Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Mips Jazz DMA controller support |
| 3 | * Copyright (C) 1995, 1996 by Andreas Busse |
| 4 | * |
| 5 | * NOTE: Some of the argument checking could be removed when |
| 6 | * things have settled down. Also, instead of returning 0xffffffff |
| 7 | * on failure of vdma_alloc() one could leave page #0 unused |
| 8 | * and return the more usual NULL pointer as logical address. |
| 9 | */ |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/bootmem.h> |
| 16 | #include <linux/spinlock.h> |
| 17 | #include <asm/mipsregs.h> |
| 18 | #include <asm/jazz.h> |
| 19 | #include <asm/io.h> |
| 20 | #include <asm/uaccess.h> |
| 21 | #include <asm/dma.h> |
| 22 | #include <asm/jazzdma.h> |
| 23 | #include <asm/pgtable.h> |
| 24 | |
| 25 | /* |
| 26 | * Set this to one to enable additional vdma debug code. |
| 27 | */ |
| 28 | #define CONF_DEBUG_VDMA 0 |
| 29 | |
| 30 | static unsigned long vdma_pagetable_start; |
| 31 | |
| 32 | static DEFINE_SPINLOCK(vdma_lock); |
| 33 | |
| 34 | /* |
| 35 | * Debug stuff |
| 36 | */ |
| 37 | #define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0) |
| 38 | |
| 39 | static int debuglvl = 3; |
| 40 | |
| 41 | /* |
| 42 | * Initialize the pagetable with a one-to-one mapping of |
| 43 | * the first 16 Mbytes of main memory and declare all |
| 44 | * entries to be unused. Using this method will at least |
| 45 | * allow some early device driver operations to work. |
| 46 | */ |
| 47 | static inline void vdma_pgtbl_init(void) |
| 48 | { |
| 49 | VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start; |
| 50 | unsigned long paddr = 0; |
| 51 | int i; |
| 52 | |
| 53 | for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) { |
| 54 | pgtbl[i].frame = paddr; |
| 55 | pgtbl[i].owner = VDMA_PAGE_EMPTY; |
| 56 | paddr += VDMA_PAGESIZE; |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | /* |
| 61 | * Initialize the Jazz R4030 dma controller |
| 62 | */ |
| 63 | void __init vdma_init(void) |
| 64 | { |
| 65 | /* |
| 66 | * Allocate 32k of memory for DMA page tables. This needs to be page |
| 67 | * aligned and should be uncached to avoid cache flushing after every |
| 68 | * update. |
| 69 | */ |
| 70 | vdma_pagetable_start = alloc_bootmem_low_pages(VDMA_PGTBL_SIZE); |
| 71 | if (!vdma_pagetable_start) |
| 72 | BUG(); |
| 73 | dma_cache_wback_inv(vdma_pagetable_start, VDMA_PGTBL_SIZE); |
| 74 | vdma_pagetable_start = KSEG1ADDR(vdma_pagetable_start); |
| 75 | |
| 76 | /* |
| 77 | * Clear the R4030 translation table |
| 78 | */ |
| 79 | vdma_pgtbl_init(); |
| 80 | |
| 81 | r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, |
| 82 | CPHYSADDR(vdma_pagetable_start)); |
| 83 | r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE); |
| 84 | r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0); |
| 85 | |
| 86 | printk("VDMA: R4030 DMA pagetables initialized.\n"); |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | * Allocate DMA pagetables using a simple first-fit algorithm |
| 91 | */ |
| 92 | unsigned long vdma_alloc(unsigned long paddr, unsigned long size) |
| 93 | { |
| 94 | VDMA_PGTBL_ENTRY *entry = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start; |
| 95 | int first, last, pages, frame, i; |
| 96 | unsigned long laddr, flags; |
| 97 | |
| 98 | /* check arguments */ |
| 99 | |
| 100 | if (paddr > 0x1fffffff) { |
| 101 | if (vdma_debug) |
| 102 | printk("vdma_alloc: Invalid physical address: %08lx\n", |
| 103 | paddr); |
| 104 | return VDMA_ERROR; /* invalid physical address */ |
| 105 | } |
| 106 | if (size > 0x400000 || size == 0) { |
| 107 | if (vdma_debug) |
