Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * x86 SMP booting functions |
| 3 | * |
| 4 | * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| 5 | * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> |
| 6 | * |
| 7 | * Much of the core SMP work is based on previous work by Thomas Radke, to |
| 8 | * whom a great many thanks are extended. |
| 9 | * |
| 10 | * Thanks to Intel for making available several different Pentium, |
| 11 | * Pentium Pro and Pentium-II/Xeon MP machines. |
| 12 | * Original development of Linux SMP code supported by Caldera. |
| 13 | * |
| 14 | * This code is released under the GNU General Public License version 2 or |
| 15 | * later. |
| 16 | * |
| 17 | * Fixes |
| 18 | * Felix Koop : NR_CPUS used properly |
| 19 | * Jose Renau : Handle single CPU case. |
| 20 | * Alan Cox : By repeated request 8) - Total BogoMIPS report. |
| 21 | * Greg Wright : Fix for kernel stacks panic. |
| 22 | * Erich Boleyn : MP v1.4 and additional changes. |
| 23 | * Matthias Sattler : Changes for 2.1 kernel map. |
| 24 | * Michel Lespinasse : Changes for 2.1 kernel map. |
| 25 | * Michael Chastain : Change trampoline.S to gnu as. |
| 26 | * Alan Cox : Dumb bug: 'B' step PPro's are fine |
| 27 | * Ingo Molnar : Added APIC timers, based on code |
| 28 | * from Jose Renau |
| 29 | * Ingo Molnar : various cleanups and rewrites |
| 30 | * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. |
| 31 | * Maciej W. Rozycki : Bits for genuine 82489DX APICs |
| 32 | * Martin J. Bligh : Added support for multi-quad systems |
| 33 | * Dave Jones : Report invalid combinations of Athlon CPUs. |
| 34 | * Rusty Russell : Hacked into shape for new "hotplug" boot process. */ |
| 35 | |
| 36 | #include <linux/module.h> |
| 37 | #include <linux/config.h> |
| 38 | #include <linux/init.h> |
| 39 | #include <linux/kernel.h> |
| 40 | |
| 41 | #include <linux/mm.h> |
| 42 | #include <linux/sched.h> |
| 43 | #include <linux/kernel_stat.h> |
| 44 | #include <linux/smp_lock.h> |
| 45 | #include <linux/irq.h> |
| 46 | #include <linux/bootmem.h> |
| 47 | |
| 48 | #include <linux/delay.h> |
| 49 | #include <linux/mc146818rtc.h> |
| 50 | #include <asm/tlbflush.h> |
| 51 | #include <asm/desc.h> |
| 52 | #include <asm/arch_hooks.h> |
| 53 | |
| 54 | #include <mach_apic.h> |
| 55 | #include <mach_wakecpu.h> |
| 56 | #include <smpboot_hooks.h> |
| 57 | |
| 58 | /* Set if we find a B stepping CPU */ |
| 59 | static int __initdata smp_b_stepping; |
| 60 | |
| 61 | /* Number of siblings per CPU package */ |
| 62 | int smp_num_siblings = 1; |
| 63 | int phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */ |
| 64 | EXPORT_SYMBOL(phys_proc_id); |
| 65 | |
| 66 | /* bitmap of online cpus */ |
| 67 | cpumask_t cpu_online_map; |
| 68 | |
| 69 | cpumask_t cpu_callin_map; |
| 70 | cpumask_t cpu_callout_map; |
| 71 | static cpumask_t smp_commenced_mask; |
| 72 | |
| 73 | /* Per CPU bogomips and other parameters */ |
| 74 | struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; |
| 75 | |
| 76 | u8 x86_cpu_to_apicid[NR_CPUS] = |
| 77 | { [0 ... NR_CPUS-1] = 0xff }; |
| 78 | EXPORT_SYMBOL(x86_cpu_to_apicid); |
| 79 | |
| 80 | /* |
| 81 | * Trampoline 80x86 program as an array. |
| 82 | */ |
| 83 | |
| 84 | extern unsigned char trampoline_data []; |
| 85 | extern unsigned char trampoline_end []; |
| 86 | static unsigned char *trampoline_base; |
| 87 | static int trampoline_exec; |
| 88 | |
| 89 | static void map_cpu_to_logical_apicid(void); |
| 90 | |
| 91 | /* |
| 92 | * Currently trivial. Write the real->protected mode |
| 93 | * bootstrap into the page concerned. The caller |
| 94 | * has made sure it's suitably aligned. |
| 95 | */ |
| 96 | |
| 97 | static unsigned long __init setup_trampoline(void) |
| 98 | { |
| 99 | memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); |
| 100 | return virt_to_phys(trampoline_base); |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * We are called very early to get the low memory for the |
| 105 | * SMP bootup trampoline page. |
| 106 | */ |
| 107 | void __init smp_alloc_memory(void) |
| 108 | { |
| 109 | trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); |
| 110 | /* |
| 111 | * Has to be in very low memory so we can execute |
| 112 | * real-mode AP code. |
| 113 | */ |
| 114 | if (__pa(trampoline_base) >= 0x9F000) |
| 115 | BUG(); |
| 116 | /* |
| 117 | * Make the SMP trampoline executable: |
| 118 | */ |
| 119 | trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1); |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * The bootstrap kernel entry code has set these up. Save them for |
| 124 | * a given CPU |
| 125 | */ |
| 126 | |
| 127 | static void __init smp_store_cpu_info(int id) |
