Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* $Id: time.c,v 1.5 2004/09/29 06:12:46 starvik Exp $ |
| 2 | * |
| 3 | * linux/arch/cris/arch-v10/kernel/time.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| 6 | * Copyright (C) 1999-2002 Axis Communications AB |
| 7 | * |
| 8 | */ |
| 9 | |
| 10 | #include <linux/config.h> |
| 11 | #include <linux/timex.h> |
| 12 | #include <linux/time.h> |
| 13 | #include <linux/jiffies.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/swap.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <asm/arch/svinto.h> |
| 19 | #include <asm/types.h> |
| 20 | #include <asm/signal.h> |
| 21 | #include <asm/io.h> |
| 22 | #include <asm/delay.h> |
| 23 | #include <asm/rtc.h> |
| 24 | |
| 25 | /* define this if you need to use print_timestamp */ |
| 26 | /* it will make jiffies at 96 hz instead of 100 hz though */ |
| 27 | #undef USE_CASCADE_TIMERS |
| 28 | |
| 29 | extern void update_xtime_from_cmos(void); |
| 30 | extern int set_rtc_mmss(unsigned long nowtime); |
| 31 | extern int setup_irq(int, struct irqaction *); |
| 32 | extern int have_rtc; |
| 33 | |
| 34 | unsigned long get_ns_in_jiffie(void) |
| 35 | { |
| 36 | unsigned char timer_count, t1; |
| 37 | unsigned short presc_count; |
| 38 | unsigned long ns; |
| 39 | unsigned long flags; |
| 40 | |
| 41 | local_irq_save(flags); |
| 42 | local_irq_disable(); |
| 43 | timer_count = *R_TIMER0_DATA; |
| 44 | presc_count = *R_TIM_PRESC_STATUS; |
| 45 | /* presc_count might be wrapped */ |
| 46 | t1 = *R_TIMER0_DATA; |
| 47 | |
| 48 | if (timer_count != t1){ |
| 49 | /* it wrapped, read prescaler again... */ |
| 50 | presc_count = *R_TIM_PRESC_STATUS; |
| 51 | timer_count = t1; |
| 52 | } |
| 53 | local_irq_restore(flags); |
| 54 | if (presc_count >= PRESCALE_VALUE/2 ){ |
| 55 | presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; |
| 56 | } else { |
| 57 | presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; |
| 58 | } |
| 59 | |
| 60 | ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) + |
| 61 | ( (presc_count) * (1000000000/PRESCALE_FREQ)); |
| 62 | return ns; |
| 63 | } |
| 64 | |
| 65 | unsigned long do_slow_gettimeoffset(void) |
| 66 | { |
| 67 | unsigned long count, t1; |
| 68 | unsigned long usec_count = 0; |
| 69 | unsigned short presc_count; |
| 70 | |
| 71 | static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */ |
| 72 | static unsigned long jiffies_p = 0; |
| 73 | |
| 74 | /* |
| 75 | * cache volatile jiffies temporarily; we have IRQs turned off. |
| 76 | */ |
| 77 | unsigned long jiffies_t; |
| 78 | |
| 79 | /* The timer interrupt comes from Etrax timer 0. In order to get |
| 80 | * better precision, we check the current value. It might have |
| 81 | * underflowed already though. |
| 82 | */ |
| 83 | |
| 84 | #ifndef CONFIG_SVINTO_SIM |
| 85 | /* Not available in the xsim simulator. */ |
| 86 | count = *R_TIMER0_DATA; |
| 87 | presc_count = *R_TIM_PRESC_STATUS; |
| 88 | /* presc_count might be wrapped */ |
| 89 | t1 = *R_TIMER0_DATA; |
| 90 | if (count != t1){ |
| 91 | /* it wrapped, read prescaler again... */ |
| 92 | presc_count = *R_TIM_PRESC_STATUS; |
| 93 | count = t1; |
| 94 | } |
| 95 | #else |
| 96 | count = 0; |
| 97 | presc_count = 0; |
| 98 | #endif |
| 99 | |
| 100 | jiffies_t = jiffies; |
| 101 | |
| 102 | /* |
| 103 | * avoiding timer inconsistencies (they are rare, but they happen)... |
| 104 | * there are one problem that must be avoided here: |
| 105 | * 1. the timer counter underflows |
