Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * arch/sh64/kernel/time.c |
| 7 | * |
| 8 | * Copyright (C) 2000, 2001 Paolo Alberelli |
| 9 | * Copyright (C) 2003, 2004 Paul Mundt |
| 10 | * Copyright (C) 2003 Richard Curnow |
| 11 | * |
| 12 | * Original TMU/RTC code taken from sh version. |
| 13 | * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka |
| 14 | * Some code taken from i386 version. |
| 15 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| 16 | */ |
| 17 | |
| 18 | #include <linux/config.h> |
| 19 | #include <linux/errno.h> |
| 20 | #include <linux/rwsem.h> |
| 21 | #include <linux/sched.h> |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/param.h> |
| 24 | #include <linux/string.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/interrupt.h> |
| 27 | #include <linux/time.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/profile.h> |
| 31 | #include <linux/smp.h> |
| 32 | |
| 33 | #include <asm/registers.h> /* required by inline __asm__ stmt. */ |
| 34 | |
| 35 | #include <asm/processor.h> |
| 36 | #include <asm/uaccess.h> |
| 37 | #include <asm/io.h> |
| 38 | #include <asm/irq.h> |
| 39 | #include <asm/delay.h> |
| 40 | |
| 41 | #include <linux/timex.h> |
| 42 | #include <linux/irq.h> |
| 43 | #include <asm/hardware.h> |
| 44 | |
| 45 | #define TMU_TOCR_INIT 0x00 |
| 46 | #define TMU0_TCR_INIT 0x0020 |
| 47 | #define TMU_TSTR_INIT 1 |
| 48 | #define TMU_TSTR_OFF 0 |
| 49 | |
| 50 | /* RCR1 Bits */ |
| 51 | #define RCR1_CF 0x80 /* Carry Flag */ |
| 52 | #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ |
| 53 | #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ |
| 54 | #define RCR1_AF 0x01 /* Alarm Flag */ |
| 55 | |
| 56 | /* RCR2 Bits */ |
| 57 | #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ |
| 58 | #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ |
| 59 | #define RCR2_RTCEN 0x08 /* ENable RTC */ |
| 60 | #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ |
| 61 | #define RCR2_RESET 0x02 /* Reset bit */ |
| 62 | #define RCR2_START 0x01 /* Start bit */ |
| 63 | |
| 64 | /* Clock, Power and Reset Controller */ |
| 65 | #define CPRC_BLOCK_OFF 0x01010000 |
| 66 | #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF |
| 67 | |
| 68 | #define FRQCR (cprc_base+0x0) |
| 69 | #define WTCSR (cprc_base+0x0018) |
| 70 | #define STBCR (cprc_base+0x0030) |
| 71 | |
| 72 | /* Time Management Unit */ |
| 73 | #define TMU_BLOCK_OFF 0x01020000 |
| 74 | #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF |
| 75 | #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0) |
| 76 | #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1) |
| 77 | #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2) |
| 78 | |
| 79 | #define TMU_TOCR tmu_base+0x0 /* Byte access */ |
| 80 | #define TMU_TSTR tmu_base+0x4 /* Byte access */ |
| 81 | |
| 82 | #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */ |
| 83 | #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */ |
| 84 | #define TMU0_TCR TMU0_BASE+0x8 /* Word access */ |
| 85 | |
| 86 | /* Real Time Clock */ |
| 87 | #define RTC_BLOCK_OFF 0x01040000 |
| 88 | #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF |
| 89 | |
| 90 | #define R64CNT rtc_base+0x00 |
| 91 | #define RSECCNT rtc_base+0x04 |
| 92 | #define RMINCNT rtc_base+0x08 |
| 93 | #define RHRCNT rtc_base+0x0c |
| 94 | #define RWKCNT rtc_base+0x10 |
| 95 | #define RDAYCNT rtc_base+0x14 |
| 96 | #define RMONCNT rtc_base+0x18 |
| 97 | #define RYRCNT rtc_base+0x1c /* 16bit */ |
| 98 | #define RSECAR rtc_base+0x20 |
| 99 | #define RMINAR rtc_base+0x24 |
| 100 | #define RHRAR rtc_base+0x28 |