| 128 | { |
| 129 | struct cpuinfo_x86 *c = cpu_data + id; |
| 130 | |
| 131 | *c = boot_cpu_data; |
| 132 | if (id!=0) |
| 133 | identify_cpu(c); |
| 134 | /* |
| 135 | * Mask B, Pentium, but not Pentium MMX |
| 136 | */ |
| 137 | if (c->x86_vendor == X86_VENDOR_INTEL && |
| 138 | c->x86 == 5 && |
| 139 | c->x86_mask >= 1 && c->x86_mask <= 4 && |
| 140 | c->x86_model <= 3) |
| 141 | /* |
| 142 | * Remember we have B step Pentia with bugs |
| 143 | */ |
| 144 | smp_b_stepping = 1; |
| 145 | |
| 146 | /* |
| 147 | * Certain Athlons might work (for various values of 'work') in SMP |
| 148 | * but they are not certified as MP capable. |
| 149 | */ |
| 150 | if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { |
| 151 | |
| 152 | /* Athlon 660/661 is valid. */ |
| 153 | if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1))) |
| 154 | goto valid_k7; |
| 155 | |
| 156 | /* Duron 670 is valid */ |
| 157 | if ((c->x86_model==7) && (c->x86_mask==0)) |
| 158 | goto valid_k7; |
| 159 | |
| 160 | /* |
| 161 | * Athlon 662, Duron 671, and Athlon >model 7 have capability bit. |
| 162 | * It's worth noting that the A5 stepping (662) of some Athlon XP's |
| 163 | * have the MP bit set. |
| 164 | * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more. |
| 165 | */ |
| 166 | if (((c->x86_model==6) && (c->x86_mask>=2)) || |
| 167 | ((c->x86_model==7) && (c->x86_mask>=1)) || |
| 168 | (c->x86_model> 7)) |
| 169 | if (cpu_has_mp) |
| 170 | goto valid_k7; |
| 171 | |
| 172 | /* If we get here, it's not a certified SMP capable AMD system. */ |
| 173 | tainted |= TAINT_UNSAFE_SMP; |
| 174 | } |
| 175 | |
| 176 | valid_k7: |
| 177 | ; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * TSC synchronization. |
| 182 | * |
| 183 | * We first check whether all CPUs have their TSC's synchronized, |
| 184 | * then we print a warning if not, and always resync. |
| 185 | */ |
| 186 | |
| 187 | static atomic_t tsc_start_flag = ATOMIC_INIT(0); |
| 188 | static atomic_t tsc_count_start = ATOMIC_INIT(0); |
| 189 | static atomic_t tsc_count_stop = ATOMIC_INIT(0); |
| 190 | static unsigned long long tsc_values[NR_CPUS]; |
| 191 | |
| 192 | #define NR_LOOPS 5 |
| 193 | |
| 194 | static void __init synchronize_tsc_bp (void) |
| 195 | { |
| 196 | int i; |
| 197 | unsigned long long t0; |
| 198 | unsigned long long sum, avg; |
| 199 | long long delta; |
| 200 | unsigned long one_usec; |
| 201 | int buggy = 0; |
| 202 | |
| 203 | printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus()); |
| 204 | |
| 205 | /* convert from kcyc/sec to cyc/usec */ |
| 206 | one_usec = cpu_khz / 1000; |
| 207 | |
| 208 | atomic_set(&tsc_start_flag, 1); |
| 209 | wmb(); |
| 210 | |
| 211 | /* |
| 212 | * We loop a few times to get a primed instruction cache, |
| 213 | * then the last pass is more or less synchronized and |
| 214 | * the BP and APs set their cycle counters to zero all at |
| 215 | * once. This reduces the chance of having random offsets |
| 216 | * between the processors, and guarantees that the maximum |
| 217 | * delay between the cycle counters is never bigger than |
| 218 | * the latency of information-passing (cachelines) between |
| 219 | * two CPUs. |
| 220 | */ |
| 221 | for (i = 0; i < NR_LOOPS; i++) { |
| 222 | /* |
| 223 | * all APs synchronize but they loop on '== num_cpus' |
| 224 | */ |
| 225 | while (atomic_read(&tsc_count_start) != num_booting_cpus()-1) |
| 226 | mb(); |
| 227 | atomic_set(&tsc_count_stop, 0); |
| 228 | wmb(); |
| 229 | /* |
| 230 | * this lets the APs save their current TSC: |
| 231 | */ |
| 232 | atomic_inc(&tsc_count_start); |
| 233 | |
| 234 | rdtscll(tsc_values[smp_processor_id()]); |
| 235 | /* |
| 236 | * We clear the TSC in the last loop: |
| 237 | */ |
| 238 | if (i == NR_LOOPS-1) |
| 239 | write_tsc(0, 0); |
| 240 | |
| 241 | /* |
| 242 | * Wait for all APs to leave the synchronization point: |
| 243 | */ |
| 244 | while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1) |
| 245 | mb(); |
| 246 | atomic_set(&tsc_count_start, 0); |
| 247 | wmb(); |
| 248 | atomic_inc(&tsc_count_stop); |
| 249 | } |
| 250 | |
| 251 | sum = 0; |
| 252 | for (i = 0; i < NR_CPUS; i++) { |
| 253 | if (cpu_isset(i, cpu_callout_map)) { |
| 254 | t0 = tsc_values[i]; |
| 255 | sum += t0; |
| 256 | } |
| 257 | } |
| 258 | avg = sum; |
| 259 | do_div(avg, num_booting_cpus()); |
| 260 | |
| 261 | sum = 0; |
| 262 | for (i = 0; i < NR_CPUS; i++) { |
| 263 | if (!cpu_isset(i, cpu_callout_map)) |
| 264 | continue; |
| 265 | delta = tsc_values[i] - avg; |
| 266 | if (delta < 0) |
| 267 | delta = -delta; |
| 268 | /* |
| 269 | * We report bigger than 2 microseconds clock differences. |
| 270 | */ |
| 271 | if (delta > 2*one_usec) { |
