Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/parisc/kernel/time.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| 5 | * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King |
| 6 | * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) |
| 7 | * |
| 8 | * 1994-07-02 Alan Modra |
| 9 | * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime |
| 10 | * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 |
| 11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 12 | */ |
| 13 | #include <linux/config.h> |
| 14 | #include <linux/errno.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/param.h> |
| 19 | #include <linux/string.h> |
| 20 | #include <linux/mm.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/time.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/smp.h> |
| 25 | #include <linux/profile.h> |
| 26 | |
| 27 | #include <asm/uaccess.h> |
| 28 | #include <asm/io.h> |
| 29 | #include <asm/irq.h> |
| 30 | #include <asm/param.h> |
| 31 | #include <asm/pdc.h> |
| 32 | #include <asm/led.h> |
| 33 | |
| 34 | #include <linux/timex.h> |
| 35 | |
| 36 | u64 jiffies_64 = INITIAL_JIFFIES; |
| 37 | |
| 38 | EXPORT_SYMBOL(jiffies_64); |
| 39 | |
| 40 | /* xtime and wall_jiffies keep wall-clock time */ |
| 41 | extern unsigned long wall_jiffies; |
| 42 | |
| 43 | static long clocktick; /* timer cycles per tick */ |
| 44 | static long halftick; |
| 45 | |
| 46 | #ifdef CONFIG_SMP |
| 47 | extern void smp_do_timer(struct pt_regs *regs); |
| 48 | #endif |
| 49 | |
| 50 | irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 51 | { |
| 52 | long now; |
| 53 | long next_tick; |
| 54 | int nticks; |
| 55 | int cpu = smp_processor_id(); |
| 56 | |
| 57 | profile_tick(CPU_PROFILING, regs); |
| 58 | |
| 59 | now = mfctl(16); |
| 60 | /* initialize next_tick to time at last clocktick */ |
| 61 | next_tick = cpu_data[cpu].it_value; |
| 62 | |
| 63 | /* since time passes between the interrupt and the mfctl() |
| 64 | * above, it is never true that last_tick + clocktick == now. If we |
| 65 | * never miss a clocktick, we could set next_tick = last_tick + clocktick |
| 66 | * but maybe we'll miss ticks, hence the loop. |
| 67 | * |
| 68 | * Variables are *signed*. |
| 69 | */ |
| 70 | |
| 71 | nticks = 0; |
| 72 | while((next_tick - now) < halftick) { |
| 73 | next_tick += clocktick; |
| 74 | nticks++; |
| 75 | } |
| 76 | mtctl(next_tick, 16); |
| 77 | cpu_data[cpu].it_value = next_tick; |
| 78 | |
| 79 | while (nticks--) { |
| 80 | #ifdef CONFIG_SMP |
| 81 | smp_do_timer(regs); |
| 82 | #else |
| 83 | update_process_times(user_mode(regs)); |
| 84 | #endif |
| 85 | if (cpu == 0) { |
| 86 | write_seqlock(&xtime_lock); |
| 87 | do_timer(regs); |
| 88 | write_sequnlock(&xtime_lock); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | #ifdef CONFIG_CHASSIS_LCD_LED |
| 93 | /* Only schedule the led tasklet on cpu 0, and only if it |
| 94 | * is enabled. |
| 95 | */ |
| 96 | if (cpu == 0 && !atomic_read(&led_tasklet.count)) |
| 97 | tasklet_schedule(&led_tasklet); |
| 98 | #endif |
| 99 | |
| 100 | /* check soft power switch status */ |
| 101 | if (cpu == 0 && !atomic_read(&power_tasklet.count)) |
| 102 | tasklet_schedule(&power_tasklet); |
| 103 | |
| 104 | return IRQ_HANDLED; |
| 105 | } |
| 106 | |
| 107 | /*** converted from ia64 ***/ |
| 108 | /* |
| 109 | * Return the number of micro-seconds that elapsed since the last |
| 110 | * update to wall time (aka xtime aka wall_jiffies). The xtime_lock |
| 111 | * must be at least read-locked when calling this routine. |
| 112 | */ |
| 113 | static inline unsigned long |
| 114 | gettimeoffset (void) |
| 115 | { |
| 116 | #ifndef CONFIG_SMP |
| 117 | /* |
| 118 | * FIXME: This won't work on smp because jiffies are updated by cpu 0. |
| 119 | * Once parisc-linux learns the cr16 difference between processors, |
| 120 | * this could be made to work. |