| 101 | #define RWKAR rtc_base+0x2c |
| 102 | #define RDAYAR rtc_base+0x30 |
| 103 | #define RMONAR rtc_base+0x34 |
| 104 | #define RCR1 rtc_base+0x38 |
| 105 | #define RCR2 rtc_base+0x3c |
| 106 | |
| 107 | #ifndef BCD_TO_BIN |
| 108 | #define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10) |
| 109 | #endif |
| 110 | |
| 111 | #ifndef BIN_TO_BCD |
| 112 | #define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10) |
| 113 | #endif |
| 114 | |
| 115 | #define TICK_SIZE (tick_nsec / 1000) |
| 116 | |
| 117 | extern unsigned long wall_jiffies; |
| 118 | |
| 119 | u64 jiffies_64 = INITIAL_JIFFIES; |
| 120 | |
| 121 | static unsigned long tmu_base, rtc_base; |
| 122 | unsigned long cprc_base; |
| 123 | |
| 124 | /* Variables to allow interpolation of time of day to resolution better than a |
| 125 | * jiffy. */ |
| 126 | |
| 127 | /* This is effectively protected by xtime_lock */ |
| 128 | static unsigned long ctc_last_interrupt; |
| 129 | static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */ |
| 130 | |
| 131 | #define CTC_JIFFY_SCALE_SHIFT 40 |
| 132 | |
| 133 | /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */ |
| 134 | static unsigned long long scaled_recip_ctc_ticks_per_jiffy; |
| 135 | |
| 136 | /* Estimate number of microseconds that have elapsed since the last timer tick, |
| 137 | by scaling the delta that has occured in the CTC register. |
| 138 | |
| 139 | WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at |
| 140 | the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this |
| 141 | in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm |
| 142 | probably needs to use TMU.TCNT0 instead. This will work even if the CPU is |
| 143 | sleeping, though will be coarser. |
| 144 | |
| 145 | FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime |
| 146 | is running or if the freq or tick arguments of adjtimex are modified after |
| 147 | we have calibrated the scaling factor? This will result in either a jump at |
| 148 | the end of a tick period, or a wrap backwards at the start of the next one, |
| 149 | if the application is reading the time of day often enough. I think we |
| 150 | ought to do better than this. For this reason, usecs_per_jiffy is left |
| 151 | separated out in the calculation below. This allows some future hook into |
| 152 | the adjtime-related stuff in kernel/timer.c to remove this hazard. |
| 153 | |
| 154 | */ |
| 155 | |
| 156 | static unsigned long usecs_since_tick(void) |
| 157 | { |
| 158 | unsigned long long current_ctc; |
| 159 | long ctc_ticks_since_interrupt; |
| 160 | unsigned long long ull_ctc_ticks_since_interrupt; |
| 161 | unsigned long result; |
| 162 | |
| 163 | unsigned long long mul1_out; |
| 164 | unsigned long long mul1_out_high; |
| 165 | unsigned long long mul2_out_low, mul2_out_high; |
| 166 | |
| 167 | /* Read CTC register */ |
| 168 | asm ("getcon cr62, %0" : "=r" (current_ctc)); |
| 169 | /* Note, the CTC counts down on each CPU clock, not up. |
| 170 | Note(2), use long type to get correct wraparound arithmetic when |
| 171 | the counter crosses zero. */ |
| 172 | ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc; |
| 173 | ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt; |
| 174 | |
| 175 | /* Inline assembly to do 32x32x32->64 multiplier */ |
| 176 | asm volatile ("mulu.l %1, %2, %0" : |
| 177 | "=r" (mul1_out) : |
| 178 | "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy)); |
| 179 | |
| 180 | mul1_out_high = mul1_out >> 32; |
| 181 | |
| 182 | asm volatile ("mulu.l %1, %2, %0" : |
| 183 | "=r" (mul2_out_low) : |
| 184 | "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy)); |
