Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Kernel Probes (KProbes) |
| 3 | * arch/i386/kernel/kprobes.c |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 18 | * |
| 19 | * Copyright (C) IBM Corporation, 2002, 2004 |
| 20 | * |
| 21 | * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| 22 | * Probes initial implementation ( includes contributions from |
| 23 | * Rusty Russell). |
| 24 | * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| 25 | * interface to access function arguments. |
| 26 | */ |
| 27 | |
| 28 | #include <linux/config.h> |
| 29 | #include <linux/kprobes.h> |
| 30 | #include <linux/ptrace.h> |
| 31 | #include <linux/spinlock.h> |
| 32 | #include <linux/preempt.h> |
| 33 | #include <asm/kdebug.h> |
| 34 | #include <asm/desc.h> |
| 35 | |
| 36 | /* kprobe_status settings */ |
| 37 | #define KPROBE_HIT_ACTIVE 0x00000001 |
| 38 | #define KPROBE_HIT_SS 0x00000002 |
| 39 | |
| 40 | static struct kprobe *current_kprobe; |
| 41 | static unsigned long kprobe_status, kprobe_old_eflags, kprobe_saved_eflags; |
| 42 | static struct pt_regs jprobe_saved_regs; |
| 43 | static long *jprobe_saved_esp; |
| 44 | /* copy of the kernel stack at the probe fire time */ |
| 45 | static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE]; |
| 46 | void jprobe_return_end(void); |
| 47 | |
| 48 | /* |
| 49 | * returns non-zero if opcode modifies the interrupt flag. |
| 50 | */ |
| 51 | static inline int is_IF_modifier(kprobe_opcode_t opcode) |
| 52 | { |
| 53 | switch (opcode) { |
| 54 | case 0xfa: /* cli */ |
| 55 | case 0xfb: /* sti */ |
| 56 | case 0xcf: /* iret/iretd */ |
| 57 | case 0x9d: /* popf/popfd */ |
| 58 | return 1; |
| 59 | } |
| 60 | return 0; |
| 61 | } |
| 62 | |
| 63 | int arch_prepare_kprobe(struct kprobe *p) |
| 64 | { |
| 65 | return 0; |
| 66 | } |
| 67 | |
| 68 | void arch_copy_kprobe(struct kprobe *p) |
| 69 | { |
| 70 | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| 71 | } |
| 72 | |
| 73 | void arch_remove_kprobe(struct kprobe *p) |
| 74 | { |
| 75 | } |
| 76 | |
| 77 | static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs) |
| 78 | { |
| 79 | *p->addr = p->opcode; |
| 80 | regs->eip = (unsigned long)p->addr; |
| 81 | } |
| 82 | |
| 83 | static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| 84 | { |
| 85 | regs->eflags |= TF_MASK; |
| 86 | regs->eflags &= ~IF_MASK; |
| 87 | /*single step inline if the instruction is an int3*/ |
| 88 | if (p->opcode == BREAKPOINT_INSTRUCTION) |
| 89 | regs->eip = (unsigned long)p->addr; |
| 90 | else |
| 91 | regs->eip = (unsigned long)&p->ainsn.insn; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * Interrupts are disabled on entry as trap3 is an interrupt gate and they |
| 96 | * remain disabled thorough out this function. |
| 97 | */ |
| 98 | static int kprobe_handler(struct pt_regs *regs) |
| 99 | { |
| 100 | struct kprobe *p; |
| 101 | int ret = 0; |
| 102 | kprobe_opcode_t *addr = NULL; |
| 103 | unsigned long *lp; |
| 104 | |
| 105 | /* We're in an interrupt, but this is clear and BUG()-safe. */ |
| 106 | preempt_disable(); |
| 107 | /* Check if the application is using LDT entry for its code segment and |
| 108 | * calculate the address by reading the base address from the LDT entry. |
| 109 | */ |
