Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * |
| 3 | * Procedures for interfacing to the RTAS on CHRP machines. |
| 4 | * |
| 5 | * Peter Bergner, IBM March 2001. |
| 6 | * Copyright (C) 2001 IBM. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License |
| 10 | * as published by the Free Software Foundation; either version |
| 11 | * 2 of the License, or (at your option) any later version. |
| 12 | */ |
| 13 | |
| 14 | #include <stdarg.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/types.h> |
| 17 | #include <linux/spinlock.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/init.h> |
| 20 | |
| 21 | #include <asm/prom.h> |
| 22 | #include <asm/rtas.h> |
| 23 | #include <asm/semaphore.h> |
| 24 | #include <asm/machdep.h> |
| 25 | #include <asm/page.h> |
| 26 | #include <asm/param.h> |
| 27 | #include <asm/system.h> |
| 28 | #include <asm/abs_addr.h> |
| 29 | #include <asm/udbg.h> |
| 30 | #include <asm/delay.h> |
| 31 | #include <asm/uaccess.h> |
| 32 | #include <asm/systemcfg.h> |
| 33 | |
| 34 | struct flash_block_list_header rtas_firmware_flash_list = {0, NULL}; |
| 35 | |
| 36 | struct rtas_t rtas = { |
| 37 | .lock = SPIN_LOCK_UNLOCKED |
| 38 | }; |
| 39 | |
| 40 | EXPORT_SYMBOL(rtas); |
| 41 | |
| 42 | char rtas_err_buf[RTAS_ERROR_LOG_MAX]; |
| 43 | |
| 44 | DEFINE_SPINLOCK(rtas_data_buf_lock); |
| 45 | char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; |
| 46 | unsigned long rtas_rmo_buf; |
| 47 | |
| 48 | void |
| 49 | call_rtas_display_status(unsigned char c) |
| 50 | { |
| 51 | struct rtas_args *args = &rtas.args; |
| 52 | unsigned long s; |
| 53 | |
| 54 | if (!rtas.base) |
| 55 | return; |
| 56 | spin_lock_irqsave(&rtas.lock, s); |
| 57 | |
| 58 | args->token = 10; |
| 59 | args->nargs = 1; |
| 60 | args->nret = 1; |
| 61 | args->rets = (rtas_arg_t *)&(args->args[1]); |
| 62 | args->args[0] = (int)c; |
| 63 | |
| 64 | enter_rtas(__pa(args)); |
| 65 | |
| 66 | spin_unlock_irqrestore(&rtas.lock, s); |
| 67 | } |
| 68 | |
| 69 | void |
| 70 | call_rtas_display_status_delay(unsigned char c) |
| 71 | { |
| 72 | static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| 73 | static int width = 16; |
| 74 | |
| 75 | if (c == '\n') { |
| 76 | while (width-- > 0) |
| 77 | call_rtas_display_status(' '); |
| 78 | width = 16; |
| 79 | udelay(500000); |
| 80 | pending_newline = 1; |
| 81 | } else { |
| 82 | if (pending_newline) { |
| 83 | call_rtas_display_status('\r'); |
| 84 | call_rtas_display_status('\n'); |
| 85 | } |
| 86 | pending_newline = 0; |
| 87 | if (width--) { |
| 88 | call_rtas_display_status(c); |
| 89 | udelay(10000); |
| 90 | } |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | int |
| 95 | rtas_token(const char *service) |
| 96 | { |
| 97 | int *tokp; |
| 98 | if (rtas.dev == NULL) { |
| 99 | PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); |
| 100 | return RTAS_UNKNOWN_SERVICE; |
| 101 | } |
| 102 | tokp = (int *) get_property(rtas.dev, service, NULL); |
| 103 | return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * Return the firmware-specified size of the error log buffer |
| 108 | * for all rtas calls that require an error buffer argument. |
| 109 | * This includes 'check-exception' and 'rtas-last-error'. |
| 110 | */ |
| 111 | int rtas_get_error_log_max(void) |
| 112 | { |
| 113 | static int rtas_error_log_max; |
| 114 | if (rtas_error_log_max) |
| 115 | return rtas_error_log_max; |
| 116 | |
| 117 | rtas_error_log_max = rtas_token ("rtas-error-log-max"); |
| 118 | if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || |
| 119 | (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { |
| 120 | printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max); |
| 121 | rtas_error_log_max = RTAS_ERROR_LOG_MAX; |
| 122 | } |
| 123 | return rtas_error_log_max; |
| 124 | } |
| 125 | |
| 126 | |
| 127 | /** Return a copy of the detailed error text associated with the |
| 128 | * most recent failed call to rtas. Because the error text |
| 129 | * might go stale if there are any other intervening rtas calls, |
| 130 | * this routine must be called atomically with whatever produced |
| 131 | * the error (i.e. with rtas.lock still held from the previous call). |
| 132 | */ |
| 133 | static int |
| 134 | __fetch_rtas_last_error(void) |
| 135 | { |
| 136 | struct rtas_args err_args, save_args; |
| 137 | u32 bufsz; |
| 138 | |
| 139 | bufsz = rtas_get_error_log_max(); |
| 140 | |
| 141 | err_args.token = rtas_token("rtas-last-error"); |
| 142 | err_args.nargs = 2; |
| 143 | err_args.nret = 1; |
| 144 | |
| 145 | err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); |
| 146 | err_args.args[1] = bufsz; |
| 147 | err_args.args[2] = 0; |
| 148 | |
| 149 | save_args = rtas.args; |
| 150 | rtas.args = err_args; |
| 151 | |
| 152 | enter_rtas(__pa(&rtas.args)); |
| 153 | |
| 154 | err_args = rtas.args; |
| 155 | rtas.args = save_args; |
| 156 | |
| 157 | return err_args.args[2]; |
| 158 | } |
| 159 | |
| 160 | int rtas_call(int token, int nargs, int nret, int *outputs, ...) |
| 161 | { |
| 162 | va_list list; |
| 163 | int i, logit = 0; |
| 164 | unsigned long s; |
| 165 | struct rtas_args *rtas_args; |
| 166 | char * buff_copy = NULL; |
| 167 | int ret; |
| 168 | |
| 169 | PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); |
| 170 | PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token); |
| 171 | PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs); |
| 172 | PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret); |
| 173 | PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); |
| 174 | if (token == RTAS_UNKNOWN_SERVICE) |
| 175 | return -1; |
| 176 | |
| 177 | /* Gotta do something different here, use global lock for now... */ |
| 178 | spin_lock_irqsave(&rtas.lock, s); |
| 179 | rtas_args = &rtas.args; |
| 180 | |
| 181 | rtas_args->token = token; |
| 182 | rtas_args->nargs = nargs; |
| 183 | rtas_args->nret = nret; |
| 184 | rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]); |
| 185 | va_start(list, outputs); |
| 186 | for (i = 0; i < nargs; ++i) { |
| 187 | rtas_args->args[i] = va_arg(list, rtas_arg_t); |
| 188 | PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]); |
| 189 | } |
| 190 | va_end(list); |
| 191 | |
| 192 | for (i = 0; i < nret; ++i) |
| 193 | rtas_args->rets[i] = 0; |
| 194 | |
| 195 | PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", |
| 196 | __pa(rtas_args)); |
| 197 | enter_rtas(__pa(rtas_args)); |
| 198 | PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); |
| 199 | |
| 200 | /* A -1 return code indicates that the last command couldn't |
| 201 | be completed due to a hardware error. */ |
| 202 | if (rtas_args->rets[0] == -1) |
| 203 | logit = (__fetch_rtas_last_error() == 0); |
| 204 | |
| 205 | ifppcdebug(PPCDBG_RTAS) { |
| 206 | for(i=0; i < nret ;i++) |
| 207 | udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); |
| 208 | } |
| 209 | |
| 210 | if (nret > 1 && outputs != NULL) |
| 211 | for (i = 0; i < nret-1; ++i) |
| 212 | outputs[i] = rtas_args->rets[i+1]; |
| 213 | ret = (nret > 0)? rtas_args->rets[0]: 0; |
| 214 | |
| 215 | /* Log the error in the unlikely case that there was one. */ |
