| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* | 
 | 2 |  * | 
 | 3 |  * Procedures for interfacing to the RTAS on CHRP machines. | 
 | 4 |  * | 
 | 5 |  * Peter Bergner, IBM	March 2001. | 
 | 6 |  * Copyright (C) 2001 IBM. | 
 | 7 |  * | 
 | 8 |  *      This program is free software; you can redistribute it and/or | 
 | 9 |  *      modify it under the terms of the GNU General Public License | 
 | 10 |  *      as published by the Free Software Foundation; either version | 
 | 11 |  *      2 of the License, or (at your option) any later version. | 
 | 12 |  */ | 
 | 13 |  | 
 | 14 | #include <stdarg.h> | 
 | 15 | #include <linux/kernel.h> | 
 | 16 | #include <linux/types.h> | 
 | 17 | #include <linux/spinlock.h> | 
 | 18 | #include <linux/module.h> | 
 | 19 | #include <linux/init.h> | 
 | 20 |  | 
 | 21 | #include <asm/prom.h> | 
 | 22 | #include <asm/rtas.h> | 
 | 23 | #include <asm/semaphore.h> | 
 | 24 | #include <asm/machdep.h> | 
 | 25 | #include <asm/page.h> | 
 | 26 | #include <asm/param.h> | 
 | 27 | #include <asm/system.h> | 
 | 28 | #include <asm/abs_addr.h> | 
 | 29 | #include <asm/udbg.h> | 
 | 30 | #include <asm/delay.h> | 
 | 31 | #include <asm/uaccess.h> | 
 | 32 | #include <asm/systemcfg.h> | 
 | 33 |  | 
 | 34 | struct flash_block_list_header rtas_firmware_flash_list = {0, NULL}; | 
 | 35 |  | 
 | 36 | struct rtas_t rtas = {  | 
 | 37 | 	.lock = SPIN_LOCK_UNLOCKED | 
 | 38 | }; | 
 | 39 |  | 
 | 40 | EXPORT_SYMBOL(rtas); | 
 | 41 |  | 
 | 42 | char rtas_err_buf[RTAS_ERROR_LOG_MAX]; | 
 | 43 |  | 
 | 44 | DEFINE_SPINLOCK(rtas_data_buf_lock); | 
 | 45 | char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; | 
 | 46 | unsigned long rtas_rmo_buf; | 
 | 47 |  | 
 | 48 | void | 
 | 49 | call_rtas_display_status(unsigned char c) | 
 | 50 | { | 
 | 51 | 	struct rtas_args *args = &rtas.args; | 
 | 52 | 	unsigned long s; | 
 | 53 |  | 
 | 54 | 	if (!rtas.base) | 
 | 55 | 		return; | 
 | 56 | 	spin_lock_irqsave(&rtas.lock, s); | 
 | 57 |  | 
 | 58 | 	args->token = 10; | 
 | 59 | 	args->nargs = 1; | 
 | 60 | 	args->nret  = 1; | 
 | 61 | 	args->rets  = (rtas_arg_t *)&(args->args[1]); | 
 | 62 | 	args->args[0] = (int)c; | 
 | 63 |  | 
 | 64 | 	enter_rtas(__pa(args)); | 
 | 65 |  | 
 | 66 | 	spin_unlock_irqrestore(&rtas.lock, s); | 
 | 67 | } | 
 | 68 |  | 
 | 69 | void | 
 | 70 | call_rtas_display_status_delay(unsigned char c) | 
 | 71 | { | 
 | 72 | 	static int pending_newline = 0;  /* did last write end with unprinted newline? */ | 
 | 73 | 	static int width = 16; | 
 | 74 |  | 
 | 75 | 	if (c == '\n') {	 | 
 | 76 | 		while (width-- > 0) | 
 | 77 | 			call_rtas_display_status(' '); | 
 | 78 | 		width = 16; | 
 | 79 | 		udelay(500000); | 
 | 80 | 		pending_newline = 1; | 
 | 81 | 	} else { | 
 | 82 | 		if (pending_newline) { | 
 | 83 | 			call_rtas_display_status('\r'); | 
 | 84 | 			call_rtas_display_status('\n'); | 
 | 85 | 		}  | 
 | 86 | 		pending_newline = 0; | 
 | 87 | 		if (width--) { | 
 | 88 | 			call_rtas_display_status(c); | 