| 108 | printk("vdma_alloc: Invalid size: %08lx\n", size); |
| 109 | return VDMA_ERROR; /* invalid physical address */ |
| 110 | } |
| 111 | |
| 112 | spin_lock_irqsave(&vdma_lock, flags); |
| 113 | /* |
| 114 | * Find free chunk |
| 115 | */ |
| 116 | pages = (size + 4095) >> 12; /* no. of pages to allocate */ |
| 117 | first = 0; |
| 118 | while (1) { |
| 119 | while (entry[first].owner != VDMA_PAGE_EMPTY && |
| 120 | first < VDMA_PGTBL_ENTRIES) first++; |
| 121 | if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */ |
| 122 | spin_unlock_irqrestore(&vdma_lock, flags); |
| 123 | return VDMA_ERROR; |
| 124 | } |
| 125 | |
| 126 | last = first + 1; |
| 127 | while (entry[last].owner == VDMA_PAGE_EMPTY |
| 128 | && last - first < pages) |
| 129 | last++; |
| 130 | |
| 131 | if (last - first == pages) |
| 132 | break; /* found */ |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * Mark pages as allocated |
| 137 | */ |
| 138 | laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1)); |
| 139 | frame = paddr & ~(VDMA_PAGESIZE - 1); |
| 140 | |
| 141 | for (i = first; i < last; i++) { |
| 142 | entry[i].frame = frame; |
| 143 | entry[i].owner = laddr; |
| 144 | frame += VDMA_PAGESIZE; |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * Update translation table and return logical start address |
| 149 | */ |
| 150 | r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0); |
| 151 | |
| 152 | if (vdma_debug > 1) |
| 153 | printk("vdma_alloc: Allocated %d pages starting from %08lx\n", |
| 154 | pages, laddr); |
| 155 | |
| 156 | if (vdma_debug > 2) { |
| 157 | printk("LADDR: "); |
| 158 | for (i = first; i < last; i++) |
| 159 | printk("%08x ", i << 12); |
| 160 | printk("\nPADDR: "); |
| 161 | for (i = first; i < last; i++) |
| 162 | printk("%08x ", entry[i].frame); |
| 163 | printk("\nOWNER: "); |
| 164 | for (i = first; i < last; i++) |
| 165 | printk("%08x ", entry[i].owner); |
| 166 | printk("\n"); |
| 167 | } |
| 168 | |
| 169 | spin_unlock_irqrestore(&vdma_lock, flags); |
| 170 | |
| 171 | return laddr; |
| 172 | } |
| 173 | |
| 174 | EXPORT_SYMBOL(vdma_alloc); |
| 175 | |
| 176 | /* |
| 177 | * Free previously allocated dma translation pages |
| 178 | * Note that this does NOT change the translation table, |
| 179 | * it just marks the free'd pages as unused! |
| 180 | */ |
| 181 | int vdma_free(unsigned long laddr) |
| 182 | { |
| 183 | VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start; |
| 184 | int i; |
| 185 | |
| 186 | i = laddr >> 12; |
| 187 | |
| 188 | if (pgtbl[i].owner != laddr) { |
| 189 | printk |
| 190 | ("vdma_free: trying to free other's dma pages, laddr=%8lx\n", |
| 191 | laddr); |
| 192 | return -1; |
| 193 | } |
| 194 | |
| 195 | while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) { |
| 196 | pgtbl[i].owner = VDMA_PAGE_EMPTY; |
| 197 | i++; |
| 198 | } |
| 199 | |
| 200 | if (vdma_debug > 1) |
| 201 | printk("vdma_free: freed %ld pages starting from %08lx\n", |
| 202 | i - (laddr >> 12), laddr); |
| 203 | |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | EXPORT_SYMBOL(vdma_free); |
| 208 | |
| 209 | /* |
| 210 | * Map certain page(s) to another physical address. |
| 211 | * Caller must have allocated the page(s) before. |
| 212 | */ |
| 213 | int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size) |
| 214 | { |
| 215 | VDMA_PGTBL_ENTRY *pgtbl = |
| 216 | (VDMA_PGTBL_ENTRY *) vdma_pagetable_start; |
| 217 | int first, pages, npages; |
| 218 | |
| 219 | if (laddr > 0xffffff) { |
| 220 | if (vdma_debug) |
| 221 | printk |
| 222 | ("vdma_map: Invalid logical address: %08lx\n", |
| 223 | laddr); |
| 224 | return -EINVAL; /* invalid logical address */ |