| 106 | */ |
| 107 | if( jiffies_t == jiffies_p ) { |
| 108 | if( count > count_p ) { |
| 109 | /* Timer wrapped, use new count and prescale |
| 110 | * increase the time corresponding to one jiffie |
| 111 | */ |
| 112 | usec_count = 1000000/HZ; |
| 113 | } |
| 114 | } else |
| 115 | jiffies_p = jiffies_t; |
| 116 | count_p = count; |
| 117 | if (presc_count >= PRESCALE_VALUE/2 ){ |
| 118 | presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; |
| 119 | } else { |
| 120 | presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; |
| 121 | } |
| 122 | /* Convert timer value to usec */ |
| 123 | usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) + |
| 124 | (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000); |
| 125 | |
| 126 | return usec_count; |
| 127 | } |
| 128 | |
| 129 | /* Excerpt from the Etrax100 HSDD about the built-in watchdog: |
| 130 | * |
| 131 | * 3.10.4 Watchdog timer |
| 132 | |
| 133 | * When the watchdog timer is started, it generates an NMI if the watchdog |
| 134 | * isn't restarted or stopped within 0.1 s. If it still isn't restarted or |
| 135 | * stopped after an additional 3.3 ms, the watchdog resets the chip. |
| 136 | * The watchdog timer is stopped after reset. The watchdog timer is controlled |
| 137 | * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit |
| 138 | * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is |
| 139 | * described in the table below: |
| 140 | * |
| 141 | * Watchdog Value written: |
| 142 | * state: To enable: To key: Operation: |
| 143 | * -------- ---------- ------- ---------- |
| 144 | * stopped 0 X No effect. |
| 145 | * stopped 1 key_val Start watchdog with key = key_val. |
| 146 | * started 0 ~key Stop watchdog |
| 147 | * started 1 ~key Restart watchdog with key = ~key. |
| 148 | * started X new_key_val Change key to new_key_val. |
| 149 | * |
| 150 | * Note: '~' is the bitwise NOT operator. |
| 151 | * |
| 152 | */ |
| 153 | |
| 154 | /* right now, starting the watchdog is the same as resetting it */ |
| 155 | #define start_watchdog reset_watchdog |
| 156 | |
| 157 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 158 | static int watchdog_key = 0; /* arbitrary number */ |
| 159 | #endif |
| 160 | |
| 161 | /* number of pages to consider "out of memory". it is normal that the memory |
| 162 | * is used though, so put this really low. |
| 163 | */ |
| 164 | |
| 165 | #define WATCHDOG_MIN_FREE_PAGES 8 |
| 166 | |
| 167 | void |
| 168 | reset_watchdog(void) |
| 169 | { |
| 170 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 171 | /* only keep watchdog happy as long as we have memory left! */ |
| 172 | if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { |
| 173 | /* reset the watchdog with the inverse of the old key */ |
| 174 | watchdog_key ^= 0x7; /* invert key, which is 3 bits */ |
| 175 | *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | |
| 176 | IO_STATE(R_WATCHDOG, enable, start); |
| 177 | } |
| 178 | #endif |
| 179 | } |
| 180 | |
| 181 | /* stop the watchdog - we still need the correct key */ |
| 182 | |
| 183 | void |
| 184 | stop_watchdog(void) |
| 185 | { |
| 186 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 187 | watchdog_key ^= 0x7; /* invert key, which is 3 bits */ |
| 188 | *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | |
| 189 | IO_STATE(R_WATCHDOG, enable, stop); |
| 190 | #endif |
| 191 | } |
| 192 | |
| 193 | /* last time the cmos clock got updated */ |
| 194 | static long last_rtc_update = 0; |