 | 89 | 			udelay(10000); | 
 | 90 | 		} | 
 | 91 | 	} | 
 | 92 | } | 
 | 93 |  | 
 | 94 | int | 
 | 95 | rtas_token(const char *service) | 
 | 96 | { | 
 | 97 | 	int *tokp; | 
 | 98 | 	if (rtas.dev == NULL) { | 
 | 99 | 		PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); | 
 | 100 | 		return RTAS_UNKNOWN_SERVICE; | 
 | 101 | 	} | 
 | 102 | 	tokp = (int *) get_property(rtas.dev, service, NULL); | 
 | 103 | 	return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; | 
 | 104 | } | 
 | 105 |  | 
 | 106 | /* | 
 | 107 |  * Return the firmware-specified size of the error log buffer | 
 | 108 |  *  for all rtas calls that require an error buffer argument. | 
 | 109 |  *  This includes 'check-exception' and 'rtas-last-error'. | 
 | 110 |  */ | 
 | 111 | int rtas_get_error_log_max(void) | 
 | 112 | { | 
 | 113 | 	static int rtas_error_log_max; | 
 | 114 | 	if (rtas_error_log_max) | 
 | 115 | 		return rtas_error_log_max; | 
 | 116 |  | 
 | 117 | 	rtas_error_log_max = rtas_token ("rtas-error-log-max"); | 
 | 118 | 	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || | 
 | 119 | 	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { | 
 | 120 | 		printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max); | 
 | 121 | 		rtas_error_log_max = RTAS_ERROR_LOG_MAX; | 
 | 122 | 	} | 
 | 123 | 	return rtas_error_log_max; | 
 | 124 | } | 
 | 125 |  | 
 | 126 |  | 
 | 127 | /** Return a copy of the detailed error text associated with the | 
 | 128 |  *  most recent failed call to rtas.  Because the error text | 
 | 129 |  *  might go stale if there are any other intervening rtas calls, | 
 | 130 |  *  this routine must be called atomically with whatever produced | 
 | 131 |  *  the error (i.e. with rtas.lock still held from the previous call). | 
 | 132 |  */ | 
 | 133 | static int | 
 | 134 | __fetch_rtas_last_error(void) | 
 | 135 | { | 
 | 136 | 	struct rtas_args err_args, save_args; | 
 | 137 | 	u32 bufsz; | 
 | 138 |  | 
 | 139 | 	bufsz = rtas_get_error_log_max(); | 
 | 140 |  | 
 | 141 | 	err_args.token = rtas_token("rtas-last-error"); | 
 | 142 | 	err_args.nargs = 2; | 
 | 143 | 	err_args.nret = 1; | 
 | 144 |  | 
 | 145 | 	err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); | 
 | 146 | 	err_args.args[1] = bufsz; | 
 | 147 | 	err_args.args[2] = 0; | 
 | 148 |  | 
 | 149 | 	save_args = rtas.args; | 
 | 150 | 	rtas.args = err_args; | 
 | 151 |  | 
 | 152 | 	enter_rtas(__pa(&rtas.args)); | 
 | 153 |  | 
 | 154 | 	err_args = rtas.args; | 
 | 155 | 	rtas.args = save_args; | 
 | 156 |  | 
 | 157 | 	return err_args.args[2]; | 
 | 158 | } | 
 | 159 |  | 
 | 160 | int rtas_call(int token, int nargs, int nret, int *outputs, ...) | 
 | 161 | { | 
 | 162 | 	va_list list; | 
 | 163 | 	int i, logit = 0; | 
 | 164 | 	unsigned long s; | 
 | 165 | 	struct rtas_args *rtas_args; | 
 | 166 | 	char * buff_copy = NULL; | 
 | 167 | 	int ret; | 
 | 168 |  | 
 | 169 | 	PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); | 
 | 170 | 	PPCDBG(PPCDBG_RTAS, "\ttoken    = 0x%x\n", token); | 