| 216 | if (unlikely(logit)) { |
| 217 | buff_copy = rtas_err_buf; |
| 218 | if (mem_init_done) { |
| 219 | buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); |
| 220 | if (buff_copy) |
| 221 | memcpy(buff_copy, rtas_err_buf, |
| 222 | RTAS_ERROR_LOG_MAX); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /* Gotta do something different here, use global lock for now... */ |
| 227 | spin_unlock_irqrestore(&rtas.lock, s); |
| 228 | |
| 229 | if (buff_copy) { |
| 230 | log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); |
| 231 | if (mem_init_done) |
| 232 | kfree(buff_copy); |
| 233 | } |
| 234 | return ret; |
| 235 | } |
| 236 | |
| 237 | /* Given an RTAS status code of 990n compute the hinted delay of 10^n |
| 238 | * (last digit) milliseconds. For now we bound at n=5 (100 sec). |
| 239 | */ |
| 240 | unsigned int |
| 241 | rtas_extended_busy_delay_time(int status) |
| 242 | { |
| 243 | int order = status - 9900; |
| 244 | unsigned long ms; |
| 245 | |
| 246 | if (order < 0) |
| 247 | order = 0; /* RTC depends on this for -2 clock busy */ |
| 248 | else if (order > 5) |
| 249 | order = 5; /* bound */ |
| 250 | |
| 251 | /* Use microseconds for reasonable accuracy */ |
| 252 | for (ms=1; order > 0; order--) |
| 253 | ms *= 10; |
| 254 | |
| 255 | return ms; |
| 256 | } |
| 257 | |
| 258 | int rtas_error_rc(int rtas_rc) |
| 259 | { |
| 260 | int rc; |
| 261 | |
| 262 | switch (rtas_rc) { |
| 263 | case -1: /* Hardware Error */ |
| 264 | rc = -EIO; |
| 265 | break; |
| 266 | case -3: /* Bad indicator/domain/etc */ |
| 267 | rc = -EINVAL; |
| 268 | break; |
| 269 | case -9000: /* Isolation error */ |
| 270 | rc = -EFAULT; |
| 271 | break; |
| 272 | case -9001: /* Outstanding TCE/PTE */ |
| 273 | rc = -EEXIST; |
| 274 | break; |
| 275 | case -9002: /* No usable slot */ |
| 276 | rc = -ENODEV; |
| 277 | break; |
| 278 | default: |
| 279 | printk(KERN_ERR "%s: unexpected RTAS error %d\n", |
| 280 | __FUNCTION__, rtas_rc); |
| 281 | rc = -ERANGE; |
| 282 | break; |
| 283 | } |
| 284 | return rc; |
| 285 | } |
| 286 | |
| 287 | int rtas_get_power_level(int powerdomain, int *level) |
| 288 | { |
| 289 | int token = rtas_token("get-power-level"); |
| 290 | int rc; |
| 291 | |
| 292 | if (token == RTAS_UNKNOWN_SERVICE) |
| 293 | return -ENOENT; |
| 294 | |
| 295 | while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) |
| 296 | udelay(1); |
| 297 | |
| 298 | if (rc < 0) |
| 299 | return rtas_error_rc(rc); |
| 300 | return rc; |
| 301 | } |
| 302 | |
| 303 | int rtas_set_power_level(int powerdomain, int level, int *setlevel) |
| 304 | { |
| 305 | int token = rtas_token("set-power-level"); |
| 306 | unsigned int wait_time; |
| 307 | int rc; |
| 308 | |
| 309 | if (token == RTAS_UNKNOWN_SERVICE) |
| 310 | return -ENOENT; |
| 311 | |
| 312 | while (1) { |
| 313 | rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); |
| 314 | if (rc == RTAS_BUSY) |
| 315 | udelay(1); |
| 316 | else if (rtas_is_extended_busy(rc)) { |
| 317 | wait_time = rtas_extended_busy_delay_time(rc); |
| 318 | udelay(wait_time * 1000); |
| 319 | } else |
| 320 | break; |
| 321 | } |
| 322 | |
| 323 | if (rc < 0) |
| 324 | return rtas_error_rc(rc); |
| 325 | return rc; |
| 326 | } |
| 327 | |
| 328 | int rtas_get_sensor(int sensor, int index, int *state) |
| 329 | { |
| 330 | int token = rtas_token("get-sensor-state"); |
| 331 | unsigned int wait_time; |
| 332 | int rc; |
| 333 | |
| 334 | if (token == RTAS_UNKNOWN_SERVICE) |
| 335 | return -ENOENT; |
| 336 | |
| 337 | while (1) { |