| 110 | if ((regs->xcs & 4) && (current->mm)) { |
| 111 | lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8) |
| 112 | + (char *) current->mm->context.ldt); |
| 113 | addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip - |
| 114 | sizeof(kprobe_opcode_t)); |
| 115 | } else { |
| 116 | addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t)); |
| 117 | } |
| 118 | /* Check we're not actually recursing */ |
| 119 | if (kprobe_running()) { |
| 120 | /* We *are* holding lock here, so this is safe. |
| 121 | Disarm the probe we just hit, and ignore it. */ |
| 122 | p = get_kprobe(addr); |
| 123 | if (p) { |
| 124 | if (kprobe_status == KPROBE_HIT_SS) { |
| 125 | regs->eflags &= ~TF_MASK; |
| 126 | regs->eflags |= kprobe_saved_eflags; |
| 127 | unlock_kprobes(); |
| 128 | goto no_kprobe; |
| 129 | } |
| 130 | disarm_kprobe(p, regs); |
| 131 | ret = 1; |
| 132 | } else { |
| 133 | p = current_kprobe; |
| 134 | if (p->break_handler && p->break_handler(p, regs)) { |
| 135 | goto ss_probe; |
| 136 | } |
| 137 | } |
| 138 | /* If it's not ours, can't be delete race, (we hold lock). */ |
| 139 | goto no_kprobe; |
| 140 | } |
| 141 | |
| 142 | lock_kprobes(); |
| 143 | p = get_kprobe(addr); |
| 144 | if (!p) { |
| 145 | unlock_kprobes(); |
| 146 | if (regs->eflags & VM_MASK) { |
| 147 | /* We are in virtual-8086 mode. Return 0 */ |
| 148 | goto no_kprobe; |
| 149 | } |
| 150 | |
| 151 | if (*addr != BREAKPOINT_INSTRUCTION) { |
| 152 | /* |
| 153 | * The breakpoint instruction was removed right |
| 154 | * after we hit it. Another cpu has removed |
| 155 | * either a probepoint or a debugger breakpoint |
| 156 | * at this address. In either case, no further |
| 157 | * handling of this interrupt is appropriate. |
| 158 | */ |
| 159 | ret = 1; |
| 160 | } |
| 161 | /* Not one of ours: let kernel handle it */ |
| 162 | goto no_kprobe; |
| 163 | } |
| 164 | |
| 165 | kprobe_status = KPROBE_HIT_ACTIVE; |
| 166 | current_kprobe = p; |
| 167 | kprobe_saved_eflags = kprobe_old_eflags |
| 168 | = (regs->eflags & (TF_MASK | IF_MASK)); |
| 169 | if (is_IF_modifier(p->opcode)) |
| 170 | kprobe_saved_eflags &= ~IF_MASK; |
| 171 | |
| 172 | if (p->pre_handler && p->pre_handler(p, regs)) |
| 173 | /* handler has already set things up, so skip ss setup */ |
| 174 | return 1; |
| 175 | |
| 176 | ss_probe: |
| 177 | prepare_singlestep(p, regs); |
| 178 | kprobe_status = KPROBE_HIT_SS; |
| 179 | return 1; |
| 180 | |
| 181 | no_kprobe: |
| 182 | preempt_enable_no_resched(); |
| 183 | return ret; |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Called after single-stepping. p->addr is the address of the |
| 188 | * instruction whose first byte has been replaced by the "int 3" |
| 189 | * instruction. To avoid the SMP problems that can occur when we |
| 190 | * temporarily put back the original opcode to single-step, we |
| 191 | * single-stepped a copy of the instruction. The address of this |
| 192 | * copy is p->ainsn.insn. |
| 193 | * |
| 194 | * This function prepares to return from the post-single-step |
| 195 | * interrupt. We have to fix up the stack as follows: |
| 196 | * |
| 197 | * 0) Except in the case of absolute or indirect jump or call instructions, |
| 198 | * the new eip is relative to the copied instruction. We need to make |