| 185 | |
| 186 | #if 1 |
| 187 | asm volatile ("mulu.l %1, %2, %0" : |
| 188 | "=r" (mul2_out_high) : |
| 189 | "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy)); |
| 190 | #endif |
| 191 | |
| 192 | result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT); |
| 193 | |
| 194 | return result; |
| 195 | } |
| 196 | |
| 197 | void do_gettimeofday(struct timeval *tv) |
| 198 | { |
| 199 | unsigned long flags; |
| 200 | unsigned long seq; |
| 201 | unsigned long usec, sec; |
| 202 | |
| 203 | do { |
| 204 | seq = read_seqbegin_irqsave(&xtime_lock, flags); |
| 205 | usec = usecs_since_tick(); |
| 206 | { |
| 207 | unsigned long lost = jiffies - wall_jiffies; |
| 208 | |
| 209 | if (lost) |
| 210 | usec += lost * (1000000 / HZ); |
| 211 | } |
| 212 | |
| 213 | sec = xtime.tv_sec; |
| 214 | usec += xtime.tv_nsec / 1000; |
| 215 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
| 216 | |
| 217 | while (usec >= 1000000) { |
| 218 | usec -= 1000000; |
| 219 | sec++; |
| 220 | } |
| 221 | |
| 222 | tv->tv_sec = sec; |
| 223 | tv->tv_usec = usec; |
| 224 | } |
| 225 | |
| 226 | int do_settimeofday(struct timespec *tv) |
| 227 | { |
| 228 | time_t wtm_sec, sec = tv->tv_sec; |
| 229 | long wtm_nsec, nsec = tv->tv_nsec; |
| 230 | |
| 231 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| 232 | return -EINVAL; |
| 233 | |
| 234 | write_seqlock_irq(&xtime_lock); |
| 235 | /* |
| 236 | * This is revolting. We need to set "xtime" correctly. However, the |
| 237 | * value in this location is the value at the most recent update of |
| 238 | * wall time. Discover what correction gettimeofday() would have |
| 239 | * made, and then undo it! |
| 240 | */ |
| 241 | nsec -= 1000 * (usecs_since_tick() + |
| 242 | (jiffies - wall_jiffies) * (1000000 / HZ)); |
| 243 | |
| 244 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| 245 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| 246 | |
| 247 | set_normalized_timespec(&xtime, sec, nsec); |
| 248 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| 249 | |
| 250 | time_adjust = 0; /* stop active adjtime() */ |
| 251 | time_status |= STA_UNSYNC; |
| 252 | time_maxerror = NTP_PHASE_LIMIT; |
| 253 | time_esterror = NTP_PHASE_LIMIT; |
| 254 | write_sequnlock_irq(&xtime_lock); |
| 255 | clock_was_set(); |
| 256 | |
| 257 | return 0; |
| 258 | } |
| 259 | |
| 260 | static int set_rtc_time(unsigned long nowtime) |
| 261 | { |
| 262 | int retval = 0; |
| 263 | int real_seconds, real_minutes, cmos_minutes; |
| 264 | |
| 265 | ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */ |
| 266 | |
| 267 | cmos_minutes = ctrl_inb(RMINCNT); |
| 268 | BCD_TO_BIN(cmos_minutes); |
| 269 | |
| 270 | /* |
| 271 | * since we're only adjusting minutes and seconds, |
| 272 | * don't interfere with hour overflow. This avoids |
| 273 | * messing with unknown time zones but requires your |
| 274 | * RTC not to be off by more than 15 minutes |
| 275 | */ |
| 276 | real_seconds = nowtime % 60; |
| 277 | real_minutes = nowtime / 60; |
| 278 | if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) |
| 279 | real_minutes += 30; /* correct for half hour time zone */ |
| 280 | real_minutes %= 60; |
| 281 | |
| 282 | if (abs(real_minutes - cmos_minutes) < 30) { |
| 283 | BIN_TO_BCD(real_seconds); |
| 284 | BIN_TO_BCD(real_minutes); |
| 285 | ctrl_outb(real_seconds, RSECCNT); |
| 286 | ctrl_outb(real_minutes, RMINCNT); |
| 287 | } else { |
| 288 | printk(KERN_WARNING |
| 289 | "set_rtc_time: can't update from %d to %d\n", |
| 290 | cmos_minutes, real_minutes); |
| 291 | retval = -1; |
| 292 | } |
| 293 | |