 | 171 | 	PPCDBG(PPCDBG_RTAS, "\tnargs    = %d\n", nargs); | 
 | 172 | 	PPCDBG(PPCDBG_RTAS, "\tnret     = %d\n", nret); | 
 | 173 | 	PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); | 
 | 174 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 175 | 		return -1; | 
 | 176 |  | 
 | 177 | 	/* Gotta do something different here, use global lock for now... */ | 
 | 178 | 	spin_lock_irqsave(&rtas.lock, s); | 
 | 179 | 	rtas_args = &rtas.args; | 
 | 180 |  | 
 | 181 | 	rtas_args->token = token; | 
 | 182 | 	rtas_args->nargs = nargs; | 
 | 183 | 	rtas_args->nret  = nret; | 
 | 184 | 	rtas_args->rets  = (rtas_arg_t *)&(rtas_args->args[nargs]); | 
 | 185 | 	va_start(list, outputs); | 
 | 186 | 	for (i = 0; i < nargs; ++i) { | 
 | 187 | 		rtas_args->args[i] = va_arg(list, rtas_arg_t); | 
 | 188 | 		PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%x\n", i, rtas_args->args[i]); | 
 | 189 | 	} | 
 | 190 | 	va_end(list); | 
 | 191 |  | 
 | 192 | 	for (i = 0; i < nret; ++i) | 
 | 193 | 		rtas_args->rets[i] = 0; | 
 | 194 |  | 
 | 195 | 	PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", | 
 | 196 | 		__pa(rtas_args)); | 
 | 197 | 	enter_rtas(__pa(rtas_args)); | 
 | 198 | 	PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); | 
 | 199 |  | 
 | 200 | 	/* A -1 return code indicates that the last command couldn't | 
 | 201 | 	   be completed due to a hardware error. */ | 
 | 202 | 	if (rtas_args->rets[0] == -1) | 
 | 203 | 		logit = (__fetch_rtas_last_error() == 0); | 
 | 204 |  | 
 | 205 | 	ifppcdebug(PPCDBG_RTAS) { | 
 | 206 | 		for(i=0; i < nret ;i++) | 
 | 207 | 			udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); | 
 | 208 | 	} | 
 | 209 |  | 
 | 210 | 	if (nret > 1 && outputs != NULL) | 
 | 211 | 		for (i = 0; i < nret-1; ++i) | 
 | 212 | 			outputs[i] = rtas_args->rets[i+1]; | 
 | 213 | 	ret = (nret > 0)? rtas_args->rets[0]: 0; | 
 | 214 |  | 
 | 215 | 	/* Log the error in the unlikely case that there was one. */ | 
 | 216 | 	if (unlikely(logit)) { | 
 | 217 | 		buff_copy = rtas_err_buf; | 
 | 218 | 		if (mem_init_done) { | 
 | 219 | 			buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); | 
 | 220 | 			if (buff_copy) | 
 | 221 | 				memcpy(buff_copy, rtas_err_buf, | 
 | 222 | 				       RTAS_ERROR_LOG_MAX); | 
 | 223 | 		} | 
 | 224 | 	} | 
 | 225 |  | 
 | 226 | 	/* Gotta do something different here, use global lock for now... */ | 
 | 227 | 	spin_unlock_irqrestore(&rtas.lock, s); | 
 | 228 |  | 
 | 229 | 	if (buff_copy) { | 
 | 230 | 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); | 
 | 231 | 		if (mem_init_done) | 
 | 232 | 			kfree(buff_copy); | 
 | 233 | 	} | 
 | 234 | 	return ret; | 
 | 235 | } | 
 | 236 |  | 
 | 237 | /* Given an RTAS status code of 990n compute the hinted delay of 10^n | 
 | 238 |  * (last digit) milliseconds.  For now we bound at n=5 (100 sec). | 
 | 239 |  */ | 
 | 240 | unsigned int | 
 | 241 | rtas_extended_busy_delay_time(int status) | 
 | 242 | { | 
 | 243 | 	int order = status - 9900; | 
