Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $ |
| 2 | * pci_sabre.c: Sabre specific PCI controller support. |
| 3 | * |
| 4 | * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu) |
| 5 | * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) |
| 6 | * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com) |
| 7 | */ |
| 8 | |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/types.h> |
| 11 | #include <linux/pci.h> |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | |
| 16 | #include <asm/apb.h> |
| 17 | #include <asm/pbm.h> |
| 18 | #include <asm/iommu.h> |
| 19 | #include <asm/irq.h> |
| 20 | #include <asm/smp.h> |
| 21 | #include <asm/oplib.h> |
| 22 | |
| 23 | #include "pci_impl.h" |
| 24 | #include "iommu_common.h" |
| 25 | |
| 26 | /* All SABRE registers are 64-bits. The following accessor |
| 27 | * routines are how they are accessed. The REG parameter |
| 28 | * is a physical address. |
| 29 | */ |
| 30 | #define sabre_read(__reg) \ |
| 31 | ({ u64 __ret; \ |
| 32 | __asm__ __volatile__("ldxa [%1] %2, %0" \ |
| 33 | : "=r" (__ret) \ |
| 34 | : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ |
| 35 | : "memory"); \ |
| 36 | __ret; \ |
| 37 | }) |
| 38 | #define sabre_write(__reg, __val) \ |
| 39 | __asm__ __volatile__("stxa %0, [%1] %2" \ |
| 40 | : /* no outputs */ \ |
| 41 | : "r" (__val), "r" (__reg), \ |
| 42 | "i" (ASI_PHYS_BYPASS_EC_E) \ |
| 43 | : "memory") |
| 44 | |
| 45 | /* SABRE PCI controller register offsets and definitions. */ |
| 46 | #define SABRE_UE_AFSR 0x0030UL |
| 47 | #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ |
| 48 | #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ |
| 49 | #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ |
| 50 | #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ |
| 51 | #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */ |
| 52 | #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */ |
| 53 | #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ |
| 54 | #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */ |
| 55 | #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */ |
| 56 | #define SABRE_UECE_AFAR 0x0038UL |
| 57 | #define SABRE_CE_AFSR 0x0040UL |
| 58 | #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ |
| 59 | #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ |
| 60 | #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ |
| 61 | #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ |
| 62 | #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */ |
| 63 | #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ |
| 64 | #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */ |
| 65 | #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */ |
| 66 | #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */ |
| 67 | #define SABRE_IOMMU_CONTROL 0x0200UL |
| 68 | #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */ |
| 69 | #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */ |
| 70 | #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */ |
| 71 | #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */ |
| 72 | #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */ |
| 73 | #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000 |
| 74 | #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000 |
| 75 | #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000 |
| 76 | #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000 |
| 77 | #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000 |
| 78 | #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000 |
| 79 | #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000 |
| 80 | #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 |
| 81 | #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */ |
| 82 | #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */ |
| 83 | #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */ |
| 84 | #define SABRE_IOMMU_TSBBASE 0x0208UL |
| 85 | #define SABRE_IOMMU_FLUSH 0x0210UL |
| 86 | #define SABRE_IMAP_A_SLOT0 0x0c00UL |
| 87 | #define SABRE_IMAP_B_SLOT0 0x0c20UL |
| 88 | #define SABRE_IMAP_SCSI 0x1000UL |
| 89 | #define SABRE_IMAP_ETH 0x1008UL |
| 90 | #define SABRE_IMAP_BPP 0x1010UL |
| 91 | #define SABRE_IMAP_AU_REC 0x1018UL |
| 92 | #define SABRE_IMAP_AU_PLAY 0x1020UL |
| 93 | #define SABRE_IMAP_PFAIL 0x1028UL |
| 94 | #define SABRE_IMAP_KMS 0x1030UL |
| 95 | #define SABRE_IMAP_FLPY 0x1038UL |
| 96 | #define SABRE_IMAP_SHW 0x1040UL |
| 97 | #define SABRE_IMAP_KBD 0x1048UL |
| 98 | #define SABRE_IMAP_MS 0x1050UL |
| 99 | #define SABRE_IMAP_SER 0x1058UL |
| 100 | #define SABRE_IMAP_UE 0x1070UL |
| 101 | #define SABRE_IMAP_CE 0x1078UL |
| 102 | #define SABRE_IMAP_PCIERR 0x1080UL |
| 103 | #define SABRE_IMAP_GFX 0x1098UL |
| 104 | #define SABRE_IMAP_EUPA 0x10a0UL |
| 105 | #define SABRE_ICLR_A_SLOT0 0x1400UL |
| 106 | #define SABRE_ICLR_B_SLOT0 0x1480UL |
| 107 | #define SABRE_ICLR_SCSI 0x1800UL |
| 108 | #define SABRE_ICLR_ETH 0x1808UL |
| 109 | #define SABRE_ICLR_BPP 0x1810UL |
| 110 | #define SABRE_ICLR_AU_REC 0x1818UL |
| 111 | #define SABRE_ICLR_AU_PLAY 0x1820UL |
| 112 | #define SABRE_ICLR_PFAIL 0x1828UL |
| 113 | #define SABRE_ICLR_KMS 0x1830UL |
| 114 | #define SABRE_ICLR_FLPY 0x1838UL |
| 115 | #define SABRE_ICLR_SHW 0x1840UL |
| 116 | #define SABRE_ICLR_KBD 0x1848UL |
| 117 | #define SABRE_ICLR_MS 0x1850UL |
| 118 | #define SABRE_ICLR_SER 0x1858UL |
| 119 | #define SABRE_ICLR_UE 0x1870UL |
| 120 | #define SABRE_ICLR_CE 0x1878UL |
| 121 | #define SABRE_ICLR_PCIERR 0x1880UL |
| 122 | #define SABRE_WRSYNC 0x1c20UL |
| 123 | #define SABRE_PCICTRL 0x2000UL |
| 124 | #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */ |
| 125 | #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */ |
| 126 | #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ |
| 127 | #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */ |
| 128 | #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */ |
| 129 | #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */ |
| 130 | #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */ |
| 131 | #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */ |
| 132 | #define SABRE_PIOAFSR 0x2010UL |
| 133 | #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */ |
| 134 | #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */ |
| 135 | #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */ |
| 136 | #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */ |
| 137 | #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */ |
| 138 | #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */ |
| 139 | #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */ |
| 140 | #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */ |
| 141 | #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */ |
| 142 | #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */ |
| 143 | #define SABRE_PIOAFAR 0x2018UL |
| 144 | #define SABRE_PCIDIAG 0x2020UL |
| 145 | #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */ |
| 146 | #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */ |
| 147 | #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */ |
| 148 | #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */ |
| 149 | #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */ |
| 150 | #define SABRE_PCITASR 0x2028UL |
| 151 | #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */ |
| 152 | #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */ |
| 153 | #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */ |
| 154 | #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */ |
| 155 | #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */ |
| 156 | #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */ |
| 157 | #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */ |
| 158 | #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */ |
| 159 | #define SABRE_PIOBUF_DIAG 0x5000UL |
| 160 | #define SABRE_DMABUF_DIAGLO 0x5100UL |
| 161 | #define SABRE_DMABUF_DIAGHI 0x51c0UL |
| 162 | #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */ |
| 163 | #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */ |
| 164 | #define SABRE_IOMMU_VADIAG 0xa400UL |
| 165 | #define SABRE_IOMMU_TCDIAG 0xa408UL |
| 166 | #define SABRE_IOMMU_TAG 0xa580UL |
| 167 | #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */ |
| 168 | #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */ |
| 169 | #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */ |
| 170 | #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */ |
| 171 | #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */ |
| 172 | #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */ |
| 173 | #define SABRE_IOMMU_DATA 0xa600UL |
| 174 | #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */ |
| 175 | #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */ |
| 176 | #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */ |
| 177 | #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */ |
| 178 | #define SABRE_PCI_IRQSTATE 0xa800UL |
| 179 | #define SABRE_OBIO_IRQSTATE 0xa808UL |
| 180 | #define SABRE_FFBCFG 0xf000UL |
| 181 | #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */ |
| 182 | #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */ |
| 183 | #define SABRE_MCCTRL0 0xf010UL |
| 184 | #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */ |
| 185 | #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */ |
| 186 | #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */ |
| 187 | #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */ |
| 188 | #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */ |
| 189 | #define SABRE_MCCTRL1 0xf018UL |
| 190 | #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */ |
| 191 | #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */ |
| 192 | #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */ |
| 193 | #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */ |
| 194 | #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */ |
| 195 | #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */ |
| 196 | #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */ |
| 197 | #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */ |
| 198 | #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */ |
| 199 | #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */ |
| 200 | #define SABRE_RESETCTRL 0xf020UL |
| 201 | |
| 202 | #define SABRE_CONFIGSPACE 0x001000000UL |
| 203 | #define SABRE_IOSPACE 0x002000000UL |
| 204 | #define SABRE_IOSPACE_SIZE 0x000ffffffUL |
| 205 | #define SABRE_MEMSPACE 0x100000000UL |
| 206 | #define SABRE_MEMSPACE_SIZE 0x07fffffffUL |
| 207 | |
| 208 | /* UltraSparc-IIi Programmer's Manual, page 325, PCI |
| 209 | * configuration space address format: |
| 210 | * |
| 211 | * 32 24 23 16 15 11 10 8 7 2 1 0 |
| 212 | * --------------------------------------------------------- |
| 213 | * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 | |
| 214 | * --------------------------------------------------------- |
| 215 | */ |
| 216 | #define SABRE_CONFIG_BASE(PBM) \ |
| 217 | ((PBM)->config_space | (1UL << 24)) |
| 218 | #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ |
| 219 | (((unsigned long)(BUS) << 16) | \ |
| 220 | ((unsigned long)(DEVFN) << 8) | \ |
| 221 | ((unsigned long)(REG))) |
| 222 | |
| 223 | static int hummingbird_p; |
| 224 | static struct pci_bus *sabre_root_bus; |
| 225 | |