| 195 | |
| 196 | /* |
| 197 | * timer_interrupt() needs to keep up the real-time clock, |
| 198 | * as well as call the "do_timer()" routine every clocktick |
| 199 | */ |
| 200 | |
| 201 | //static unsigned short myjiff; /* used by our debug routine print_timestamp */ |
| 202 | |
| 203 | extern void cris_do_profile(struct pt_regs *regs); |
| 204 | |
| 205 | static inline irqreturn_t |
| 206 | timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 207 | { |
| 208 | /* acknowledge the timer irq */ |
| 209 | |
| 210 | #ifdef USE_CASCADE_TIMERS |
| 211 | *R_TIMER_CTRL = |
| 212 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| 213 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| 214 | IO_STATE( R_TIMER_CTRL, i1, clr) | |
| 215 | IO_STATE( R_TIMER_CTRL, tm1, run) | |
| 216 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| 217 | IO_STATE( R_TIMER_CTRL, i0, clr) | |
| 218 | IO_STATE( R_TIMER_CTRL, tm0, run) | |
| 219 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| 220 | #else |
| 221 | *R_TIMER_CTRL = r_timer_ctrl_shadow | |
| 222 | IO_STATE(R_TIMER_CTRL, i0, clr); |
| 223 | #endif |
| 224 | |
| 225 | /* reset watchdog otherwise it resets us! */ |
| 226 | |
| 227 | reset_watchdog(); |
| 228 | |
| 229 | /* call the real timer interrupt handler */ |
| 230 | |
| 231 | do_timer(regs); |
| 232 | |
| 233 | cris_do_profile(regs); /* Save profiling information */ |
| 234 | |
| 235 | /* |
| 236 | * If we have an externally synchronized Linux clock, then update |
| 237 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| 238 | * called as close as possible to 500 ms before the new second starts. |
| 239 | * |
| 240 | * The division here is not time critical since it will run once in |
| 241 | * 11 minutes |
| 242 | */ |
| 243 | if ((time_status & STA_UNSYNC) == 0 && |
| 244 | xtime.tv_sec > last_rtc_update + 660 && |
| 245 | (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 && |
| 246 | (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) { |
| 247 | if (set_rtc_mmss(xtime.tv_sec) == 0) |
| 248 | last_rtc_update = xtime.tv_sec; |
| 249 | else |
| 250 | last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ |
| 251 | } |
| 252 | return IRQ_HANDLED; |
| 253 | } |
| 254 | |
| 255 | /* timer is SA_SHIRQ so drivers can add stuff to the timer irq chain |
| 256 | * it needs to be SA_INTERRUPT to make the jiffies update work properly |
| 257 | */ |
| 258 | |
| 259 | static struct irqaction irq2 = { timer_interrupt, SA_SHIRQ | SA_INTERRUPT, |
| 260 | CPU_MASK_NONE, "timer", NULL, NULL}; |
| 261 | |
| 262 | void __init |
| 263 | time_init(void) |
| 264 | { |
| 265 | /* probe for the RTC and read it if it exists |
| 266 | * Before the RTC can be probed the loops_per_usec variable needs |
| 267 | * to be initialized to make usleep work. A better value for |
| 268 | * loops_per_usec is calculated by the kernel later once the |
| 269 | * clock has started. |
| 270 | */ |
| 271 | loops_per_usec = 50; |
| 272 | |
| 273 | if(RTC_INIT() < 0) { |
| 274 | /* no RTC, start at 1980 */ |
| 275 | xtime.tv_sec = 0; |
| 276 | xtime.tv_nsec = 0; |
| 277 | have_rtc = 0; |
| 278 | } else { |
| 279 | /* get the current time */ |
| 280 | have_rtc = 1; |
| 281 | update_xtime_from_cmos(); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the |
| 286 | * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). |
| 287 | */ |
| 288 | set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); |
| 289 | |
| 290 | /* Setup the etrax timers |