| 225 | } |
| 226 | if (paddr > 0x1fffffff) { |
| 227 | if (vdma_debug) |
| 228 | printk |
| 229 | ("vdma_map: Invalid physical address: %08lx\n", |
| 230 | paddr); |
| 231 | return -EINVAL; /* invalid physical address */ |
| 232 | } |
| 233 | |
| 234 | npages = pages = |
| 235 | (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1; |
| 236 | first = laddr >> 12; |
| 237 | if (vdma_debug) |
| 238 | printk("vdma_remap: first=%x, pages=%x\n", first, pages); |
| 239 | if (first + pages > VDMA_PGTBL_ENTRIES) { |
| 240 | if (vdma_debug) |
| 241 | printk("vdma_alloc: Invalid size: %08lx\n", size); |
| 242 | return -EINVAL; |
| 243 | } |
| 244 | |
| 245 | paddr &= ~(VDMA_PAGESIZE - 1); |
| 246 | while (pages > 0 && first < VDMA_PGTBL_ENTRIES) { |
| 247 | if (pgtbl[first].owner != laddr) { |
| 248 | if (vdma_debug) |
| 249 | printk("Trying to remap other's pages.\n"); |
| 250 | return -EPERM; /* not owner */ |
| 251 | } |
| 252 | pgtbl[first].frame = paddr; |
| 253 | paddr += VDMA_PAGESIZE; |
| 254 | first++; |
| 255 | pages--; |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Update translation table |
| 260 | */ |
| 261 | r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0); |
| 262 | |
| 263 | if (vdma_debug > 2) { |
| 264 | int i; |
| 265 | pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1; |
| 266 | first = laddr >> 12; |
| 267 | printk("LADDR: "); |
| 268 | for (i = first; i < first + pages; i++) |
| 269 | printk("%08x ", i << 12); |
| 270 | printk("\nPADDR: "); |
| 271 | for (i = first; i < first + pages; i++) |
| 272 | printk("%08x ", pgtbl[i].frame); |
| 273 | printk("\nOWNER: "); |
| 274 | for (i = first; i < first + pages; i++) |
| 275 | printk("%08x ", pgtbl[i].owner); |
| 276 | printk("\n"); |
| 277 | } |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * Translate a physical address to a logical address. |
| 284 | * This will return the logical address of the first |
| 285 | * match. |
| 286 | */ |
| 287 | unsigned long vdma_phys2log(unsigned long paddr) |
| 288 | { |
| 289 | int i; |
| 290 | int frame; |
| 291 | VDMA_PGTBL_ENTRY *pgtbl = |
| 292 | (VDMA_PGTBL_ENTRY *) vdma_pagetable_start; |
| 293 | |
| 294 | frame = paddr & ~(VDMA_PAGESIZE - 1); |
| 295 | |
| 296 | for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) { |
| 297 | if (pgtbl[i].frame == frame) |
| 298 | break; |
| 299 | } |
| 300 | |
| 301 | if (i == VDMA_PGTBL_ENTRIES) |
| 302 | return ~0UL; |
| 303 | |
| 304 | return (i << 12) + (paddr & (VDMA_PAGESIZE - 1)); |
| 305 | } |
| 306 | |
| 307 | EXPORT_SYMBOL(vdma_phys2log); |
| 308 | |
| 309 | /* |
| 310 | * Translate a logical DMA address to a physical address |
| 311 | */ |
| 312 | unsigned long vdma_log2phys(unsigned long laddr) |
| 313 | { |
| 314 | VDMA_PGTBL_ENTRY *pgtbl = |
| 315 | (VDMA_PGTBL_ENTRY *) vdma_pagetable_start; |
| 316 | |
| 317 | return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1)); |
| 318 | } |
| 319 | |
| 320 | EXPORT_SYMBOL(vdma_log2phys); |
| 321 | |
| 322 | /* |
| 323 | * Print DMA statistics |
| 324 | */ |
| 325 | void vdma_stats(void) |
| 326 | { |
| 327 | int i; |
| 328 | |
| 329 | printk("vdma_stats: CONFIG: %08x\n", |
| 330 | r4030_read_reg32(JAZZ_R4030_CONFIG)); |
| 331 | printk("R4030 translation table base: %08x\n", |
| 332 | r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE)); |
| 333 | printk("R4030 translation table limit: %08x\n", |
| 334 | r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM)); |
| 335 | printk("vdma_stats: INV_ADDR: %08x\n", |
| 336 | r4030_read_reg32(JAZZ_R4030_INV_ADDR)); |
| 337 | printk("vdma_stats: R_FAIL_ADDR: %08x\n", |