| 338 | rc = rtas_call(token, 2, 2, state, sensor, index); |
| 339 | if (rc == RTAS_BUSY) |
| 340 | udelay(1); |
| 341 | else if (rtas_is_extended_busy(rc)) { |
| 342 | wait_time = rtas_extended_busy_delay_time(rc); |
| 343 | udelay(wait_time * 1000); |
| 344 | } else |
| 345 | break; |
| 346 | } |
| 347 | |
| 348 | if (rc < 0) |
| 349 | return rtas_error_rc(rc); |
| 350 | return rc; |
| 351 | } |
| 352 | |
| 353 | int rtas_set_indicator(int indicator, int index, int new_value) |
| 354 | { |
| 355 | int token = rtas_token("set-indicator"); |
| 356 | unsigned int wait_time; |
| 357 | int rc; |
| 358 | |
| 359 | if (token == RTAS_UNKNOWN_SERVICE) |
| 360 | return -ENOENT; |
| 361 | |
| 362 | while (1) { |
| 363 | rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); |
| 364 | if (rc == RTAS_BUSY) |
| 365 | udelay(1); |
| 366 | else if (rtas_is_extended_busy(rc)) { |
| 367 | wait_time = rtas_extended_busy_delay_time(rc); |
| 368 | udelay(wait_time * 1000); |
| 369 | } |
| 370 | else |
| 371 | break; |
| 372 | } |
| 373 | |
| 374 | if (rc < 0) |
| 375 | return rtas_error_rc(rc); |
| 376 | return rc; |
| 377 | } |
| 378 | |
| 379 | #define FLASH_BLOCK_LIST_VERSION (1UL) |
| 380 | static void |
| 381 | rtas_flash_firmware(void) |
| 382 | { |
| 383 | unsigned long image_size; |
| 384 | struct flash_block_list *f, *next, *flist; |
| 385 | unsigned long rtas_block_list; |
| 386 | int i, status, update_token; |
| 387 | |
| 388 | update_token = rtas_token("ibm,update-flash-64-and-reboot"); |
| 389 | if (update_token == RTAS_UNKNOWN_SERVICE) { |
| 390 | printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); |
| 391 | printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); |
| 392 | return; |
| 393 | } |
| 394 | |
| 395 | /* NOTE: the "first" block list is a global var with no data |
| 396 | * blocks in the kernel data segment. We do this because |
| 397 | * we want to ensure this block_list addr is under 4GB. |
| 398 | */ |
| 399 | rtas_firmware_flash_list.num_blocks = 0; |
| 400 | flist = (struct flash_block_list *)&rtas_firmware_flash_list; |
| 401 | rtas_block_list = virt_to_abs(flist); |
| 402 | if (rtas_block_list >= 4UL*1024*1024*1024) { |
| 403 | printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); |
| 408 | /* Update the block_list in place. */ |
| 409 | image_size = 0; |
| 410 | for (f = flist; f; f = next) { |
| 411 | /* Translate data addrs to absolute */ |
| 412 | for (i = 0; i < f->num_blocks; i++) { |
| 413 | f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data); |
| 414 | image_size += f->blocks[i].length; |
| 415 | } |
| 416 | next = f->next; |
| 417 | /* Don't translate NULL pointer for last entry */ |
| 418 | if (f->next) |
| 419 | f->next = (struct flash_block_list *)virt_to_abs(f->next); |
| 420 | else |
| 421 | f->next = NULL; |
| 422 | /* make num_blocks into the version/length field */ |
| 423 | f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); |
| 424 | } |
| 425 | |
| 426 | printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); |
| 427 | printk(KERN_ALERT "FLASH: performing flash and reboot\n"); |
| 428 | ppc_md.progress("Flashing \n", 0x0); |
| 429 | ppc_md.progress("Please Wait... ", 0x0); |
| 430 | printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n"); |
| 431 | status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); |
| 432 | switch (status) { /* should only get "bad" status */ |
| 433 | case 0: |
| 434 | printk(KERN_ALERT "FLASH: success\n"); |
| 435 | break; |
| 436 | case -1: |
| 437 | printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n"); |