| 294 | ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */ |
| 295 | |
| 296 | return retval; |
| 297 | } |
| 298 | |
| 299 | /* last time the RTC clock got updated */ |
| 300 | static long last_rtc_update = 0; |
| 301 | |
| 302 | /* |
| 303 | * timer_interrupt() needs to keep up the real-time clock, |
| 304 | * as well as call the "do_timer()" routine every clocktick |
| 305 | */ |
| 306 | static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 307 | { |
| 308 | unsigned long long current_ctc; |
| 309 | asm ("getcon cr62, %0" : "=r" (current_ctc)); |
| 310 | ctc_last_interrupt = (unsigned long) current_ctc; |
| 311 | |
| 312 | do_timer(regs); |
| 313 | #ifndef CONFIG_SMP |
| 314 | update_process_times(user_mode(regs)); |
| 315 | #endif |
| 316 | profile_tick(CPU_PROFILING, regs); |
| 317 | |
| 318 | #ifdef CONFIG_HEARTBEAT |
| 319 | { |
| 320 | extern void heartbeat(void); |
| 321 | |
| 322 | heartbeat(); |
| 323 | } |
| 324 | #endif |
| 325 | |
| 326 | /* |
| 327 | * If we have an externally synchronized Linux clock, then update |
| 328 | * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| 329 | * called as close as possible to 500 ms before the new second starts. |
| 330 | */ |
| 331 | if ((time_status & STA_UNSYNC) == 0 && |
| 332 | xtime.tv_sec > last_rtc_update + 660 && |
| 333 | (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && |
| 334 | (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { |
| 335 | if (set_rtc_time(xtime.tv_sec) == 0) |
| 336 | last_rtc_update = xtime.tv_sec; |
| 337 | else |
| 338 | last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * This is the same as the above, except we _also_ save the current |
| 344 | * Time Stamp Counter value at the time of the timer interrupt, so that |
| 345 | * we later on can estimate the time of day more exactly. |
| 346 | */ |
| 347 | static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 348 | { |
| 349 | unsigned long timer_status; |
| 350 | |
| 351 | /* Clear UNF bit */ |
| 352 | timer_status = ctrl_inw(TMU0_TCR); |
| 353 | timer_status &= ~0x100; |
| 354 | ctrl_outw(timer_status, TMU0_TCR); |
| 355 | |
| 356 | /* |
| 357 | * Here we are in the timer irq handler. We just have irqs locally |
| 358 | * disabled but we don't know if the timer_bh is running on the other |
| 359 | * CPU. We need to avoid to SMP race with it. NOTE: we don' t need |
| 360 | * the irq version of write_lock because as just said we have irq |
| 361 | * locally disabled. -arca |
| 362 | */ |
| 363 | write_lock(&xtime_lock); |
| 364 | do_timer_interrupt(irq, NULL, regs); |
| 365 | write_unlock(&xtime_lock); |
| 366 | |
| 367 | return IRQ_HANDLED; |
| 368 | } |
| 369 | |
| 370 | static unsigned long get_rtc_time(void) |
| 371 | { |
| 372 | unsigned int sec, min, hr, wk, day, mon, yr, yr100; |
| 373 | |
| 374 | again: |
| 375 | do { |
| 376 | ctrl_outb(0, RCR1); /* Clear CF-bit */ |
| 377 | sec = ctrl_inb(RSECCNT); |
| 378 | min = ctrl_inb(RMINCNT); |
| 379 | hr = ctrl_inb(RHRCNT); |
| 380 | wk = ctrl_inb(RWKCNT); |
| 381 | day = ctrl_inb(RDAYCNT); |
| 382 | mon = ctrl_inb(RMONCNT); |
| 383 | yr = ctrl_inw(RYRCNT); |
| 384 | yr100 = (yr >> 8); |
| 385 | yr &= 0xff; |
| 386 | } while ((ctrl_inb(RCR1) & RCR1_CF) != 0); |
| 387 | |
| 388 | BCD_TO_BIN(yr100); |
| 389 | BCD_TO_BIN(yr); |
| 390 | BCD_TO_BIN(mon); |
| 391 | BCD_TO_BIN(day); |
| 392 | BCD_TO_BIN(hr); |
| 393 | BCD_TO_BIN(min); |
| 394 | BCD_TO_BIN(sec); |
| 395 | |
| 396 | if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 || |
| 397 | hr > 23 || min > 59 || sec > 59) { |
| 398 | printk(KERN_ERR |
| 399 | "SH RTC: invalid value, resetting to 1 Jan 2000\n"); |