| 272 | long realdelta; |
| 273 | if (!buggy) { |
| 274 | buggy = 1; |
| 275 | printk("\n"); |
| 276 | } |
| 277 | realdelta = delta; |
| 278 | do_div(realdelta, one_usec); |
| 279 | if (tsc_values[i] < avg) |
| 280 | realdelta = -realdelta; |
| 281 | |
| 282 | printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta); |
| 283 | } |
| 284 | |
| 285 | sum += delta; |
| 286 | } |
| 287 | if (!buggy) |
| 288 | printk("passed.\n"); |
| 289 | } |
| 290 | |
| 291 | static void __init synchronize_tsc_ap (void) |
| 292 | { |
| 293 | int i; |
| 294 | |
| 295 | /* |
| 296 | * Not every cpu is online at the time |
| 297 | * this gets called, so we first wait for the BP to |
| 298 | * finish SMP initialization: |
| 299 | */ |
| 300 | while (!atomic_read(&tsc_start_flag)) mb(); |
| 301 | |
| 302 | for (i = 0; i < NR_LOOPS; i++) { |
| 303 | atomic_inc(&tsc_count_start); |
| 304 | while (atomic_read(&tsc_count_start) != num_booting_cpus()) |
| 305 | mb(); |
| 306 | |
| 307 | rdtscll(tsc_values[smp_processor_id()]); |
| 308 | if (i == NR_LOOPS-1) |
| 309 | write_tsc(0, 0); |
| 310 | |
| 311 | atomic_inc(&tsc_count_stop); |
| 312 | while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb(); |
| 313 | } |
| 314 | } |
| 315 | #undef NR_LOOPS |
| 316 | |
| 317 | extern void calibrate_delay(void); |
| 318 | |
| 319 | static atomic_t init_deasserted; |
| 320 | |
| 321 | static void __init smp_callin(void) |
| 322 | { |
| 323 | int cpuid, phys_id; |
| 324 | unsigned long timeout; |
| 325 | |
| 326 | /* |
| 327 | * If waken up by an INIT in an 82489DX configuration |
| 328 | * we may get here before an INIT-deassert IPI reaches |
| 329 | * our local APIC. We have to wait for the IPI or we'll |
| 330 | * lock up on an APIC access. |
| 331 | */ |
| 332 | wait_for_init_deassert(&init_deasserted); |
| 333 | |
| 334 | /* |
| 335 | * (This works even if the APIC is not enabled.) |
| 336 | */ |
| 337 | phys_id = GET_APIC_ID(apic_read(APIC_ID)); |
| 338 | cpuid = smp_processor_id(); |
| 339 | if (cpu_isset(cpuid, cpu_callin_map)) { |
| 340 | printk("huh, phys CPU#%d, CPU#%d already present??\n", |
| 341 | phys_id, cpuid); |
| 342 | BUG(); |
| 343 | } |
| 344 | Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); |
| 345 | |
| 346 | /* |
| 347 | * STARTUP IPIs are fragile beasts as they might sometimes |
| 348 | * trigger some glue motherboard logic. Complete APIC bus |
| 349 | * silence for 1 second, this overestimates the time the |
| 350 | * boot CPU is spending to send the up to 2 STARTUP IPIs |
| 351 | * by a factor of two. This should be enough. |
| 352 | */ |
| 353 | |
| 354 | /* |
| 355 | * Waiting 2s total for startup (udelay is not yet working) |
| 356 | */ |
| 357 | timeout = jiffies + 2*HZ; |
| 358 | while (time_before(jiffies, timeout)) { |
| 359 | /* |
| 360 | * Has the boot CPU finished it's STARTUP sequence? |
| 361 | */ |
| 362 | if (cpu_isset(cpuid, cpu_callout_map)) |
| 363 | break; |
| 364 | rep_nop(); |
| 365 | } |
| 366 | |
| 367 | if (!time_before(jiffies, timeout)) { |
| 368 | printk("BUG: CPU%d started up but did not get a callout!\n", |
| 369 | cpuid); |
| 370 | BUG(); |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * the boot CPU has finished the init stage and is spinning |
| 375 | * on callin_map until we finish. We are free to set up this |
| 376 | * CPU, first the APIC. (this is probably redundant on most |
| 377 | * boards) |
| 378 | */ |
| 379 | |
| 380 | Dprintk("CALLIN, before setup_local_APIC().\n"); |
| 381 | smp_callin_clear_local_apic(); |
| 382 | setup_local_APIC(); |
| 383 | map_cpu_to_logical_apicid(); |
| 384 | |
| 385 | /* |
| 386 | * Get our bogomips. |
| 387 | */ |
| 388 | calibrate_delay(); |
| 389 | Dprintk("Stack at about %p\n",&cpuid); |
| 390 | |
| 391 | /* |
| 392 | * Save our processor parameters |
| 393 | */ |
| 394 | smp_store_cpu_info(cpuid); |
| 395 | |
| 396 | disable_APIC_timer(); |
| 397 | |
| 398 | /* |
| 399 | * Allow the master to continue. |
| 400 | */ |
| 401 | cpu_set(cpuid, cpu_callin_map); |
| 402 | |
| 403 | /* |
| 404 | * Synchronize the TSC with the BP |
| 405 | */ |
| 406 | if (cpu_has_tsc && cpu_khz) |
| 407 | synchronize_tsc_ap(); |
| 408 | } |
| 409 | |
| 410 | static int cpucount; |
| 411 | |
| 412 | /* |
| 413 | * Activate a secondary processor. |
| 414 | */ |
| 415 | static void __init start_secondary(void *unused) |
| 416 | { |
| 417 | /* |
| 418 | * Dont put anything before smp_callin(), SMP |
| 419 | * booting is too fragile that we want to limit the |
| 420 | * things done here to the most necessary things. |
| 421 | */ |
| 422 | cpu_init(); |
| 423 | smp_callin(); |
| 424 | while (!cpu_isset(smp_processor_id(), smp_commenced_mask)) |
| 425 | rep_nop(); |