 | 244 | 	unsigned long ms; | 
 | 245 |  | 
 | 246 | 	if (order < 0) | 
 | 247 | 		order = 0;	/* RTC depends on this for -2 clock busy */ | 
 | 248 | 	else if (order > 5) | 
 | 249 | 		order = 5;	/* bound */ | 
 | 250 |  | 
 | 251 | 	/* Use microseconds for reasonable accuracy */ | 
 | 252 | 	for (ms=1; order > 0; order--) | 
 | 253 | 		ms *= 10; | 
 | 254 |  | 
 | 255 | 	return ms;  | 
 | 256 | } | 
 | 257 |  | 
 | 258 | int rtas_error_rc(int rtas_rc) | 
 | 259 | { | 
 | 260 | 	int rc; | 
 | 261 |  | 
 | 262 | 	switch (rtas_rc) { | 
 | 263 | 		case -1: 		/* Hardware Error */ | 
 | 264 | 			rc = -EIO; | 
 | 265 | 			break; | 
 | 266 | 		case -3:		/* Bad indicator/domain/etc */ | 
 | 267 | 			rc = -EINVAL; | 
 | 268 | 			break; | 
 | 269 | 		case -9000:		/* Isolation error */ | 
 | 270 | 			rc = -EFAULT; | 
 | 271 | 			break; | 
 | 272 | 		case -9001:		/* Outstanding TCE/PTE */ | 
 | 273 | 			rc = -EEXIST; | 
 | 274 | 			break; | 
 | 275 | 		case -9002:		/* No usable slot */ | 
 | 276 | 			rc = -ENODEV; | 
 | 277 | 			break; | 
 | 278 | 		default: | 
 | 279 | 			printk(KERN_ERR "%s: unexpected RTAS error %d\n", | 
 | 280 | 					__FUNCTION__, rtas_rc); | 
 | 281 | 			rc = -ERANGE; | 
 | 282 | 			break; | 
 | 283 | 	} | 
 | 284 | 	return rc; | 
 | 285 | } | 
 | 286 |  | 
 | 287 | int rtas_get_power_level(int powerdomain, int *level) | 
 | 288 | { | 
 | 289 | 	int token = rtas_token("get-power-level"); | 
 | 290 | 	int rc; | 
 | 291 |  | 
 | 292 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 293 | 		return -ENOENT; | 
 | 294 |  | 
 | 295 | 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) | 
 | 296 | 		udelay(1); | 
 | 297 |  | 
 | 298 | 	if (rc < 0) | 
 | 299 | 		return rtas_error_rc(rc); | 
 | 300 | 	return rc; | 
 | 301 | } | 
 | 302 |  | 
 | 303 | int rtas_set_power_level(int powerdomain, int level, int *setlevel) | 
 | 304 | { | 
 | 305 | 	int token = rtas_token("set-power-level"); | 
 | 306 | 	unsigned int wait_time; | 
 | 307 | 	int rc; | 
 | 308 |  | 
 | 309 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 310 | 		return -ENOENT; | 
 | 311 |  | 
 | 312 | 	while (1) { | 
 | 313 | 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); | 
 | 314 | 		if (rc == RTAS_BUSY) | 
 | 315 | 			udelay(1); | 
 | 316 | 		else if (rtas_is_extended_busy(rc)) { | 
 | 317 | 			wait_time = rtas_extended_busy_delay_time(rc); | 
 | 318 | 			udelay(wait_time * 1000); | 
 | 319 | 		} else | 
 | 320 | 			break; | 
 | 321 | 	} | 
 | 322 |  | 
 | 323 | 	if (rc < 0) | 
 | 324 | 		return rtas_error_rc(rc); | 
 | 325 | 	return rc; | 
 | 326 | } | 
 | 327 |  | 
 | 328 | int rtas_get_sensor(int sensor, int index, int *state) | 
 | 329 | { | 
 | 330 | 	int token = rtas_token("get-sensor-state"); | 
 | 331 | 	unsigned int wait_time; | 
 | 332 | 	int rc; | 
 | 333 |  | 
 | 334 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 335 | 		return -ENOENT; | 
 | 336 |  | 
 | 337 | 	while (1) { | 
 | 338 | 		rc = rtas_call(token, 2, 2, state, sensor, index); | 