| 438 | break; |
| 439 | case -3: |
| 440 | printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n"); |
| 441 | break; |
| 442 | case -4: |
| 443 | printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n"); |
| 444 | break; |
| 445 | default: |
| 446 | printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); |
| 447 | break; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | void rtas_flash_bypass_warning(void) |
| 452 | { |
| 453 | printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); |
| 454 | printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); |
| 455 | } |
| 456 | |
| 457 | |
| 458 | void |
| 459 | rtas_restart(char *cmd) |
| 460 | { |
| 461 | if (rtas_firmware_flash_list.next) |
| 462 | rtas_flash_firmware(); |
| 463 | |
| 464 | printk("RTAS system-reboot returned %d\n", |
| 465 | rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); |
| 466 | for (;;); |
| 467 | } |
| 468 | |
| 469 | void |
| 470 | rtas_power_off(void) |
| 471 | { |
| 472 | if (rtas_firmware_flash_list.next) |
| 473 | rtas_flash_bypass_warning(); |
| 474 | /* allow power on only with power button press */ |
| 475 | printk("RTAS power-off returned %d\n", |
| 476 | rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); |
| 477 | for (;;); |
| 478 | } |
| 479 | |
| 480 | void |
| 481 | rtas_halt(void) |
| 482 | { |
| 483 | if (rtas_firmware_flash_list.next) |
| 484 | rtas_flash_bypass_warning(); |
| 485 | rtas_power_off(); |
| 486 | } |
| 487 | |
| 488 | /* Must be in the RMO region, so we place it here */ |
| 489 | static char rtas_os_term_buf[2048]; |
| 490 | |
| 491 | void rtas_os_term(char *str) |
| 492 | { |
| 493 | int status; |
| 494 | |
| 495 | if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term")) |
| 496 | return; |
| 497 | |
| 498 | snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); |
| 499 | |
| 500 | do { |
| 501 | status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, |
| 502 | __pa(rtas_os_term_buf)); |
| 503 | |
| 504 | if (status == RTAS_BUSY) |
| 505 | udelay(1); |
| 506 | else if (status != 0) |
| 507 | printk(KERN_EMERG "ibm,os-term call failed %d\n", |
| 508 | status); |
| 509 | } while (status == RTAS_BUSY); |
| 510 | } |
| 511 | |
| 512 | |
| 513 | asmlinkage int ppc_rtas(struct rtas_args __user *uargs) |
| 514 | { |
| 515 | struct rtas_args args; |
| 516 | unsigned long flags; |
| 517 | char * buff_copy; |
| 518 | int nargs; |
| 519 | int err_rc = 0; |
| 520 | |
| 521 | if (!capable(CAP_SYS_ADMIN)) |
| 522 | return -EPERM; |
| 523 | |
| 524 | if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) |
| 525 | return -EFAULT; |
| 526 | |
| 527 | nargs = args.nargs; |
| 528 | if (nargs > ARRAY_SIZE(args.args) |
| 529 | || args.nret > ARRAY_SIZE(args.args) |
| 530 | || nargs + args.nret > ARRAY_SIZE(args.args)) |
| 531 | return -EINVAL; |
| 532 | |
| 533 | /* Copy in args. */ |
| 534 | if (copy_from_user(args.args, uargs->args, |
| 535 | nargs * sizeof(rtas_arg_t)) != 0) |
| 536 | return -EFAULT; |
| 537 | |
| 538 | buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL); |
| 539 | |
| 540 | spin_lock_irqsave(&rtas.lock, flags); |
| 541 | |
| 542 | rtas.args = args; |
| 543 | enter_rtas(__pa(&rtas.args)); |
| 544 | args = rtas.args; |
| 545 | |
| 546 | args.rets = &args.args[nargs]; |
| 547 | |
| 548 | /* A -1 return code indicates that the last command couldn't |
| 549 | be completed due to a hardware error. */ |
| 550 | if (args.rets[0] == -1) { |
| 551 | err_rc = __fetch_rtas_last_error(); |
| 552 | if ((err_rc == 0) && buff_copy) { |