| 400 | ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */ |
| 401 | ctrl_outb(0, RSECCNT); |
| 402 | ctrl_outb(0, RMINCNT); |
| 403 | ctrl_outb(0, RHRCNT); |
| 404 | ctrl_outb(6, RWKCNT); |
| 405 | ctrl_outb(1, RDAYCNT); |
| 406 | ctrl_outb(1, RMONCNT); |
| 407 | ctrl_outw(0x2000, RYRCNT); |
| 408 | ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */ |
| 409 | goto again; |
| 410 | } |
| 411 | |
| 412 | return mktime(yr100 * 100 + yr, mon, day, hr, min, sec); |
| 413 | } |
| 414 | |
| 415 | static __init unsigned int get_cpu_hz(void) |
| 416 | { |
| 417 | unsigned int count; |
| 418 | unsigned long __dummy; |
| 419 | unsigned long ctc_val_init, ctc_val; |
| 420 | |
| 421 | /* |
| 422 | ** Regardless the toolchain, force the compiler to use the |
| 423 | ** arbitrary register r3 as a clock tick counter. |
| 424 | ** NOTE: r3 must be in accordance with rtc_interrupt() |
| 425 | */ |
| 426 | register unsigned long long __rtc_irq_flag __asm__ ("r3"); |
| 427 | |
| 428 | local_irq_enable(); |
| 429 | do {} while (ctrl_inb(R64CNT) != 0); |
| 430 | ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */ |
| 431 | |
| 432 | /* |
| 433 | * r3 is arbitrary. CDC does not support "=z". |
| 434 | */ |
| 435 | ctc_val_init = 0xffffffff; |
| 436 | ctc_val = ctc_val_init; |
| 437 | |
| 438 | asm volatile("gettr tr0, %1\n\t" |
| 439 | "putcon %0, " __CTC "\n\t" |
| 440 | "and %2, r63, %2\n\t" |
| 441 | "pta $+4, tr0\n\t" |
| 442 | "beq/l %2, r63, tr0\n\t" |
| 443 | "ptabs %1, tr0\n\t" |
| 444 | "getcon " __CTC ", %0\n\t" |
| 445 | : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag) |
| 446 | : "0" (0)); |
| 447 | local_irq_disable(); |
| 448 | /* |
| 449 | * SH-3: |
| 450 | * CPU clock = 4 stages * loop |
| 451 | * tst rm,rm if id ex |
| 452 | * bt/s 1b if id ex |
| 453 | * add #1,rd if id ex |
| 454 | * (if) pipe line stole |
| 455 | * tst rm,rm if id ex |
| 456 | * .... |
| 457 | * |
| 458 | * |
| 459 | * SH-4: |
| 460 | * CPU clock = 6 stages * loop |
| 461 | * I don't know why. |
| 462 | * .... |
| 463 | * |
| 464 | * SH-5: |
| 465 | * Use CTC register to count. This approach returns the right value |
| 466 | * even if the I-cache is disabled (e.g. whilst debugging.) |
| 467 | * |
| 468 | */ |
| 469 | |
| 470 | count = ctc_val_init - ctc_val; /* CTC counts down */ |
| 471 | |
| 472 | #if defined (CONFIG_SH_SIMULATOR) |
| 473 | /* |
| 474 | * Let's pretend we are a 5MHz SH-5 to avoid a too |
| 475 | * little timer interval. Also to keep delay |
| 476 | * calibration within a reasonable time. |
| 477 | */ |
| 478 | return 5000000; |
| 479 | #else |
| 480 | /* |
| 481 | * This really is count by the number of clock cycles |
| 482 | * by the ratio between a complete R64CNT |
| 483 | * wrap-around (128) and CUI interrupt being raised (64). |
| 484 | */ |
| 485 | return count*2; |
| 486 | #endif |
| 487 | } |
| 488 | |
| 489 | static irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 490 | { |
| 491 | ctrl_outb(0, RCR1); /* Disable Carry Interrupts */ |
| 492 | regs->regs[3] = 1; /* Using r3 */ |
| 493 | |
| 494 | return IRQ_HANDLED; |
| 495 | } |
| 496 | |
| 497 | static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL}; |
| 498 | static struct irqaction irq1 = { rtc_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "rtc", NULL, NULL}; |
| 499 | |
| 500 | void __init time_init(void) |
| 501 | { |
| 502 | unsigned int cpu_clock, master_clock, bus_clock, module_clock; |
| 503 | unsigned long interval; |
| 504 | unsigned long frqcr, ifc, pfc; |
| 505 | static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 }; |
| 506 | #define bfc_table ifc_table /* Same */ |