 | 339 | 		if (rc == RTAS_BUSY) | 
 | 340 | 			udelay(1); | 
 | 341 | 		else if (rtas_is_extended_busy(rc)) { | 
 | 342 | 			wait_time = rtas_extended_busy_delay_time(rc); | 
 | 343 | 			udelay(wait_time * 1000); | 
 | 344 | 		} else | 
 | 345 | 			break; | 
 | 346 | 	} | 
 | 347 |  | 
 | 348 | 	if (rc < 0) | 
 | 349 | 		return rtas_error_rc(rc); | 
 | 350 | 	return rc; | 
 | 351 | } | 
 | 352 |  | 
 | 353 | int rtas_set_indicator(int indicator, int index, int new_value) | 
 | 354 | { | 
 | 355 | 	int token = rtas_token("set-indicator"); | 
 | 356 | 	unsigned int wait_time; | 
 | 357 | 	int rc; | 
 | 358 |  | 
 | 359 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 360 | 		return -ENOENT; | 
 | 361 |  | 
 | 362 | 	while (1) { | 
 | 363 | 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); | 
 | 364 | 		if (rc == RTAS_BUSY) | 
 | 365 | 			udelay(1); | 
 | 366 | 		else if (rtas_is_extended_busy(rc)) { | 
 | 367 | 			wait_time = rtas_extended_busy_delay_time(rc); | 
 | 368 | 			udelay(wait_time * 1000); | 
 | 369 | 		} | 
 | 370 | 		else | 
 | 371 | 			break; | 
 | 372 | 	} | 
 | 373 |  | 
 | 374 | 	if (rc < 0) | 
 | 375 | 		return rtas_error_rc(rc); | 
 | 376 | 	return rc; | 
 | 377 | } | 
 | 378 |  | 
 | 379 | #define FLASH_BLOCK_LIST_VERSION (1UL) | 
 | 380 | static void | 
 | 381 | rtas_flash_firmware(void) | 
 | 382 | { | 
 | 383 | 	unsigned long image_size; | 
 | 384 | 	struct flash_block_list *f, *next, *flist; | 
 | 385 | 	unsigned long rtas_block_list; | 
 | 386 | 	int i, status, update_token; | 
 | 387 |  | 
 | 388 | 	update_token = rtas_token("ibm,update-flash-64-and-reboot"); | 
 | 389 | 	if (update_token == RTAS_UNKNOWN_SERVICE) { | 
 | 390 | 		printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); | 
 | 391 | 		printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); | 
 | 392 | 		return; | 
 | 393 | 	} | 
 | 394 |  | 
 | 395 | 	/* NOTE: the "first" block list is a global var with no data | 
 | 396 | 	 * blocks in the kernel data segment.  We do this because | 
 | 397 | 	 * we want to ensure this block_list addr is under 4GB. | 
 | 398 | 	 */ | 
 | 399 | 	rtas_firmware_flash_list.num_blocks = 0; | 
 | 400 | 	flist = (struct flash_block_list *)&rtas_firmware_flash_list; | 
 | 401 | 	rtas_block_list = virt_to_abs(flist); | 
 | 402 | 	if (rtas_block_list >= 4UL*1024*1024*1024) { | 
 | 403 | 		printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); | 
 | 404 | 		return; | 
 | 405 | 	} | 
 | 406 |  | 
 | 407 | 	printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); | 
 | 408 | 	/* Update the block_list in place. */ | 
 | 409 | 	image_size = 0; | 
 | 410 | 	for (f = flist; f; f = next) { | 
 | 411 | 		/* Translate data addrs to absolute */ | 
 | 412 | 		for (i = 0; i < f->num_blocks; i++) { | 
 | 413 | 			f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data); | 
 | 414 | 			image_size += f->blocks[i].length; | 
 | 415 | 		} | 
 | 416 | 		next = f->next; | 
 | 417 | 		/* Don't translate NULL pointer for last entry */ | 
