTD that reads and understands |
| 130 | * Axis partition-table format. |
| 131 | * |
| 132 | * |
| 133 | */ |
| 134 | |
| 135 | #include <linux/module.h> |
| 136 | #include <linux/types.h> |
| 137 | #include <linux/kernel.h> |
| 138 | #include <linux/config.h> |
| 139 | #include <linux/init.h> |
| 140 | |
| 141 | #include <linux/mtd/concat.h> |
| 142 | #include <linux/mtd/map.h> |
| 143 | #include <linux/mtd/mtd.h> |
| 144 | #include <linux/mtd/mtdram.h> |
| 145 | #include <linux/mtd/partitions.h> |
| 146 | |
| 147 | #include <asm/axisflashmap.h> |
| 148 | #include <asm/mmu.h> |
| 149 | #include <asm/arch/sv_addr_ag.h> |
| 150 | |
| 151 | #ifdef CONFIG_CRIS_LOW_MAP |
| 152 | #define FLASH_UNCACHED_ADDR KSEG_8 |
| 153 | #define FLASH_CACHED_ADDR KSEG_5 |
| 154 | #else |
| 155 | #define FLASH_UNCACHED_ADDR KSEG_E |
| 156 | #define FLASH_CACHED_ADDR KSEG_F |
| 157 | #endif |
| 158 | |
| 159 | #if CONFIG_ETRAX_FLASH_BUSWIDTH==1 |
| 160 | #define flash_data __u8 |
| 161 | #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2 |
| 162 | #define flash_data __u16 |
| 163 | #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4 |
| 164 | #define flash_data __u16 |
| 165 | #endif |
| 166 | |
| 167 | /* From head.S */ |
| 168 | extern unsigned long romfs_start, romfs_length, romfs_in_flash; |
| 169 | |
| 170 | /* The master mtd for the entire flash. */ |
| 171 | struct mtd_info* axisflash_mtd = NULL; |
| 172 | |
| 173 | /* Map driver functions. */ |
| 174 | |
| 175 | static map_word flash_read(struct map_info *map, unsigned long ofs) |
| 176 | { |
| 177 | map_word tmp; |
| 178 | tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs); |
| 179 | return tmp; |
| 180 | } |
| 181 | |
| 182 | static void flash_copy_from(struct map_info *map, void *to, |
| 183 | unsigned long from, ssize_t len) |
| 184 | { |
| 185 | memcpy(to, (void *)(map->map_priv_1 + from), len); |
| 186 | } |
| 187 | |
| 188 | static void flash_write(struct map_info *map, map_word d, unsigned long adr) |
| 189 | { |
| 190 | *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0]; |
| 191 | } |
| 192 | |
| 193 | /* |
| 194 | * The map for chip select e0. |
| 195 | * |
| 196 | * We run into tricky coherence situations if we mix cached with uncached |
| 197 | * accesses to we only use the uncached version here. |
| 198 | * |
| 199 | * The size field is the total size where the flash chips may be mapped on the |
| 200 | * chip select. MTD probes should find all devices there and it does not matter |
| 201 | * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD |
| 202 | * probes will ignore them. |
| 203 | * |
| 204 | * The start address in map_priv_1 is in virtual memory so we cannot use |
| 205 | * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start |
| 206 | * address of cse0. |
| 207 | */ |
| 208 | static struct map_info map_cse0 = { |
| 209 | .name = "cse0", |
| 210 | .size = MEM_CSE0_SIZE, |
| 211 | .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, |
| 212 | .read = flash_read, |
| 213 | .copy_from = flash_copy_from, |
| 214 | .write = flash_write, |
| 215 | .map_priv_1 = FLASH_UNCACHED_ADDR |
| 216 | }; |
| 217 | |
| 218 | /* |
| 219 | * The map for chip select e1. |
| 220 | * |
| 221 | * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong |
| 222 | * address, but there isn't. |
| 223 | */ |
| 224 | static struct map_info map_cse1 = { |
| 225 | .name = "cse1", |
| 226 | .size = MEM_CSE1_SIZE, |
| 227 | .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, |
| 228 | .read = flash_read, |
| 229 | .copy_from = flash_copy_from, |
| 230 | .write = flash_write, |