| 426 | setup_secondary_APIC_clock(); |
| 427 | if (nmi_watchdog == NMI_IO_APIC) { |
| 428 | disable_8259A_irq(0); |
| 429 | enable_NMI_through_LVT0(NULL); |
| 430 | enable_8259A_irq(0); |
| 431 | } |
| 432 | enable_APIC_timer(); |
| 433 | /* |
| 434 | * low-memory mappings have been cleared, flush them from |
| 435 | * the local TLBs too. |
| 436 | */ |
| 437 | local_flush_tlb(); |
| 438 | cpu_set(smp_processor_id(), cpu_online_map); |
| 439 | |
| 440 | /* We can take interrupts now: we're officially "up". */ |
| 441 | local_irq_enable(); |
| 442 | |
| 443 | wmb(); |
| 444 | cpu_idle(); |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * Everything has been set up for the secondary |
| 449 | * CPUs - they just need to reload everything |
| 450 | * from the task structure |
| 451 | * This function must not return. |
| 452 | */ |
| 453 | void __init initialize_secondary(void) |
| 454 | { |
| 455 | /* |
| 456 | * We don't actually need to load the full TSS, |
| 457 | * basically just the stack pointer and the eip. |
| 458 | */ |
| 459 | |
| 460 | asm volatile( |
| 461 | "movl %0,%%esp\n\t" |
| 462 | "jmp *%1" |
| 463 | : |
| 464 | :"r" (current->thread.esp),"r" (current->thread.eip)); |
| 465 | } |
| 466 | |
| 467 | extern struct { |
| 468 | void * esp; |
| 469 | unsigned short ss; |
| 470 | } stack_start; |
| 471 | |
| 472 | #ifdef CONFIG_NUMA |
| 473 | |
| 474 | /* which logical CPUs are on which nodes */ |
| 475 | cpumask_t node_2_cpu_mask[MAX_NUMNODES] = |
| 476 | { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; |
| 477 | /* which node each logical CPU is on */ |
| 478 | int cpu_2_node[NR_CPUS] = { [0 ... NR_CPUS-1] = 0 }; |
| 479 | EXPORT_SYMBOL(cpu_2_node); |
| 480 | |
| 481 | /* set up a mapping between cpu and node. */ |
| 482 | static inline void map_cpu_to_node(int cpu, int node) |
| 483 | { |
| 484 | printk("Mapping cpu %d to node %d\n", cpu, node); |
| 485 | cpu_set(cpu, node_2_cpu_mask[node]); |
| 486 | cpu_2_node[cpu] = node; |
| 487 | } |
| 488 | |
| 489 | /* undo a mapping between cpu and node. */ |
| 490 | static inline void unmap_cpu_to_node(int cpu) |
| 491 | { |
| 492 | int node; |
| 493 | |
| 494 | printk("Unmapping cpu %d from all nodes\n", cpu); |
| 495 | for (node = 0; node < MAX_NUMNODES; node ++) |
| 496 | cpu_clear(cpu, node_2_cpu_mask[node]); |
| 497 | cpu_2_node[cpu] = 0; |
| 498 | } |
| 499 | #else /* !CONFIG_NUMA */ |
| 500 | |
| 501 | #define map_cpu_to_node(cpu, node) ({}) |
| 502 | #define unmap_cpu_to_node(cpu) ({}) |
| 503 | |
| 504 | #endif /* CONFIG_NUMA */ |
| 505 | |
| 506 | u8 cpu_2_logical_apicid[NR_CPUS] = { [0 ... NR_CPUS-1] = BAD_APICID }; |
| 507 | |
| 508 | static void map_cpu_to_logical_apicid(void) |
| 509 | { |
| 510 | int cpu = smp_processor_id(); |
| 511 | int apicid = logical_smp_processor_id(); |
| 512 | |
| 513 | cpu_2_logical_apicid[cpu] = apicid; |
| 514 | map_cpu_to_node(cpu, apicid_to_node(apicid)); |
| 515 | } |
| 516 | |
| 517 | static void unmap_cpu_to_logical_apicid(int cpu) |
| 518 | { |
| 519 | cpu_2_logical_apicid[cpu] = BAD_APICID; |
| 520 | unmap_cpu_to_node(cpu); |
| 521 | } |
| 522 | |
| 523 | #if APIC_DEBUG |
| 524 | static inline void __inquire_remote_apic(int apicid) |
| 525 | { |
| 526 | int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; |
| 527 | char *names[] = { "ID", "VERSION", "SPIV" }; |
| 528 | int timeout, status; |
| 529 | |
| 530 | printk("Inquiring remote APIC #%d...\n", apicid); |
| 531 | |
| 532 | for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { |
| 533 | printk("... APIC #%d %s: ", apicid, names[i]); |
| 534 | |
| 535 | /* |
| 536 | * Wait for idle. |
| 537 | */ |
| 538 | apic_wait_icr_idle(); |
| 539 | |
| 540 | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| 541 | apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); |
| 542 | |
| 543 | timeout = 0; |
| 544 | do { |
| 545 | udelay(100); |
| 546 | status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; |
| 547 | } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); |
| 548 | |
| 549 | switch (status) { |
| 550 | case APIC_ICR_RR_VALID: |
| 551 | status = apic_read(APIC_RRR); |
| 552 | printk("%08x\n", status); |
| 553 | break; |
| 554 | default: |
| 555 | printk("failed\n"); |
| 556 | } |
| 557 | } |
| 558 | } |
| 559 | #endif |
| 560 | |
| 561 | #ifdef WAKE_SECONDARY_VIA_NMI |
| 562 | /* |
| 563 | * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal |
| 564 | * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this |
| 565 | * won't ... remember to clear down the APIC, etc later. |
| 566 | */ |
| 567 | static int __init |
| 568 | wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) |
| 569 | { |
| 570 | unsigned long send_status = 0, accept_status = 0; |