| 338 | r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR)); |
| 339 | printk("vdma_stats: M_FAIL_ADDR: %08x\n", |
| 340 | r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR)); |
| 341 | printk("vdma_stats: IRQ_SOURCE: %08x\n", |
| 342 | r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE)); |
| 343 | printk("vdma_stats: I386_ERROR: %08x\n", |
| 344 | r4030_read_reg32(JAZZ_R4030_I386_ERROR)); |
| 345 | printk("vdma_chnl_modes: "); |
| 346 | for (i = 0; i < 8; i++) |
| 347 | printk("%04x ", |
| 348 | (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE + |
| 349 | (i << 5))); |
| 350 | printk("\n"); |
| 351 | printk("vdma_chnl_enables: "); |
| 352 | for (i = 0; i < 8; i++) |
| 353 | printk("%04x ", |
| 354 | (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 355 | (i << 5))); |
| 356 | printk("\n"); |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * DMA transfer functions |
| 361 | */ |
| 362 | |
| 363 | /* |
| 364 | * Enable a DMA channel. Also clear any error conditions. |
| 365 | */ |
| 366 | void vdma_enable(int channel) |
| 367 | { |
| 368 | int status; |
| 369 | |
| 370 | if (vdma_debug) |
| 371 | printk("vdma_enable: channel %d\n", channel); |
| 372 | |
| 373 | /* |
| 374 | * Check error conditions first |
| 375 | */ |
| 376 | status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5)); |
| 377 | if (status & 0x400) |
| 378 | printk("VDMA: Channel %d: Address error!\n", channel); |
| 379 | if (status & 0x200) |
| 380 | printk("VDMA: Channel %d: Memory error!\n", channel); |
| 381 | |
| 382 | /* |
| 383 | * Clear all interrupt flags |
| 384 | */ |
| 385 | r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), |
| 386 | r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 387 | (channel << 5)) | R4030_TC_INTR |
| 388 | | R4030_MEM_INTR | R4030_ADDR_INTR); |
| 389 | |
| 390 | /* |
| 391 | * Enable the desired channel |
| 392 | */ |
| 393 | r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), |
| 394 | r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 395 | (channel << 5)) | |
| 396 | R4030_CHNL_ENABLE); |
| 397 | } |
| 398 | |
| 399 | EXPORT_SYMBOL(vdma_enable); |
| 400 | |
| 401 | /* |
| 402 | * Disable a DMA channel |
| 403 | */ |
| 404 | void vdma_disable(int channel) |
| 405 | { |
| 406 | if (vdma_debug) { |
| 407 | int status = |
| 408 | r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 409 | (channel << 5)); |
| 410 | |
| 411 | printk("vdma_disable: channel %d\n", channel); |
| 412 | printk("VDMA: channel %d status: %04x (%s) mode: " |
| 413 | "%02x addr: %06x count: %06x\n", |
| 414 | channel, status, |
| 415 | ((status & 0x600) ? "ERROR" : "OK"), |
| 416 | (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE + |
| 417 | (channel << 5)), |
| 418 | (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR + |
| 419 | (channel << 5)), |
| 420 | (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + |
| 421 | (channel << 5))); |
| 422 | } |
| 423 | |
| 424 | r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), |
| 425 | r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 426 | (channel << 5)) & |
| 427 | ~R4030_CHNL_ENABLE); |
| 428 | |
| 429 | /* |
| 430 | * After disabling a DMA channel a remote bus register should be |
| 431 | * read to ensure that the current DMA acknowledge cycle is completed. |
| 432 | */ |
| 433 | *((volatile unsigned int *) JAZZ_DUMMY_DEVICE); |
| 434 | } |
| 435 | |
| 436 | EXPORT_SYMBOL(vdma_disable); |
| 437 | |
| 438 | /* |
| 439 | * Set DMA mode. This function accepts the mode values used |
| 440 | * to set a PC-style DMA controller. For the SCSI and FDC |
| 441 | * channels, we also set the default modes each time we're |