| 231 | .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE |
| 232 | }; |
| 233 | |
| 234 | /* If no partition-table was found, we use this default-set. */ |
| 235 | #define MAX_PARTITIONS 7 |
| 236 | #define NUM_DEFAULT_PARTITIONS 3 |
| 237 | |
| 238 | /* |
| 239 | * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the |
| 240 | * size of one flash block and "filesystem"-partition needs 5 blocks to be able |
| 241 | * to use JFFS. |
| 242 | */ |
| 243 | static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = { |
| 244 | { |
| 245 | .name = "boot firmware", |
| 246 | .size = CONFIG_ETRAX_PTABLE_SECTOR, |
| 247 | .offset = 0 |
| 248 | }, |
| 249 | { |
| 250 | .name = "kernel", |
| 251 | .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR), |
| 252 | .offset = CONFIG_ETRAX_PTABLE_SECTOR |
| 253 | }, |
| 254 | { |
| 255 | .name = "filesystem", |
| 256 | .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR, |
| 257 | .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR) |
| 258 | } |
| 259 | }; |
| 260 | |
| 261 | /* Initialize the ones normally used. */ |
| 262 | static struct mtd_partition axis_partitions[MAX_PARTITIONS] = { |
| 263 | { |
| 264 | .name = "part0", |
| 265 | .size = CONFIG_ETRAX_PTABLE_SECTOR, |
| 266 | .offset = 0 |
| 267 | }, |
| 268 | { |
| 269 | .name = "part1", |
| 270 | .size = 0, |
| 271 | .offset = 0 |
| 272 | }, |
| 273 | { |
| 274 | .name = "part2", |
| 275 | .size = 0, |
| 276 | .offset = 0 |
| 277 | }, |
| 278 | { |
| 279 | .name = "part3", |
| 280 | .size = 0, |
| 281 | .offset = 0 |
| 282 | }, |
| 283 | { |
| 284 | .name = "part4", |
| 285 | .size = 0, |
| 286 | .offset = 0 |
| 287 | }, |
| 288 | { |
| 289 | .name = "part5", |
| 290 | .size = 0, |
| 291 | .offset = 0 |
| 292 | }, |
| 293 | { |
| 294 | .name = "part6", |
| 295 | .size = 0, |
| 296 | .offset = 0 |
| 297 | }, |
| 298 | }; |
| 299 | |
| 300 | /* |
| 301 | * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash |
| 302 | * chips in that order (because the amd_flash-driver is faster). |
| 303 | */ |
| 304 | static struct mtd_info *probe_cs(struct map_info *map_cs) |
| 305 | { |
| 306 | struct mtd_info *mtd_cs = NULL; |
| 307 | |
| 308 | printk(KERN_INFO |
| 309 | "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n", |
| 310 | map_cs->name, map_cs->size, map_cs->map_priv_1); |
| 311 | |
| 312 | #ifdef CONFIG_MTD_AMDSTD |
| 313 | mtd_cs = do_map_probe("amd_flash", map_cs); |
| 314 | #endif |
| 315 | #ifdef CONFIG_MTD_CFI |
| 316 | if (!mtd_cs) { |
| 317 | mtd_cs = do_map_probe("cfi_probe", map_cs); |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | return mtd_cs; |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * Probe each chip select individually for flash chips. If there are chips on |
| 326 | * both cse0 and cse1, the mtd_info structs will be concatenated to one struct |
| 327 | * so that MTD partitions can cross chip boundries. |
| 328 | * |
| 329 | * The only known restriction to how you can mount your chips is that each |
| 330 | * chip select must hold similar flash chips. But you need external hardware |
| 331 | * to do that anyway and you can put totally different chips on cse0 and cse1 |
| 332 | * so it isn't really much of a restriction. |
| 333 | */ |
| 334 | static struct mtd_info *flash_probe(void) |
| 335 | { |
| 336 | struct mtd_info *mtd_cse0; |
| 337 | struct mtd_info *mtd_cse1; |
| 338 | struct mtd_info *mtd_cse; |
| 339 | |
| 340 | mtd_cse0 = probe_cs(&map_cse0); |
| 341 | mtd_cse1 = probe_cs(&map_cse1); |
| 342 | |
| 343 | if (!mtd_cse0 && !mtd_cse1) { |
| 344 | /* No chip found. */ |
| 345 | return NULL; |