| 571 | int timeout, maxlvt; |
| 572 | |
| 573 | /* Target chip */ |
| 574 | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); |
| 575 | |
| 576 | /* Boot on the stack */ |
| 577 | /* Kick the second */ |
| 578 | apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); |
| 579 | |
| 580 | Dprintk("Waiting for send to finish...\n"); |
| 581 | timeout = 0; |
| 582 | do { |
| 583 | Dprintk("+"); |
| 584 | udelay(100); |
| 585 | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| 586 | } while (send_status && (timeout++ < 1000)); |
| 587 | |
| 588 | /* |
| 589 | * Give the other CPU some time to accept the IPI. |
| 590 | */ |
| 591 | udelay(200); |
| 592 | /* |
| 593 | * Due to the Pentium erratum 3AP. |
| 594 | */ |
| 595 | maxlvt = get_maxlvt(); |
| 596 | if (maxlvt > 3) { |
| 597 | apic_read_around(APIC_SPIV); |
| 598 | apic_write(APIC_ESR, 0); |
| 599 | } |
| 600 | accept_status = (apic_read(APIC_ESR) & 0xEF); |
| 601 | Dprintk("NMI sent.\n"); |
| 602 | |
| 603 | if (send_status) |
| 604 | printk("APIC never delivered???\n"); |
| 605 | if (accept_status) |
| 606 | printk("APIC delivery error (%lx).\n", accept_status); |
| 607 | |
| 608 | return (send_status | accept_status); |
| 609 | } |
| 610 | #endif /* WAKE_SECONDARY_VIA_NMI */ |
| 611 | |
| 612 | #ifdef WAKE_SECONDARY_VIA_INIT |
| 613 | static int __init |
| 614 | wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) |
| 615 | { |
| 616 | unsigned long send_status = 0, accept_status = 0; |
| 617 | int maxlvt, timeout, num_starts, j; |
| 618 | |
| 619 | /* |
| 620 | * Be paranoid about clearing APIC errors. |
| 621 | */ |
| 622 | if (APIC_INTEGRATED(apic_version[phys_apicid])) { |
| 623 | apic_read_around(APIC_SPIV); |
| 624 | apic_write(APIC_ESR, 0); |
| 625 | apic_read(APIC_ESR); |
| 626 | } |
| 627 | |
| 628 | Dprintk("Asserting INIT.\n"); |
| 629 | |
| 630 | /* |
| 631 | * Turn INIT on target chip |
| 632 | */ |
| 633 | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| 634 | |
| 635 | /* |
| 636 | * Send IPI |
| 637 | */ |
| 638 | apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT |
| 639 | | APIC_DM_INIT); |
| 640 | |
| 641 | Dprintk("Waiting for send to finish...\n"); |
| 642 | timeout = 0; |
| 643 | do { |
| 644 | Dprintk("+"); |
| 645 | udelay(100); |
| 646 | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| 647 | } while (send_status && (timeout++ < 1000)); |
| 648 | |
| 649 | mdelay(10); |
| 650 | |
| 651 | Dprintk("Deasserting INIT.\n"); |
| 652 | |
| 653 | /* Target chip */ |
| 654 | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| 655 | |
| 656 | /* Send IPI */ |
| 657 | apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| 658 | |
| 659 | Dprintk("Waiting for send to finish...\n"); |
| 660 | timeout = 0; |
| 661 | do { |
| 662 | Dprintk("+"); |
| 663 | udelay(100); |
| 664 | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| 665 | } while (send_status && (timeout++ < 1000)); |
| 666 | |
| 667 | atomic_set(&init_deasserted, 1); |
| 668 | |
| 669 | /* |
| 670 | * Should we send STARTUP IPIs ? |
| 671 | * |
| 672 | * Determine this based on the APIC version. |
| 673 | * If we don't have an integrated APIC, don't send the STARTUP IPIs. |
| 674 | */ |
| 675 | if (APIC_INTEGRATED(apic_version[phys_apicid])) |
| 676 | num_starts = 2; |
| 677 | else |
| 678 | num_starts = 0; |
| 679 | |
| 680 | /* |
| 681 | * Run STARTUP IPI loop. |
| 682 | */ |
| 683 | Dprintk("#startup loops: %d.\n", num_starts); |
| 684 | |
| 685 | maxlvt = get_maxlvt(); |
| 686 | |
| 687 | for (j = 1; j <= num_starts; j++) { |
| 688 | Dprintk("Sending STARTUP #%d.\n",j); |
| 689 | apic_read_around(APIC_SPIV); |
| 690 | apic_write(APIC_ESR, 0); |
| 691 | apic_read(APIC_ESR); |
| 692 | Dprintk("After apic_write.\n"); |
| 693 | |
| 694 | /* |
| 695 | * STARTUP IPI |
| 696 | */ |
| 697 | |
| 698 | /* Target chip */ |
| 699 | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| 700 | |
| 701 | /* Boot on the stack */ |
| 702 | /* Kick the second */ |
| 703 | apic_write_around(APIC_ICR, APIC_DM_STARTUP |
| 704 | | (start_eip >> 12)); |
| 705 | |
| 706 | /* |
| 707 | * Give the other CPU some time to accept the IPI. |
| 708 | */ |
| 709 | udelay(300); |
| 710 | |
| 711 | Dprintk("Startup point 1.\n"); |
| 712 | |
| 713 | Dprintk("Waiting for send to finish...\n"); |
| 714 | timeout = 0; |
| 715 | do { |
| 716 | Dprintk("+"); |
| 717 | udelay(100); |
| 718 | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| 719 | } while (send_status && (timeout++ < 1000)); |
| 720 | |
| 721 | /* |
| 722 | * Give the other CPU some time to accept the IPI. |
| 723 | */ |
| 724 | udelay(200); |
| 725 | /* |
| 726 | * Due to the Pentium erratum 3AP. |
| 727 | */ |