| 199 | * it relative to the original instruction. |
| 200 | * |
| 201 | * 1) If the single-stepped instruction was pushfl, then the TF and IF |
| 202 | * flags are set in the just-pushed eflags, and may need to be cleared. |
| 203 | * |
| 204 | * 2) If the single-stepped instruction was a call, the return address |
| 205 | * that is atop the stack is the address following the copied instruction. |
| 206 | * We need to make it the address following the original instruction. |
| 207 | */ |
| 208 | static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| 209 | { |
| 210 | unsigned long *tos = (unsigned long *)®s->esp; |
| 211 | unsigned long next_eip = 0; |
| 212 | unsigned long copy_eip = (unsigned long)&p->ainsn.insn; |
| 213 | unsigned long orig_eip = (unsigned long)p->addr; |
| 214 | |
| 215 | switch (p->ainsn.insn[0]) { |
| 216 | case 0x9c: /* pushfl */ |
| 217 | *tos &= ~(TF_MASK | IF_MASK); |
| 218 | *tos |= kprobe_old_eflags; |
| 219 | break; |
| 220 | case 0xe8: /* call relative - Fix return addr */ |
| 221 | *tos = orig_eip + (*tos - copy_eip); |
| 222 | break; |
| 223 | case 0xff: |
| 224 | if ((p->ainsn.insn[1] & 0x30) == 0x10) { |
| 225 | /* call absolute, indirect */ |
| 226 | /* Fix return addr; eip is correct. */ |
| 227 | next_eip = regs->eip; |
| 228 | *tos = orig_eip + (*tos - copy_eip); |
| 229 | } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */ |
| 230 | ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */ |
| 231 | /* eip is correct. */ |
| 232 | next_eip = regs->eip; |
| 233 | } |
| 234 | break; |
| 235 | case 0xea: /* jmp absolute -- eip is correct */ |
| 236 | next_eip = regs->eip; |
| 237 | break; |
| 238 | default: |
| 239 | break; |
| 240 | } |
| 241 | |
| 242 | regs->eflags &= ~TF_MASK; |
| 243 | if (next_eip) { |
| 244 | regs->eip = next_eip; |
| 245 | } else { |
| 246 | regs->eip = orig_eip + (regs->eip - copy_eip); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * Interrupts are disabled on entry as trap1 is an interrupt gate and they |
| 252 | * remain disabled thoroughout this function. And we hold kprobe lock. |
| 253 | */ |
| 254 | static inline int post_kprobe_handler(struct pt_regs *regs) |
| 255 | { |
| 256 | if (!kprobe_running()) |
| 257 | return 0; |
| 258 | |
| 259 | if (current_kprobe->post_handler) |
| 260 | current_kprobe->post_handler(current_kprobe, regs, 0); |
| 261 | |
| 262 | resume_execution(current_kprobe, regs); |
| 263 | regs->eflags |= kprobe_saved_eflags; |
| 264 | |
| 265 | unlock_kprobes(); |
| 266 | preempt_enable_no_resched(); |
| 267 | |
| 268 | /* |
| 269 | * if somebody else is singlestepping across a probe point, eflags |
| 270 | * will have TF set, in which case, continue the remaining processing |
| 271 | * of do_debug, as if this is not a probe hit. |
| 272 | */ |
| 273 | if (regs->eflags & TF_MASK) |
| 274 | return 0; |
| 275 | |
| 276 | return 1; |
| 277 | } |
| 278 | |
| 279 | /* Interrupts disabled, kprobe_lock held. */ |
| 280 | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| 281 | { |
| 282 | if (current_kprobe->fault_handler |
| 283 | && current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| 284 | return 1; |
| 285 | |
| 286 | if (kprobe_status & KPROBE_HIT_SS) { |