| 346 | } |
| 347 | |
| 348 | if (mtd_cse0 && mtd_cse1) { |
| 349 | #ifdef CONFIG_MTD_CONCAT |
| 350 | struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 }; |
| 351 | |
| 352 | /* Since the concatenation layer adds a small overhead we |
| 353 | * could try to figure out if the chips in cse0 and cse1 are |
| 354 | * identical and reprobe the whole cse0+cse1 window. But since |
| 355 | * flash chips are slow, the overhead is relatively small. |
| 356 | * So we use the MTD concatenation layer instead of further |
| 357 | * complicating the probing procedure. |
| 358 | */ |
| 359 | mtd_cse = mtd_concat_create(mtds, |
| 360 | sizeof(mtds) / sizeof(mtds[0]), |
| 361 | "cse0+cse1"); |
| 362 | #else |
| 363 | printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " |
| 364 | "(mis)configuration!\n", map_cse0.name, map_cse1.name); |
| 365 | mtd_cse = NULL; |
| 366 | #endif |
| 367 | if (!mtd_cse) { |
| 368 | printk(KERN_ERR "%s and %s: Concatenation failed!\n", |
| 369 | map_cse0.name, map_cse1.name); |
| 370 | |
| 371 | /* The best we can do now is to only use what we found |
| 372 | * at cse0. |
| 373 | */ |
| 374 | mtd_cse = mtd_cse0; |
| 375 | map_destroy(mtd_cse1); |
| 376 | } |
| 377 | } else { |
| 378 | mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1; |
| 379 | } |
| 380 | |
| 381 | return mtd_cse; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Probe the flash chip(s) and, if it succeeds, read the partition-table |
| 386 | * and register the partitions with MTD. |
| 387 | */ |
| 388 | static int __init init_axis_flash(void) |
| 389 | { |
| 390 | struct mtd_info *mymtd; |
| 391 | int err = 0; |
| 392 | int pidx = 0; |
| 393 | struct partitiontable_head *ptable_head = NULL; |
| 394 | struct partitiontable_entry *ptable; |
| 395 | int use_default_ptable = 1; /* Until proven otherwise. */ |
| 396 | const char *pmsg = " /dev/flash%d at 0x%08x, size 0x%08x\n"; |
| 397 | |
| 398 | if (!(mymtd = flash_probe())) { |
| 399 | /* There's no reason to use this module if no flash chip can |
| 400 | * be identified. Make sure that's understood. |
| 401 | */ |
| 402 | printk(KERN_INFO "axisflashmap: Found no flash chip.\n"); |
| 403 | } else { |
| 404 | printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n", |
| 405 | mymtd->name, mymtd->size); |
| 406 | axisflash_mtd = mymtd; |
| 407 | } |
| 408 | |
| 409 | if (mymtd) { |
| 410 | mymtd->owner = THIS_MODULE; |
| 411 | ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR + |
| 412 | CONFIG_ETRAX_PTABLE_SECTOR + |
| 413 | PARTITION_TABLE_OFFSET); |
| 414 | } |
| 415 | pidx++; /* First partition is always set to the default. */ |
| 416 | |
| 417 | if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC) |
| 418 | && (ptable_head->size < |
| 419 | (MAX_PARTITIONS * sizeof(struct partitiontable_entry) + |
| 420 | PARTITIONTABLE_END_MARKER_SIZE)) |
| 421 | && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) + |
| 422 | ptable_head->size - |
| 423 | PARTITIONTABLE_END_MARKER_SIZE) |
| 424 | == PARTITIONTABLE_END_MARKER)) { |
| 425 | /* Looks like a start, sane length and end of a |
| 426 | * partition table, lets check csum etc. |
| 427 | */ |
| 428 | int ptable_ok = 0; |
| 429 | struct partitiontable_entry *max_addr = |
| 430 | (struct partitiontable_entry *) |
| 431 | ((unsigned long)ptable_head + sizeof(*ptable_head) + |
| 432 | ptable_head->size); |
| 433 | unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR; |
| 434 | unsigned char *p; |
| 435 | unsigned long csum = 0; |
| 436 | |
| 437 | ptable = (struct partitiontable_entry *) |
| 438 | ((unsigned long)ptable_head + sizeof(*ptable_head)); |