| 226 | static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm, |
| 227 | unsigned char bus, |
| 228 | unsigned int devfn, |
| 229 | int where) |
| 230 | { |
| 231 | if (!pbm) |
| 232 | return NULL; |
| 233 | return (void *) |
| 234 | (SABRE_CONFIG_BASE(pbm) | |
| 235 | SABRE_CONFIG_ENCODE(bus, devfn, where)); |
| 236 | } |
| 237 | |
| 238 | static int sabre_out_of_range(unsigned char devfn) |
| 239 | { |
| 240 | if (hummingbird_p) |
| 241 | return 0; |
| 242 | |
| 243 | return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) || |
| 244 | ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) || |
| 245 | (PCI_SLOT(devfn) > 1)); |
| 246 | } |
| 247 | |
| 248 | static int __sabre_out_of_range(struct pci_pbm_info *pbm, |
| 249 | unsigned char bus, |
| 250 | unsigned char devfn) |
| 251 | { |
| 252 | if (hummingbird_p) |
| 253 | return 0; |
| 254 | |
| 255 | return ((pbm->parent == 0) || |
| 256 | ((pbm == &pbm->parent->pbm_B) && |
| 257 | (bus == pbm->pci_first_busno) && |
| 258 | PCI_SLOT(devfn) > 8) || |
| 259 | ((pbm == &pbm->parent->pbm_A) && |
| 260 | (bus == pbm->pci_first_busno) && |
| 261 | PCI_SLOT(devfn) > 8)); |
| 262 | } |
| 263 | |
| 264 | static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, |
| 265 | int where, int size, u32 *value) |
| 266 | { |
| 267 | struct pci_pbm_info *pbm = bus_dev->sysdata; |
| 268 | unsigned char bus = bus_dev->number; |
| 269 | u32 *addr; |
| 270 | u16 tmp16; |
| 271 | u8 tmp8; |
| 272 | |
| 273 | switch (size) { |
| 274 | case 1: |
| 275 | *value = 0xff; |
| 276 | break; |
| 277 | case 2: |
| 278 | *value = 0xffff; |
| 279 | break; |
| 280 | case 4: |
| 281 | *value = 0xffffffff; |
| 282 | break; |
| 283 | } |
| 284 | |
| 285 | addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); |
| 286 | if (!addr) |
| 287 | return PCIBIOS_SUCCESSFUL; |
| 288 | |
| 289 | if (__sabre_out_of_range(pbm, bus, devfn)) |
| 290 | return PCIBIOS_SUCCESSFUL; |
| 291 | |
| 292 | switch (size) { |
| 293 | case 1: |
| 294 | pci_config_read8((u8 *) addr, &tmp8); |
| 295 | *value = tmp8; |
| 296 | break; |
| 297 | |
| 298 | case 2: |
| 299 | if (where & 0x01) { |
| 300 | printk("pci_read_config_word: misaligned reg [%x]\n", |
| 301 | where); |
| 302 | return PCIBIOS_SUCCESSFUL; |
| 303 | } |
| 304 | pci_config_read16((u16 *) addr, &tmp16); |
| 305 | *value = tmp16; |
| 306 | break; |
| 307 | |
| 308 | case 4: |
| 309 | if (where & 0x03) { |
| 310 | printk("pci_read_config_dword: misaligned reg [%x]\n", |
| 311 | where); |
| 312 | return PCIBIOS_SUCCESSFUL; |
| 313 | } |
| 314 | pci_config_read32(addr, value); |
| 315 | break; |
| 316 | } |
| 317 | |
| 318 | return PCIBIOS_SUCCESSFUL; |
| 319 | } |
| 320 | |
| 321 | static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn, |
| 322 | int where, int size, u32 *value) |
| 323 | { |
| 324 | if (!bus->number && sabre_out_of_range(devfn)) { |
| 325 | switch (size) { |
| 326 | case 1: |
| 327 | *value = 0xff; |
| 328 | break; |
| 329 | case 2: |
| 330 | *value = 0xffff; |
| 331 | break; |
| 332 | case 4: |
| 333 | *value = 0xffffffff; |
| 334 | break; |
| 335 | } |
| 336 | return PCIBIOS_SUCCESSFUL; |
| 337 | } |
| 338 | |
| 339 | if (bus->number || PCI_SLOT(devfn)) |
| 340 | return __sabre_read_pci_cfg(bus, devfn, where, size, value); |
| 341 | |
| 342 | /* When accessing PCI config space of the PCI controller itself (bus |
| 343 | * 0, device slot 0, function 0) there are restrictions. Each |
| 344 | * register must be accessed as it's natural size. Thus, for example |
| 345 | * the Vendor ID must be accessed as a 16-bit quantity. |
| 346 | */ |
| 347 | |
| 348 | switch (size) { |
| 349 | case 1: |
| 350 | if (where < 8) { |
| 351 | u32 tmp32; |
| 352 | u16 tmp16; |
| 353 | |
| 354 | __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); |