| 287 | resume_execution(current_kprobe, regs); |
| 288 | regs->eflags |= kprobe_old_eflags; |
| 289 | |
| 290 | unlock_kprobes(); |
| 291 | preempt_enable_no_resched(); |
| 292 | } |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * Wrapper routine to for handling exceptions. |
| 298 | */ |
| 299 | int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| 300 | void *data) |
| 301 | { |
| 302 | struct die_args *args = (struct die_args *)data; |
| 303 | switch (val) { |
| 304 | case DIE_INT3: |
| 305 | if (kprobe_handler(args->regs)) |
| 306 | return NOTIFY_STOP; |
| 307 | break; |
| 308 | case DIE_DEBUG: |
| 309 | if (post_kprobe_handler(args->regs)) |
| 310 | return NOTIFY_STOP; |
| 311 | break; |
| 312 | case DIE_GPF: |
| 313 | if (kprobe_running() && |
| 314 | kprobe_fault_handler(args->regs, args->trapnr)) |
| 315 | return NOTIFY_STOP; |
| 316 | break; |
| 317 | case DIE_PAGE_FAULT: |
| 318 | if (kprobe_running() && |
| 319 | kprobe_fault_handler(args->regs, args->trapnr)) |
| 320 | return NOTIFY_STOP; |
| 321 | break; |
| 322 | default: |
| 323 | break; |
| 324 | } |
| 325 | return NOTIFY_DONE; |
| 326 | } |
| 327 | |
| 328 | int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| 329 | { |
| 330 | struct jprobe *jp = container_of(p, struct jprobe, kp); |
| 331 | unsigned long addr; |
| 332 | |
| 333 | jprobe_saved_regs = *regs; |
| 334 | jprobe_saved_esp = ®s->esp; |
| 335 | addr = (unsigned long)jprobe_saved_esp; |
| 336 | |
| 337 | /* |
| 338 | * TBD: As Linus pointed out, gcc assumes that the callee |
| 339 | * owns the argument space and could overwrite it, e.g. |
| 340 | * tailcall optimization. So, to be absolutely safe |
| 341 | * we also save and restore enough stack bytes to cover |
| 342 | * the argument area. |
| 343 | */ |
| 344 | memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr)); |
| 345 | regs->eflags &= ~IF_MASK; |
| 346 | regs->eip = (unsigned long)(jp->entry); |
| 347 | return 1; |
| 348 | } |
| 349 | |
| 350 | void jprobe_return(void) |
| 351 | { |
| 352 | preempt_enable_no_resched(); |
| 353 | asm volatile (" xchgl %%ebx,%%esp \n" |
| 354 | " int3 \n" |
| 355 | " .globl jprobe_return_end \n" |
| 356 | " jprobe_return_end: \n" |
| 357 | " nop \n"::"b" |
| 358 | (jprobe_saved_esp):"memory"); |
| 359 | } |
| 360 | |
| 361 | int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| 362 | { |
| 363 | u8 *addr = (u8 *) (regs->eip - 1); |
| 364 | unsigned long stack_addr = (unsigned long)jprobe_saved_esp; |
| 365 | struct jprobe *jp = container_of(p, struct jprobe, kp); |
| 366 | |
| 367 | if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { |
| 368 | if (®s->esp != jprobe_saved_esp) { |
| 369 | struct pt_regs *saved_regs = |
| 370 | container_of(jprobe_saved_esp, struct pt_regs, esp); |
| 371 | printk("current esp %p does not match saved esp %p\n", |
| 372 | ®s->esp, jprobe_saved_esp); |
| 373 | printk("Saved registers for jprobe %p\n", jp); |
| 374 | show_registers(saved_regs); |
| 375 | printk("Current registers\n"); |
| 376 | show_registers(regs); |
| 377 | BUG(); |
| 378 | } |
| 379 | *regs = jprobe_saved_regs; |
| 380 | memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack, |
| 381 | MIN_STACK_SIZE(stack_addr)); |
| 382 | return 1; |
| 383 | } |
| 384 | return 0; |
| 385 | } |