| 291 | * Base frequency is 25000 hz, divider 250 -> 100 HZ |
| 292 | * In normal mode, we use timer0, so timer1 is free. In cascade |
| 293 | * mode (which we sometimes use for debugging) both timers are used. |
| 294 | * Remember that linux/timex.h contains #defines that rely on the |
| 295 | * timer settings below (hz and divide factor) !!! |
| 296 | */ |
| 297 | |
| 298 | #ifdef USE_CASCADE_TIMERS |
| 299 | *R_TIMER_CTRL = |
| 300 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| 301 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| 302 | IO_STATE( R_TIMER_CTRL, i1, nop) | |
| 303 | IO_STATE( R_TIMER_CTRL, tm1, stop_ld) | |
| 304 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| 305 | IO_STATE( R_TIMER_CTRL, i0, nop) | |
| 306 | IO_STATE( R_TIMER_CTRL, tm0, stop_ld) | |
| 307 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| 308 | |
| 309 | *R_TIMER_CTRL = r_timer_ctrl_shadow = |
| 310 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| 311 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| 312 | IO_STATE( R_TIMER_CTRL, i1, nop) | |
| 313 | IO_STATE( R_TIMER_CTRL, tm1, run) | |
| 314 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| 315 | IO_STATE( R_TIMER_CTRL, i0, nop) | |
| 316 | IO_STATE( R_TIMER_CTRL, tm0, run) | |
| 317 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| 318 | #else |
| 319 | *R_TIMER_CTRL = |
| 320 | IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | |
| 321 | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | |
| 322 | IO_STATE(R_TIMER_CTRL, i1, nop) | |
| 323 | IO_STATE(R_TIMER_CTRL, tm1, stop_ld) | |
| 324 | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | |
| 325 | IO_STATE(R_TIMER_CTRL, i0, nop) | |
| 326 | IO_STATE(R_TIMER_CTRL, tm0, stop_ld) | |
| 327 | IO_STATE(R_TIMER_CTRL, clksel0, flexible); |
| 328 | |
| 329 | *R_TIMER_CTRL = r_timer_ctrl_shadow = |
| 330 | IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | |
| 331 | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | |
| 332 | IO_STATE(R_TIMER_CTRL, i1, nop) | |
| 333 | IO_STATE(R_TIMER_CTRL, tm1, run) | |
| 334 | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | |
| 335 | IO_STATE(R_TIMER_CTRL, i0, nop) | |
| 336 | IO_STATE(R_TIMER_CTRL, tm0, run) | |
| 337 | IO_STATE(R_TIMER_CTRL, clksel0, flexible); |
| 338 | |
| 339 | *R_TIMER_PRESCALE = PRESCALE_VALUE; |
| 340 | #endif |
| 341 | |
| 342 | *R_IRQ_MASK0_SET = |
| 343 | IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */ |
| 344 | |
| 345 | /* now actually register the timer irq handler that calls timer_interrupt() */ |
| 346 | |
| 347 | setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */ |
| 348 | |
| 349 | /* enable watchdog if we should use one */ |
| 350 | |
| 351 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 352 | printk("Enabling watchdog...\n"); |
| 353 | start_watchdog(); |
| 354 | |
| 355 | /* If we use the hardware watchdog, we want to trap it as an NMI |
| 356 | and dump registers before it resets us. For this to happen, we |
| 357 | must set the "m" NMI enable flag (which once set, is unset only |
| 358 | when an NMI is taken). |
| 359 | |
| 360 | The same goes for the external NMI, but that doesn't have any |
| 361 | driver or infrastructure support yet. */ |
| 362 | asm ("setf m"); |
| 363 | |
| 364 | *R_IRQ_MASK0_SET = |
| 365 | IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set); |
| 366 | *R_VECT_MASK_SET = |
| 367 | IO_STATE(R_VECT_MASK_SET, nmi, set); |
| 368 | #endif |
| 369 | } |