| 728 | if (maxlvt > 3) { |
| 729 | apic_read_around(APIC_SPIV); |
| 730 | apic_write(APIC_ESR, 0); |
| 731 | } |
| 732 | accept_status = (apic_read(APIC_ESR) & 0xEF); |
| 733 | if (send_status || accept_status) |
| 734 | break; |
| 735 | } |
| 736 | Dprintk("After Startup.\n"); |
| 737 | |
| 738 | if (send_status) |
| 739 | printk("APIC never delivered???\n"); |
| 740 | if (accept_status) |
| 741 | printk("APIC delivery error (%lx).\n", accept_status); |
| 742 | |
| 743 | return (send_status | accept_status); |
| 744 | } |
| 745 | #endif /* WAKE_SECONDARY_VIA_INIT */ |
| 746 | |
| 747 | extern cpumask_t cpu_initialized; |
| 748 | |
| 749 | static int __init do_boot_cpu(int apicid) |
| 750 | /* |
| 751 | * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad |
| 752 | * (ie clustered apic addressing mode), this is a LOGICAL apic ID. |
| 753 | * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. |
| 754 | */ |
| 755 | { |
| 756 | struct task_struct *idle; |
| 757 | unsigned long boot_error; |
| 758 | int timeout, cpu; |
| 759 | unsigned long start_eip; |
| 760 | unsigned short nmi_high = 0, nmi_low = 0; |
| 761 | |
| 762 | cpu = ++cpucount; |
| 763 | /* |
| 764 | * We can't use kernel_thread since we must avoid to |
| 765 | * reschedule the child. |
| 766 | */ |
| 767 | idle = fork_idle(cpu); |
| 768 | if (IS_ERR(idle)) |
| 769 | panic("failed fork for CPU %d", cpu); |
| 770 | idle->thread.eip = (unsigned long) start_secondary; |
| 771 | /* start_eip had better be page-aligned! */ |
| 772 | start_eip = setup_trampoline(); |
| 773 | |
| 774 | /* So we see what's up */ |
| 775 | printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); |
| 776 | /* Stack for startup_32 can be just as for start_secondary onwards */ |
| 777 | stack_start.esp = (void *) idle->thread.esp; |
| 778 | |
| 779 | irq_ctx_init(cpu); |
| 780 | |
| 781 | /* |
| 782 | * This grunge runs the startup process for |
| 783 | * the targeted processor. |
| 784 | */ |
| 785 | |
| 786 | atomic_set(&init_deasserted, 0); |
| 787 | |
| 788 | Dprintk("Setting warm reset code and vector.\n"); |
| 789 | |
| 790 | store_NMI_vector(&nmi_high, &nmi_low); |
| 791 | |
| 792 | smpboot_setup_warm_reset_vector(start_eip); |
| 793 | |
| 794 | /* |
| 795 | * Starting actual IPI sequence... |
| 796 | */ |
| 797 | boot_error = wakeup_secondary_cpu(apicid, start_eip); |
| 798 | |
| 799 | if (!boot_error) { |
| 800 | /* |
| 801 | * allow APs to start initializing. |
| 802 | */ |
| 803 | Dprintk("Before Callout %d.\n", cpu); |
| 804 | cpu_set(cpu, cpu_callout_map); |
| 805 | Dprintk("After Callout %d.\n", cpu); |
| 806 | |
| 807 | /* |
| 808 | * Wait 5s total for a response |
| 809 | */ |
| 810 | for (timeout = 0; timeout < 50000; timeout++) { |
| 811 | if (cpu_isset(cpu, cpu_callin_map)) |
| 812 | break; /* It has booted */ |
| 813 | udelay(100); |
| 814 | } |
| 815 | |
| 816 | if (cpu_isset(cpu, cpu_callin_map)) { |
| 817 | /* number CPUs logically, starting from 1 (BSP is 0) */ |
| 818 | Dprintk("OK.\n"); |
| 819 | printk("CPU%d: ", cpu); |
| 820 | print_cpu_info(&cpu_data[cpu]); |
| 821 | Dprintk("CPU has booted.\n"); |
| 822 | } else { |
| 823 | boot_error= 1; |
| 824 | if (*((volatile unsigned char *)trampoline_base) |
| 825 | == 0xA5) |
| 826 | /* trampoline started but...? */ |
| 827 | printk("Stuck ??\n"); |
| 828 | else |
| 829 | /* trampoline code not run */ |
| 830 | printk("Not responding.\n"); |
| 831 | inquire_remote_apic(apicid); |
| 832 | } |
| 833 | } |
| 834 | x86_cpu_to_apicid[cpu] = apicid; |
| 835 | if (boot_error) { |
| 836 | /* Try to put things back the way they were before ... */ |
| 837 | unmap_cpu_to_logical_apicid(cpu); |
| 838 | cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */ |
| 839 | cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ |
| 840 | cpucount--; |
| 841 | } |
| 842 | |
| 843 | /* mark "stuck" area as not stuck */ |
| 844 | *((volatile unsigned long *)trampoline_base) = 0; |
| 845 | |
| 846 | return boot_error; |
| 847 | } |
| 848 | |
| 849 | static void smp_tune_scheduling (void) |
| 850 | { |
| 851 | unsigned long cachesize; /* kB */ |
| 852 | unsigned long bandwidth = 350; /* MB/s */ |
| 853 | /* |
| 854 | * Rough estimation for SMP scheduling, this is the number of |
| 855 | * cycles it takes for a fully memory-limited process to flush |
| 856 | * the SMP-local cache. |
| 857 | * |
| 858 | * (For a P5 this pretty much means we will choose another idle |
| 859 | * CPU almost always at wakeup time (this is due to the small |
| 860 | * L1 cache), on PIIs it's around 50-100 usecs, depending on |
| 861 | * the cache size) |
| 862 | */ |
| 863 | |
| 864 | if (!cpu_khz) { |
| 865 | /* |
| 866 | * this basically disables processor-affinity |