 | 418 | 		if (f->next) | 
 | 419 | 			f->next = (struct flash_block_list *)virt_to_abs(f->next); | 
 | 420 | 		else | 
 | 421 | 			f->next = NULL; | 
 | 422 | 		/* make num_blocks into the version/length field */ | 
 | 423 | 		f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); | 
 | 424 | 	} | 
 | 425 |  | 
 | 426 | 	printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); | 
 | 427 | 	printk(KERN_ALERT "FLASH: performing flash and reboot\n"); | 
 | 428 | 	ppc_md.progress("Flashing        \n", 0x0); | 
 | 429 | 	ppc_md.progress("Please Wait...  ", 0x0); | 
 | 430 | 	printk(KERN_ALERT "FLASH: this will take several minutes.  Do not power off!\n"); | 
 | 431 | 	status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); | 
 | 432 | 	switch (status) {	/* should only get "bad" status */ | 
 | 433 | 	    case 0: | 
 | 434 | 		printk(KERN_ALERT "FLASH: success\n"); | 
 | 435 | 		break; | 
 | 436 | 	    case -1: | 
 | 437 | 		printk(KERN_ALERT "FLASH: hardware error.  Firmware may not be not flashed\n"); | 
 | 438 | 		break; | 
 | 439 | 	    case -3: | 
 | 440 | 		printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform.  Firmware not flashed\n"); | 
 | 441 | 		break; | 
 | 442 | 	    case -4: | 
 | 443 | 		printk(KERN_ALERT "FLASH: flash failed when partially complete.  System may not reboot\n"); | 
 | 444 | 		break; | 
 | 445 | 	    default: | 
 | 446 | 		printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); | 
 | 447 | 		break; | 
 | 448 | 	} | 
 | 449 | } | 
 | 450 |  | 
 | 451 | void rtas_flash_bypass_warning(void) | 
 | 452 | { | 
 | 453 | 	printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); | 
 | 454 | 	printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); | 
 | 455 | } | 
 | 456 |  | 
 | 457 |  | 
 | 458 | void | 
 | 459 | rtas_restart(char *cmd) | 
 | 460 | { | 
 | 461 | 	if (rtas_firmware_flash_list.next) | 
 | 462 | 		rtas_flash_firmware(); | 
 | 463 |  | 
 | 464 | 	printk("RTAS system-reboot returned %d\n", | 
 | 465 | 	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); | 
 | 466 | 	for (;;); | 
 | 467 | } | 
 | 468 |  | 
 | 469 | void | 
 | 470 | rtas_power_off(void) | 
 | 471 | { | 
 | 472 | 	if (rtas_firmware_flash_list.next) | 
 | 473 | 		rtas_flash_bypass_warning(); | 
 | 474 | 	/* allow power on only with power button press */ | 
 | 475 | 	printk("RTAS power-off returned %d\n", | 
 | 476 | 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); | 
 | 477 | 	for (;;); | 
 | 478 | } | 
 | 479 |  | 
 | 480 | void | 
 | 481 | rtas_halt(void) | 
 | 482 | { | 
 | 483 | 	if (rtas_firmware_flash_list.next) | 
 | 484 | 		rtas_flash_bypass_warning(); | 
 | 485 | 	rtas_power_off(); | 
 | 486 | } | 
 | 487 |  | 
 | 488 | /* Must be in the RMO region, so we place it here */ | 
 | 489 | static char rtas_os_term_buf[2048]; | 
 | 490 |  | 
 | 491 | void rtas_os_term(char *str) | 
 | 492 | { | 
 | 493 | 	int status; | 
 | 494 |  | 
 | 495 | 	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term")) | 
 | 496 | 		return; | 