| 121 | */ |
| 122 | long last_tick; |
| 123 | long elapsed_cycles; |
| 124 | |
| 125 | /* it_value is the intended time of the next tick */ |
| 126 | last_tick = cpu_data[smp_processor_id()].it_value; |
| 127 | |
| 128 | /* Subtract one tick and account for possible difference between |
| 129 | * when we expected the tick and when it actually arrived. |
| 130 | * (aka wall vs real) |
| 131 | */ |
| 132 | last_tick -= clocktick * (jiffies - wall_jiffies + 1); |
| 133 | elapsed_cycles = mfctl(16) - last_tick; |
| 134 | |
| 135 | /* the precision of this math could be improved */ |
| 136 | return elapsed_cycles / (PAGE0->mem_10msec / 10000); |
| 137 | #else |
| 138 | return 0; |
| 139 | #endif |
| 140 | } |
| 141 | |
| 142 | void |
| 143 | do_gettimeofday (struct timeval *tv) |
| 144 | { |
| 145 | unsigned long flags, seq, usec, sec; |
| 146 | |
| 147 | do { |
| 148 | seq = read_seqbegin_irqsave(&xtime_lock, flags); |
| 149 | usec = gettimeoffset(); |
| 150 | sec = xtime.tv_sec; |
| 151 | usec += (xtime.tv_nsec / 1000); |
| 152 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
| 153 | |
| 154 | while (usec >= 1000000) { |
| 155 | usec -= 1000000; |
| 156 | ++sec; |
| 157 | } |
| 158 | |
| 159 | tv->tv_sec = sec; |
| 160 | tv->tv_usec = usec; |
| 161 | } |
| 162 | |
| 163 | EXPORT_SYMBOL(do_gettimeofday); |
| 164 | |
| 165 | int |
| 166 | do_settimeofday (struct timespec *tv) |
| 167 | { |
| 168 | time_t wtm_sec, sec = tv->tv_sec; |
| 169 | long wtm_nsec, nsec = tv->tv_nsec; |
| 170 | |
| 171 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| 172 | return -EINVAL; |
| 173 | |
| 174 | write_seqlock_irq(&xtime_lock); |
| 175 | { |
| 176 | /* |
| 177 | * This is revolting. We need to set "xtime" |
| 178 | * correctly. However, the value in this location is |
| 179 | * the value at the most recent update of wall time. |
| 180 | * Discover what correction gettimeofday would have |
| 181 | * done, and then undo it! |
| 182 | */ |
| 183 | nsec -= gettimeoffset() * 1000; |
| 184 | |
| 185 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| 186 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| 187 | |
| 188 | set_normalized_timespec(&xtime, sec, nsec); |
| 189 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| 190 | |
| 191 | time_adjust = 0; /* stop active adjtime() */ |
| 192 | time_status |= STA_UNSYNC; |
| 193 | time_maxerror = NTP_PHASE_LIMIT; |
| 194 | time_esterror = NTP_PHASE_LIMIT; |
| 195 | } |
| 196 | write_sequnlock_irq(&xtime_lock); |
| 197 | clock_was_set(); |
| 198 | return 0; |
| 199 | } |
| 200 | EXPORT_SYMBOL(do_settimeofday); |
| 201 | |
| 202 | /* |
| 203 | * XXX: We can do better than this. |
| 204 | * Returns nanoseconds |
| 205 | */ |
| 206 | |
| 207 | unsigned long long sched_clock(void) |
| 208 | { |
| 209 | return (unsigned long long)jiffies * (1000000000 / HZ); |
| 210 | } |
| 211 | |
| 212 | |
| 213 | void __init time_init(void) |
| 214 | { |
| 215 | unsigned long next_tick; |
| 216 | static struct pdc_tod tod_data; |
| 217 | |
| 218 | clocktick = (100 * PAGE0->mem_10msec) / HZ; |
| 219 | halftick = clocktick / 2; |
| 220 | |
| 221 | /* Setup clock interrupt timing */ |
| 222 | |
| 223 | next_tick = mfctl(16); |
| 224 | next_tick += clocktick; |
| 225 | cpu_data[smp_processor_id()].it_value = next_tick; |
| 226 | |
| 227 | /* kick off Itimer (CR16) */ |
| 228 | mtctl(next_tick, 16); |
| 229 | |
| 230 | if(pdc_tod_read(&tod_data) == 0) { |
| 231 | write_seqlock_irq(&xtime_lock); |
| 232 | xtime.tv_sec = tod_data.tod_sec; |
| 233 | xtime.tv_nsec = tod_data.tod_usec * 1000; |
| 234 | set_normalized_timespec(&wall_to_monotonic, |
| 235 | -xtime.tv_sec, -xtime.tv_nsec); |
| 236 | write_sequnlock_irq(&xtime_lock); |
| 237 | } else { |
| 238 | printk(KERN_ERR "Error reading tod clock\n"); |
| 239 | xtime.tv_sec = 0; |
| 240 | xtime.tv_nsec = 0; |
| 241 | } |
| 242 | } |
| 243 | |