| 507 | #define pfc_table ifc_table /* Same */ |
| 508 | |
| 509 | tmu_base = onchip_remap(TMU_BASE, 1024, "TMU"); |
| 510 | if (!tmu_base) { |
| 511 | panic("Unable to remap TMU\n"); |
| 512 | } |
| 513 | |
| 514 | rtc_base = onchip_remap(RTC_BASE, 1024, "RTC"); |
| 515 | if (!rtc_base) { |
| 516 | panic("Unable to remap RTC\n"); |
| 517 | } |
| 518 | |
| 519 | cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC"); |
| 520 | if (!cprc_base) { |
| 521 | panic("Unable to remap CPRC\n"); |
| 522 | } |
| 523 | |
| 524 | xtime.tv_sec = get_rtc_time(); |
| 525 | xtime.tv_nsec = 0; |
| 526 | |
| 527 | setup_irq(TIMER_IRQ, &irq0); |
| 528 | setup_irq(RTC_IRQ, &irq1); |
| 529 | |
| 530 | /* Check how fast it is.. */ |
| 531 | cpu_clock = get_cpu_hz(); |
| 532 | |
| 533 | /* Note careful order of operations to maintain reasonable precision and avoid overflow. */ |
| 534 | scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ)); |
| 535 | |
| 536 | disable_irq(RTC_IRQ); |
| 537 | |
| 538 | printk("CPU clock: %d.%02dMHz\n", |
| 539 | (cpu_clock / 1000000), (cpu_clock % 1000000)/10000); |
| 540 | { |
| 541 | unsigned short bfc; |
| 542 | frqcr = ctrl_inl(FRQCR); |
| 543 | ifc = ifc_table[(frqcr>> 6) & 0x0007]; |
| 544 | bfc = bfc_table[(frqcr>> 3) & 0x0007]; |
| 545 | pfc = pfc_table[(frqcr>> 12) & 0x0007]; |
| 546 | master_clock = cpu_clock * ifc; |
| 547 | bus_clock = master_clock/bfc; |
| 548 | } |
| 549 | |
| 550 | printk("Bus clock: %d.%02dMHz\n", |
| 551 | (bus_clock/1000000), (bus_clock % 1000000)/10000); |
| 552 | module_clock = master_clock/pfc; |
| 553 | printk("Module clock: %d.%02dMHz\n", |
| 554 | (module_clock/1000000), (module_clock % 1000000)/10000); |
| 555 | interval = (module_clock/(HZ*4)); |
| 556 | |
| 557 | printk("Interval = %ld\n", interval); |
| 558 | |
| 559 | current_cpu_data.cpu_clock = cpu_clock; |
| 560 | current_cpu_data.master_clock = master_clock; |
| 561 | current_cpu_data.bus_clock = bus_clock; |
| 562 | current_cpu_data.module_clock = module_clock; |
| 563 | |
| 564 | /* Start TMU0 */ |
| 565 | ctrl_outb(TMU_TSTR_OFF, TMU_TSTR); |
| 566 | ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); |
| 567 | ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); |
| 568 | ctrl_outl(interval, TMU0_TCOR); |
| 569 | ctrl_outl(interval, TMU0_TCNT); |
| 570 | ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); |
| 571 | } |
| 572 | |
| 573 | void enter_deep_standby(void) |
| 574 | { |
| 575 | /* Disable watchdog timer */ |
| 576 | ctrl_outl(0xa5000000, WTCSR); |
| 577 | /* Configure deep standby on sleep */ |
| 578 | ctrl_outl(0x03, STBCR); |
| 579 | |
| 580 | #ifdef CONFIG_SH_ALPHANUMERIC |
| 581 | { |
| 582 | extern void mach_alphanum(int position, unsigned char value); |
| 583 | extern void mach_alphanum_brightness(int setting); |
| 584 | char halted[] = "Halted. "; |
| 585 | int i; |
| 586 | mach_alphanum_brightness(6); /* dimmest setting above off */ |
| 587 | for (i=0; i<8; i++) { |
| 588 | mach_alphanum(i, halted[i]); |
| 589 | } |
| 590 | asm __volatile__ ("synco"); |
| 591 | } |
| 592 | #endif |
| 593 | |
| 594 | asm __volatile__ ("sleep"); |
| 595 | asm __volatile__ ("synci"); |
| 596 | asm __volatile__ ("nop"); |
| 597 | asm __volatile__ ("nop"); |
| 598 | asm __volatile__ ("nop"); |
| 599 | asm __volatile__ ("nop"); |
| 600 | panic("Unexpected wakeup!\n"); |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * Scheduler clock - returns current time in nanosec units. |
| 605 | */ |
| 606 | unsigned long long sched_clock(void) |
| 607 | { |
| 608 | return (unsigned long long)jiffies * (1000000000 / HZ); |
| 609 | } |
| 610 | |