 | 497 |  | 
 | 498 | 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); | 
 | 499 |  | 
 | 500 | 	do { | 
 | 501 | 		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, | 
 | 502 | 				   __pa(rtas_os_term_buf)); | 
 | 503 |  | 
 | 504 | 		if (status == RTAS_BUSY) | 
 | 505 | 			udelay(1); | 
 | 506 | 		else if (status != 0) | 
 | 507 | 			printk(KERN_EMERG "ibm,os-term call failed %d\n", | 
 | 508 | 			       status); | 
 | 509 | 	} while (status == RTAS_BUSY); | 
 | 510 | } | 
 | 511 |  | 
 | 512 |  | 
 | 513 | asmlinkage int ppc_rtas(struct rtas_args __user *uargs) | 
 | 514 | { | 
 | 515 | 	struct rtas_args args; | 
 | 516 | 	unsigned long flags; | 
 | 517 | 	char * buff_copy; | 
 | 518 | 	int nargs; | 
 | 519 | 	int err_rc = 0; | 
 | 520 |  | 
 | 521 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 522 | 		return -EPERM; | 
 | 523 |  | 
 | 524 | 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) | 
 | 525 | 		return -EFAULT; | 
 | 526 |  | 
 | 527 | 	nargs = args.nargs; | 
 | 528 | 	if (nargs > ARRAY_SIZE(args.args) | 
 | 529 | 	    || args.nret > ARRAY_SIZE(args.args) | 
 | 530 | 	    || nargs + args.nret > ARRAY_SIZE(args.args)) | 
 | 531 | 		return -EINVAL; | 
 | 532 |  | 
 | 533 | 	/* Copy in args. */ | 
 | 534 | 	if (copy_from_user(args.args, uargs->args, | 
 | 535 | 			   nargs * sizeof(rtas_arg_t)) != 0) | 
 | 536 | 		return -EFAULT; | 
 | 537 |  | 
 | 538 | 	buff_copy = kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL); | 
 | 539 |  | 
 | 540 | 	spin_lock_irqsave(&rtas.lock, flags); | 
 | 541 |  | 
 | 542 | 	rtas.args = args; | 
 | 543 | 	enter_rtas(__pa(&rtas.args)); | 
 | 544 | 	args = rtas.args; | 
 | 545 |  | 
 | 546 | 	args.rets = &args.args[nargs]; | 
 | 547 |  | 
 | 548 | 	/* A -1 return code indicates that the last command couldn't | 
 | 549 | 	   be completed due to a hardware error. */ | 
 | 550 | 	if (args.rets[0] == -1) { | 
 | 551 | 		err_rc = __fetch_rtas_last_error(); | 
 | 552 | 		if ((err_rc == 0) && buff_copy) { | 
 | 553 | 			memcpy(buff_copy, rtas_err_buf, RTAS_ERROR_LOG_MAX); | 
 | 554 | 		} | 
 | 555 | 	} | 
 | 556 |  | 
 | 557 | 	spin_unlock_irqrestore(&rtas.lock, flags); | 
 | 558 |  | 
 | 559 | 	if (buff_copy) { | 
 | 560 | 		if ((args.rets[0] == -1) && (err_rc == 0)) { | 
 | 561 | 			log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); | 
 | 562 | 		} | 
 | 563 | 		kfree(buff_copy); | 
 | 564 | 	} | 
 | 565 |  | 
 | 566 | 	/* Copy out args. */ | 
 | 567 | 	if (copy_to_user(uargs->args + nargs, | 
 | 568 | 			 args.args + nargs, | 
 | 569 | 			 args.nret * sizeof(rtas_arg_t)) != 0) | 
 | 570 | 		return -EFAULT; | 
 | 571 |  | 
 | 572 | 	return 0; | 
 | 573 | } | 
 | 574 |  | 
 | 575 | /* This version can't take the spinlock, because it never returns */ | 
 | 576 |  | 
 | 577 | struct rtas_args rtas_stop_self_args = { | 
 | 578 | 	/* The token is initialized for real in setup_system() */ | 
 | 579 | 	.token = RTAS_UNKNOWN_SERVICE, | 
 | 580 | 	.nargs = 0, | 
 | 581 | 	.nret = 1, | 