| 439 | |
| 440 | /* Lets be PARANOID, and check the checksum. */ |
| 441 | p = (unsigned char*) ptable; |
| 442 | |
| 443 | while (p <= (unsigned char*)max_addr) { |
| 444 | csum += *p++; |
| 445 | csum += *p++; |
| 446 | csum += *p++; |
| 447 | csum += *p++; |
| 448 | } |
| 449 | ptable_ok = (csum == ptable_head->checksum); |
| 450 | |
| 451 | /* Read the entries and use/show the info. */ |
| 452 | printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n", |
| 453 | (ptable_ok ? " valid" : "n invalid"), ptable_head, |
| 454 | max_addr); |
| 455 | |
| 456 | /* We have found a working bootblock. Now read the |
| 457 | * partition table. Scan the table. It ends when |
| 458 | * there is 0xffffffff, that is, empty flash. |
| 459 | */ |
| 460 | while (ptable_ok |
| 461 | && ptable->offset != 0xffffffff |
| 462 | && ptable < max_addr |
| 463 | && pidx < MAX_PARTITIONS) { |
| 464 | |
| 465 | axis_partitions[pidx].offset = offset + ptable->offset; |
| 466 | axis_partitions[pidx].size = ptable->size; |
| 467 | |
| 468 | printk(pmsg, pidx, axis_partitions[pidx].offset, |
| 469 | axis_partitions[pidx].size); |
| 470 | pidx++; |
| 471 | ptable++; |
| 472 | } |
| 473 | use_default_ptable = !ptable_ok; |
| 474 | } |
| 475 | |
| 476 | if (romfs_in_flash) { |
| 477 | /* Add an overlapping device for the root partition (romfs). */ |
| 478 | |
| 479 | axis_partitions[pidx].name = "romfs"; |
| 480 | axis_partitions[pidx].size = romfs_length; |
| 481 | axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR; |
| 482 | axis_partitions[pidx].mask_flags |= MTD_WRITEABLE; |
| 483 | |
| 484 | printk(KERN_INFO |
| 485 | " Adding readonly flash partition for romfs image:\n"); |
| 486 | printk(pmsg, pidx, axis_partitions[pidx].offset, |
| 487 | axis_partitions[pidx].size); |
| 488 | pidx++; |
| 489 | } |
| 490 | |
| 491 | if (mymtd) { |
| 492 | if (use_default_ptable) { |
| 493 | printk(KERN_INFO " Using default partition table.\n"); |
| 494 | err = add_mtd_partitions(mymtd, axis_default_partitions, |
| 495 | NUM_DEFAULT_PARTITIONS); |
| 496 | } else { |
| 497 | err = add_mtd_partitions(mymtd, axis_partitions, pidx); |
| 498 | } |
| 499 | |
| 500 | if (err) { |
| 501 | panic("axisflashmap could not add MTD partitions!\n"); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | if (!romfs_in_flash) { |
| 506 | /* Create an RAM device for the root partition (romfs). */ |
| 507 | |
| 508 | #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0) |
| 509 | /* No use trying to boot this kernel from RAM. Panic! */ |
| 510 | printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM " |
| 511 | "device due to kernel (mis)configuration!\n"); |
| 512 | panic("This kernel cannot boot from RAM!\n"); |
| 513 | #else |
| 514 | struct mtd_info *mtd_ram; |
| 515 | |
| 516 | mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info), |
| 517 | GFP_KERNEL); |
| 518 | if (!mtd_ram) { |
| 519 | panic("axisflashmap couldn't allocate memory for " |
| 520 | "mtd_info!\n"); |
| 521 | } |
| 522 | |
| 523 | printk(KERN_INFO " Adding RAM partition for romfs image:\n"); |
| 524 | printk(pmsg, pidx, romfs_start, romfs_length); |
| 525 | |
| 526 | err = mtdram_init_device(mtd_ram, (void*)romfs_start, |
| 527 | romfs_length, "romfs"); |
| 528 | if (err) { |
| 529 | panic("axisflashmap could not initialize MTD RAM " |
| 530 | "device!\n"); |
| 531 | } |
| 532 | #endif |
| 533 | } |
| 534 | |
| 535 | return err; |
| 536 | } |
| 537 | |
| 538 | /* This adds the above to the kernels init-call chain. */ |
| 539 | module_init(init_axis_flash); |
| 540 | |
| 541 | EXPORT_SYMBOL(axisflash_mtd); |