| 442 | * called. |
| 443 | * NOTE: The FAST and BURST dma modes are supported by the |
| 444 | * R4030 Rev. 2 and PICA chipsets only. I leave them disabled |
| 445 | * for now. |
| 446 | */ |
| 447 | void vdma_set_mode(int channel, int mode) |
| 448 | { |
| 449 | if (vdma_debug) |
| 450 | printk("vdma_set_mode: channel %d, mode 0x%x\n", channel, |
| 451 | mode); |
| 452 | |
| 453 | switch (channel) { |
| 454 | case JAZZ_SCSI_DMA: /* scsi */ |
| 455 | r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5), |
| 456 | /* R4030_MODE_FAST | */ |
| 457 | /* R4030_MODE_BURST | */ |
| 458 | R4030_MODE_INTR_EN | |
| 459 | R4030_MODE_WIDTH_16 | |
| 460 | R4030_MODE_ATIME_80); |
| 461 | break; |
| 462 | |
| 463 | case JAZZ_FLOPPY_DMA: /* floppy */ |
| 464 | r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5), |
| 465 | /* R4030_MODE_FAST | */ |
| 466 | /* R4030_MODE_BURST | */ |
| 467 | R4030_MODE_INTR_EN | |
| 468 | R4030_MODE_WIDTH_8 | |
| 469 | R4030_MODE_ATIME_120); |
| 470 | break; |
| 471 | |
| 472 | case JAZZ_AUDIOL_DMA: |
| 473 | case JAZZ_AUDIOR_DMA: |
| 474 | printk("VDMA: Audio DMA not supported yet.\n"); |
| 475 | break; |
| 476 | |
| 477 | default: |
| 478 | printk |
| 479 | ("VDMA: vdma_set_mode() called with unsupported channel %d!\n", |
| 480 | channel); |
| 481 | } |
| 482 | |
| 483 | switch (mode) { |
| 484 | case DMA_MODE_READ: |
| 485 | r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), |
| 486 | r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 487 | (channel << 5)) & |
| 488 | ~R4030_CHNL_WRITE); |
| 489 | break; |
| 490 | |
| 491 | case DMA_MODE_WRITE: |
| 492 | r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5), |
| 493 | r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + |
| 494 | (channel << 5)) | |
| 495 | R4030_CHNL_WRITE); |
| 496 | break; |
| 497 | |
| 498 | default: |
| 499 | printk |
| 500 | ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n", |
| 501 | mode); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | EXPORT_SYMBOL(vdma_set_mode); |
| 506 | |
| 507 | /* |
| 508 | * Set Transfer Address |
| 509 | */ |
| 510 | void vdma_set_addr(int channel, long addr) |
| 511 | { |
| 512 | if (vdma_debug) |
| 513 | printk("vdma_set_addr: channel %d, addr %lx\n", channel, |
| 514 | addr); |
| 515 | |
| 516 | r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr); |
| 517 | } |
| 518 | |
| 519 | EXPORT_SYMBOL(vdma_set_addr); |
| 520 | |
| 521 | /* |
| 522 | * Set Transfer Count |
| 523 | */ |
| 524 | void vdma_set_count(int channel, int count) |
| 525 | { |
| 526 | if (vdma_debug) |
| 527 | printk("vdma_set_count: channel %d, count %08x\n", channel, |
| 528 | (unsigned) count); |
| 529 | |
| 530 | r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count); |
| 531 | } |
| 532 | |
| 533 | EXPORT_SYMBOL(vdma_set_count); |
| 534 | |
| 535 | /* |
| 536 | * Get Residual |
| 537 | */ |
| 538 | int vdma_get_residue(int channel) |
| 539 | { |
| 540 | int residual; |
| 541 | |
| 542 | residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5)); |
| 543 | |
| 544 | if (vdma_debug) |
| 545 | printk("vdma_get_residual: channel %d: residual=%d\n", |
| 546 | channel, residual); |
| 547 | |
| 548 | return residual; |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * Get DMA channel enable register |
| 553 | */ |
| 554 | int vdma_get_enable(int channel) |
| 555 | { |
| 556 | int enable; |
| 557 | |
| 558 | enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5)); |
| 559 | |
| 560 | if (vdma_debug) |
| 561 | printk("vdma_get_enable: channel %d: enable=%d\n", channel, |
| 562 | enable); |
| 563 | |
| 564 | return enable; |
| 565 | } |