 | 582 | 	.rets = &rtas_stop_self_args.args[0], | 
 | 583 | }; | 
 | 584 |  | 
 | 585 | void rtas_stop_self(void) | 
 | 586 | { | 
 | 587 | 	struct rtas_args *rtas_args = &rtas_stop_self_args; | 
 | 588 |  | 
 | 589 | 	local_irq_disable(); | 
 | 590 |  | 
 | 591 | 	BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE); | 
 | 592 |  | 
 | 593 | 	printk("cpu %u (hwid %u) Ready to die...\n", | 
 | 594 | 	       smp_processor_id(), hard_smp_processor_id()); | 
 | 595 | 	enter_rtas(__pa(rtas_args)); | 
 | 596 |  | 
 | 597 | 	panic("Alas, I survived.\n"); | 
 | 598 | } | 
 | 599 |  | 
 | 600 | /* | 
 | 601 |  * Call early during boot, before mem init or bootmem, to retreive the RTAS | 
 | 602 |  * informations from the device-tree and allocate the RMO buffer for userland | 
 | 603 |  * accesses. | 
 | 604 |  */ | 
 | 605 | void __init rtas_initialize(void) | 
 | 606 | { | 
 | 607 | 	/* Get RTAS dev node and fill up our "rtas" structure with infos | 
 | 608 | 	 * about it. | 
 | 609 | 	 */ | 
 | 610 | 	rtas.dev = of_find_node_by_name(NULL, "rtas"); | 
 | 611 | 	if (rtas.dev) { | 
 | 612 | 		u32 *basep, *entryp; | 
 | 613 | 		u32 *sizep; | 
 | 614 |  | 
 | 615 | 		basep = (u32 *)get_property(rtas.dev, "linux,rtas-base", NULL); | 
 | 616 | 		sizep = (u32 *)get_property(rtas.dev, "rtas-size", NULL); | 
 | 617 | 		if (basep != NULL && sizep != NULL) { | 
 | 618 | 			rtas.base = *basep; | 
 | 619 | 			rtas.size = *sizep; | 
 | 620 | 			entryp = (u32 *)get_property(rtas.dev, "linux,rtas-entry", NULL); | 
 | 621 | 			if (entryp == NULL) /* Ugh */ | 
 | 622 | 				rtas.entry = rtas.base; | 
 | 623 | 			else | 
 | 624 | 				rtas.entry = *entryp; | 
 | 625 | 		} else | 
 | 626 | 			rtas.dev = NULL; | 
 | 627 | 	} | 
 | 628 | 	/* If RTAS was found, allocate the RMO buffer for it and look for | 
 | 629 | 	 * the stop-self token if any | 
 | 630 | 	 */ | 
 | 631 | 	if (rtas.dev) { | 
 | 632 | 		unsigned long rtas_region = RTAS_INSTANTIATE_MAX; | 
 | 633 | 		if (systemcfg->platform == PLATFORM_PSERIES_LPAR) | 
 | 634 | 			rtas_region = min(lmb.rmo_size, RTAS_INSTANTIATE_MAX); | 
 | 635 |  | 
 | 636 | 		rtas_rmo_buf = lmb_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, | 
 | 637 | 							rtas_region); | 
 | 638 |  | 
 | 639 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 640 | 		rtas_stop_self_args.token = rtas_token("stop-self"); | 
 | 641 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 | 642 | 	} | 
 | 643 |  | 
 | 644 | } | 
 | 645 |  | 
 | 646 |  | 
 | 647 | EXPORT_SYMBOL(rtas_firmware_flash_list); | 
 | 648 | EXPORT_SYMBOL(rtas_token); | 
 | 649 | EXPORT_SYMBOL(rtas_call); | 
 | 650 | EXPORT_SYMBOL(rtas_data_buf); | 
 | 651 | EXPORT_SYMBOL(rtas_data_buf_lock); | 
 | 652 | EXPORT_SYMBOL(rtas_extended_busy_delay_time); | 
 | 653 | EXPORT_SYMBOL(rtas_get_sensor); | 
 | 654 | EXPORT_SYMBOL(rtas_get_power_level); | 
 | 655 | EXPORT_SYMBOL(rtas_set_power_level); | 
 | 656 | EXPORT_SYMBOL(rtas_set_indicator); | 
 | 657 | EXPORT_SYMBOL(rtas_get_error_log_max); |