| 867 | * scheduling on SMP without a TSC. |
| 868 | */ |
| 869 | return; |
| 870 | } else { |
| 871 | cachesize = boot_cpu_data.x86_cache_size; |
| 872 | if (cachesize == -1) { |
| 873 | cachesize = 16; /* Pentiums, 2x8kB cache */ |
| 874 | bandwidth = 100; |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Cycle through the processors sending APIC IPIs to boot each. |
| 881 | */ |
| 882 | |
| 883 | static int boot_cpu_logical_apicid; |
| 884 | /* Where the IO area was mapped on multiquad, always 0 otherwise */ |
| 885 | void *xquad_portio; |
| 886 | |
| 887 | cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned; |
| 888 | |
| 889 | static void __init smp_boot_cpus(unsigned int max_cpus) |
| 890 | { |
| 891 | int apicid, cpu, bit, kicked; |
| 892 | unsigned long bogosum = 0; |
| 893 | |
| 894 | /* |
| 895 | * Setup boot CPU information |
| 896 | */ |
| 897 | smp_store_cpu_info(0); /* Final full version of the data */ |
| 898 | printk("CPU%d: ", 0); |
| 899 | print_cpu_info(&cpu_data[0]); |
| 900 | |
| 901 | boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID)); |
| 902 | boot_cpu_logical_apicid = logical_smp_processor_id(); |
| 903 | x86_cpu_to_apicid[0] = boot_cpu_physical_apicid; |
| 904 | |
| 905 | current_thread_info()->cpu = 0; |
| 906 | smp_tune_scheduling(); |
| 907 | cpus_clear(cpu_sibling_map[0]); |
| 908 | cpu_set(0, cpu_sibling_map[0]); |
| 909 | |
| 910 | /* |
| 911 | * If we couldn't find an SMP configuration at boot time, |
| 912 | * get out of here now! |
| 913 | */ |
| 914 | if (!smp_found_config && !acpi_lapic) { |
| 915 | printk(KERN_NOTICE "SMP motherboard not detected.\n"); |
| 916 | smpboot_clear_io_apic_irqs(); |
| 917 | phys_cpu_present_map = physid_mask_of_physid(0); |
| 918 | if (APIC_init_uniprocessor()) |
| 919 | printk(KERN_NOTICE "Local APIC not detected." |
| 920 | " Using dummy APIC emulation.\n"); |
| 921 | map_cpu_to_logical_apicid(); |
| 922 | return; |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * Should not be necessary because the MP table should list the boot |
| 927 | * CPU too, but we do it for the sake of robustness anyway. |
| 928 | * Makes no sense to do this check in clustered apic mode, so skip it |
| 929 | */ |
| 930 | if (!check_phys_apicid_present(boot_cpu_physical_apicid)) { |
| 931 | printk("weird, boot CPU (#%d) not listed by the BIOS.\n", |
| 932 | boot_cpu_physical_apicid); |
| 933 | physid_set(hard_smp_processor_id(), phys_cpu_present_map); |
| 934 | } |
| 935 | |
| 936 | /* |
| 937 | * If we couldn't find a local APIC, then get out of here now! |
| 938 | */ |
| 939 | if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) { |
| 940 | printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", |
| 941 | boot_cpu_physical_apicid); |
| 942 | printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); |
| 943 | smpboot_clear_io_apic_irqs(); |
| 944 | phys_cpu_present_map = physid_mask_of_physid(0); |
| 945 | return; |
| 946 | } |
| 947 | |
| 948 | verify_local_APIC(); |
| 949 | |
| 950 | /* |
| 951 | * If SMP should be disabled, then really disable it! |
| 952 | */ |
| 953 | if (!max_cpus) { |
| 954 | smp_found_config = 0; |
| 955 | printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); |
| 956 | smpboot_clear_io_apic_irqs(); |
| 957 | phys_cpu_present_map = physid_mask_of_physid(0); |
| 958 | return; |
| 959 | } |
| 960 | |
| 961 | connect_bsp_APIC(); |
| 962 | setup_local_APIC(); |
| 963 | map_cpu_to_logical_apicid(); |
| 964 | |
| 965 | |
| 966 | setup_portio_remap(); |
| 967 | |
| 968 | /* |
| 969 | * Scan the CPU present map and fire up the other CPUs via do_boot_cpu |
| 970 | * |
| 971 | * In clustered apic mode, phys_cpu_present_map is a constructed thus: |
| 972 | * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the |
| 973 | * clustered apic ID. |
| 974 | */ |
| 975 | Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map)); |
| 976 | |
| 977 | kicked = 1; |
| 978 | for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) { |
| 979 | apicid = cpu_present_to_apicid(bit); |
| 980 | /* |
| 981 | * Don't even attempt to start the boot CPU! |
| 982 | */ |
| 983 | if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID)) |
| 984 | continue; |
| 985 | |
| 986 | if (!check_apicid_present(bit)) |
| 987 | continue; |
| 988 | if (max_cpus <= cpucount+1) |
| 989 | continue; |
| 990 | |
| 991 | if (do_boot_cpu(apicid)) |
| 992 | printk("CPU #%d not responding - cannot use it.\n", |
| 993 | apicid); |
| 994 | else |
| 995 | ++kicked; |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * Cleanup possible dangling ends... |
| 1000 | */ |
| 1001 | smpboot_restore_warm_reset_vector(); |
| 1002 | |
| 1003 | /* |
| 1004 | * Allow the user to impress friends. |