| 553 | memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | spin_unlock_irqrestore(&rtas.lock, flags); |
| 558 | |
| 559 | if (buff_copy) { |
| 560 | if ((args.rets[0] == -1) && (err_rc == 0)) { |
| 561 | log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); |
| 562 | } |
| 563 | kfree(buff_copy); |
| 564 | } |
| 565 | |
| 566 | /* Copy out args. */ |
| 567 | if (copy_to_user(uargs->args + nargs, |
| 568 | args.args + nargs, |
| 569 | args.nret * sizeof(rtas_arg_t)) != 0) |
| 570 | return -EFAULT; |
| 571 | |
| 572 | return 0; |
| 573 | } |
| 574 | |
| 575 | /* This version can't take the spinlock, because it never returns */ |
| 576 | |
| 577 | struct rtas_args rtas_stop_self_args = { |
| 578 | /* The token is initialized for real in setup_system() */ |
| 579 | .token = RTAS_UNKNOWN_SERVICE, |
| 580 | .nargs = 0, |
| 581 | .nret = 1, |
| 582 | .rets = &rtas_stop_self_args.args[0], |
| 583 | }; |
| 584 | |
| 585 | void rtas_stop_self(void) |
| 586 | { |
| 587 | struct rtas_args *rtas_args = &rtas_stop_self_args; |
| 588 | |
| 589 | local_irq_disable(); |
| 590 | |
| 591 | BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE); |
| 592 | |
| 593 | printk("cpu %u (hwid %u) Ready to die...\n", |
| 594 | smp_processor_id(), hard_smp_processor_id()); |
| 595 | enter_rtas(__pa(rtas_args)); |
| 596 | |
| 597 | panic("Alas, I survived.\n"); |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * Call early during boot, before mem init or bootmem, to retreive the RTAS |
| 602 | * informations from the device-tree and allocate the RMO buffer for userland |
| 603 | * accesses. |
| 604 | */ |
| 605 | void __init rtas_initialize(void) |
| 606 | { |
| 607 | /* Get RTAS dev node and fill up our "rtas" structure with infos |
| 608 | * about it. |
| 609 | */ |
| 610 | rtas.dev = of_find_node_by_name(NULL, "rtas"); |
| 611 | if (rtas.dev) { |
| 612 | u32 *basep, *entryp; |
| 613 | u32 *sizep; |
| 614 | |
| 615 | basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL); |
| 616 | sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL); |
| 617 | if (basep != NULL && sizep != NULL) { |
| 618 | rtas.base = *basep; |
| 619 | rtas.size = *sizep; |
| 620 | entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL); |
| 621 | if (entryp == NULL) /* Ugh */ |
| 622 | rtas.entry = rtas.base; |
| 623 | else |
| 624 | rtas.entry = *entryp; |
| 625 | } else |
| 626 | rtas.dev = NULL; |
| 627 | } |
| 628 | /* If RTAS was found, allocate the RMO buffer for it and look for |
| 629 | * the stop-self token if any |
| 630 | */ |
| 631 | if (rtas.dev) { |
| 632 | unsigned long rtas_region = RTAS_INSTANTIATE_MAX; |
| 633 | if (systemcfg->platform == PLATFORM_PSERIES_LPAR) |
| 634 | rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX); |
| 635 | |
| 636 | rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, |
| 637 | rtas_region); |
| 638 | |
| 639 | #ifdef CONFIG_HOTPLUG_CPU |
| 640 | rtas_stop_self_args.token = rtas_token("stop-self"); |
| 641 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 642 | } |
| 643 | |
| 644 | } |
| 645 | |
| 646 | |
| 647 | EXPORT_SYMBOL(rtas_firmware_flash_list); |
| 648 | EXPORT_SYMBOL(rtas_token); |
| 649 | EXPORT_SYMBOL(rtas_call); |
| 650 | EXPORT_SYMBOL(rtas_data_buf); |
| 651 | EXPORT_SYMBOL(rtas_data_buf_lock); |
| 652 | EXPORT_SYMBOL(rtas_extended_busy_delay_time); |
| 653 | EXPORT_SYMBOL(rtas_get_sensor); |
| 654 | EXPORT_SYMBOL(rtas_get_power_level); |
| 655 | EXPORT_SYMBOL(rtas_set_power_level); |
| 656 | EXPORT_SYMBOL(rtas_set_indicator); |
| 657 | EXPORT_SYMBOL(rtas_get_error_log_max); |