| 1005 | */ |
| 1006 | Dprintk("Before bogomips.\n"); |
| 1007 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 1008 | if (cpu_isset(cpu, cpu_callout_map)) |
| 1009 | bogosum += cpu_data[cpu].loops_per_jiffy; |
| 1010 | printk(KERN_INFO |
| 1011 | "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| 1012 | cpucount+1, |
| 1013 | bogosum/(500000/HZ), |
| 1014 | (bogosum/(5000/HZ))%100); |
| 1015 | |
| 1016 | Dprintk("Before bogocount - setting activated=1.\n"); |
| 1017 | |
| 1018 | if (smp_b_stepping) |
| 1019 | printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); |
| 1020 | |
| 1021 | /* |
| 1022 | * Don't taint if we are running SMP kernel on a single non-MP |
| 1023 | * approved Athlon |
| 1024 | */ |
| 1025 | if (tainted & TAINT_UNSAFE_SMP) { |
| 1026 | if (cpucount) |
| 1027 | printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n"); |
| 1028 | else |
| 1029 | tainted &= ~TAINT_UNSAFE_SMP; |
| 1030 | } |
| 1031 | |
| 1032 | Dprintk("Boot done.\n"); |
| 1033 | |
| 1034 | /* |
| 1035 | * construct cpu_sibling_map[], so that we can tell sibling CPUs |
| 1036 | * efficiently. |
| 1037 | */ |
| 1038 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 1039 | cpus_clear(cpu_sibling_map[cpu]); |
| 1040 | |
| 1041 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 1042 | int siblings = 0; |
| 1043 | int i; |
| 1044 | if (!cpu_isset(cpu, cpu_callout_map)) |
| 1045 | continue; |
| 1046 | |
| 1047 | if (smp_num_siblings > 1) { |
| 1048 | for (i = 0; i < NR_CPUS; i++) { |
| 1049 | if (!cpu_isset(i, cpu_callout_map)) |
| 1050 | continue; |
| 1051 | if (phys_proc_id[cpu] == phys_proc_id[i]) { |
| 1052 | siblings++; |
| 1053 | cpu_set(i, cpu_sibling_map[cpu]); |
| 1054 | } |
| 1055 | } |
| 1056 | } else { |
| 1057 | siblings++; |
| 1058 | cpu_set(cpu, cpu_sibling_map[cpu]); |
| 1059 | } |
| 1060 | |
| 1061 | if (siblings != smp_num_siblings) |
| 1062 | printk(KERN_WARNING "WARNING: %d siblings found for CPU%d, should be %d\n", siblings, cpu, smp_num_siblings); |
| 1063 | } |
| 1064 | |
| 1065 | if (nmi_watchdog == NMI_LOCAL_APIC) |
| 1066 | check_nmi_watchdog(); |
| 1067 | |
| 1068 | smpboot_setup_io_apic(); |
| 1069 | |
| 1070 | setup_boot_APIC_clock(); |
| 1071 | |
| 1072 | /* |
| 1073 | * Synchronize the TSC with the AP |
| 1074 | */ |
| 1075 | if (cpu_has_tsc && cpucount && cpu_khz) |
| 1076 | synchronize_tsc_bp(); |
| 1077 | } |
| 1078 | |
| 1079 | /* These are wrappers to interface to the new boot process. Someone |
| 1080 | who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */ |
| 1081 | void __init smp_prepare_cpus(unsigned int max_cpus) |
| 1082 | { |
| 1083 | smp_boot_cpus(max_cpus); |
| 1084 | } |
| 1085 | |
| 1086 | void __devinit smp_prepare_boot_cpu(void) |
| 1087 | { |
| 1088 | cpu_set(smp_processor_id(), cpu_online_map); |
| 1089 | cpu_set(smp_processor_id(), cpu_callout_map); |
| 1090 | } |
| 1091 | |
| 1092 | int __devinit __cpu_up(unsigned int cpu) |
| 1093 | { |
| 1094 | /* This only works at boot for x86. See "rewrite" above. */ |
| 1095 | if (cpu_isset(cpu, smp_commenced_mask)) { |
| 1096 | local_irq_enable(); |
| 1097 | return -ENOSYS; |
| 1098 | } |
| 1099 | |
| 1100 | /* In case one didn't come up */ |
| 1101 | if (!cpu_isset(cpu, cpu_callin_map)) { |
| 1102 | local_irq_enable(); |
| 1103 | return -EIO; |
| 1104 | } |
| 1105 | |
| 1106 | local_irq_enable(); |
| 1107 | /* Unleash the CPU! */ |
| 1108 | cpu_set(cpu, smp_commenced_mask); |
| 1109 | while (!cpu_isset(cpu, cpu_online_map)) |
| 1110 | mb(); |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | void __init smp_cpus_done(unsigned int max_cpus) |
| 1115 | { |
| 1116 | #ifdef CONFIG_X86_IO_APIC |
| 1117 | setup_ioapic_dest(); |
| 1118 | #endif |
| 1119 | zap_low_mappings(); |
| 1120 | /* |
| 1121 | * Disable executability of the SMP trampoline: |
| 1122 | */ |
| 1123 | set_kernel_exec((unsigned long)trampoline_base, trampoline_exec); |
| 1124 | } |
| 1125 | |
| 1126 | void __init smp_intr_init(void) |
| 1127 | { |
| 1128 | /* |
| 1129 | * IRQ0 must be given a fixed assignment and initialized, |
| 1130 | * because it's used before the IO-APIC is set up. |
| 1131 | */ |
| 1132 | set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]); |
| 1133 | |
| 1134 | /* |
| 1135 | * The reschedule interrupt is a CPU-to-CPU reschedule-helper |
| 1136 | * IPI, driven by wakeup. |
| 1137 | */ |
| 1138 | set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); |
| 1139 | |
| 1140 | /* IPI for invalidation */ |
| 1141 | set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt); |
| 1142 | |
| 1143 | /* IPI for generic function call */ |
| 1144 | set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); |
| 1145 | } |