| 355 | tmp16 = (u16) tmp32; |
| 356 | if (where & 1) |
| 357 | *value = tmp16 >> 8; |
| 358 | else |
| 359 | *value = tmp16 & 0xff; |
| 360 | } else |
| 361 | return __sabre_read_pci_cfg(bus, devfn, where, 1, value); |
| 362 | break; |
| 363 | |
| 364 | case 2: |
| 365 | if (where < 8) |
| 366 | return __sabre_read_pci_cfg(bus, devfn, where, 2, value); |
| 367 | else { |
| 368 | u32 tmp32; |
| 369 | u8 tmp8; |
| 370 | |
| 371 | __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32); |
| 372 | tmp8 = (u8) tmp32; |
| 373 | *value = tmp8; |
| 374 | __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32); |
| 375 | tmp8 = (u8) tmp32; |
| 376 | *value |= tmp8 << 8; |
| 377 | } |
| 378 | break; |
| 379 | |
| 380 | case 4: { |
| 381 | u32 tmp32; |
| 382 | u16 tmp16; |
| 383 | |
| 384 | sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32); |
| 385 | tmp16 = (u16) tmp32; |
| 386 | *value = tmp16; |
| 387 | sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32); |
| 388 | tmp16 = (u16) tmp32; |
| 389 | *value |= tmp16 << 16; |
| 390 | break; |
| 391 | } |
| 392 | } |
| 393 | return PCIBIOS_SUCCESSFUL; |
| 394 | } |
| 395 | |
| 396 | static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, |
| 397 | int where, int size, u32 value) |
| 398 | { |
| 399 | struct pci_pbm_info *pbm = bus_dev->sysdata; |
| 400 | unsigned char bus = bus_dev->number; |
| 401 | u32 *addr; |
| 402 | |
| 403 | addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); |
| 404 | if (!addr) |
| 405 | return PCIBIOS_SUCCESSFUL; |
| 406 | |
| 407 | if (__sabre_out_of_range(pbm, bus, devfn)) |
| 408 | return PCIBIOS_SUCCESSFUL; |
| 409 | |
| 410 | switch (size) { |
| 411 | case 1: |
| 412 | pci_config_write8((u8 *) addr, value); |
| 413 | break; |
| 414 | |
| 415 | case 2: |
| 416 | if (where & 0x01) { |
| 417 | printk("pci_write_config_word: misaligned reg [%x]\n", |
| 418 | where); |
| 419 | return PCIBIOS_SUCCESSFUL; |
| 420 | } |
| 421 | pci_config_write16((u16 *) addr, value); |
| 422 | break; |
| 423 | |
| 424 | case 4: |
| 425 | if (where & 0x03) { |
| 426 | printk("pci_write_config_dword: misaligned reg [%x]\n", |
| 427 | where); |
| 428 | return PCIBIOS_SUCCESSFUL; |
| 429 | } |
| 430 | pci_config_write32(addr, value); |
| 431 | break; |
| 432 | } |
| 433 | |
| 434 | return PCIBIOS_SUCCESSFUL; |
| 435 | } |
| 436 | |
| 437 | static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn, |
| 438 | int where, int size, u32 value) |
| 439 | { |
| 440 | if (bus->number) |
| 441 | return __sabre_write_pci_cfg(bus, devfn, where, size, value); |
| 442 | |
| 443 | if (sabre_out_of_range(devfn)) |
| 444 | return PCIBIOS_SUCCESSFUL; |
| 445 | |
| 446 | switch (size) { |
| 447 | case 1: |
| 448 | if (where < 8) { |
| 449 | u32 tmp32; |
| 450 | u16 tmp16; |
| 451 | |
| 452 | __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); |
| 453 | tmp16 = (u16) tmp32; |
| 454 | if (where & 1) { |
| 455 | value &= 0x00ff; |
| 456 | value |= tmp16 << 8; |
| 457 | } else { |
| 458 | value &= 0xff00; |
| 459 | value |= tmp16; |
| 460 | } |
| 461 | tmp32 = (u32) tmp16; |
| 462 | return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32); |
| 463 | } else |
| 464 | return __sabre_write_pci_cfg(bus, devfn, where, 1, value); |
| 465 | break; |
| 466 | case 2: |
| 467 | if (where < 8) |
| 468 | return __sabre_write_pci_cfg(bus, devfn, where, 2, value); |
| 469 | else { |
| 470 | __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff); |
| 471 | __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8); |
| 472 | } |
| 473 | break; |
| 474 | case 4: |
| 475 | sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff); |
| 476 | sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16); |
| 477 | break; |
| 478 | } |
| 479 | return PCIBIOS_SUCCESSFUL; |
| 480 | } |
| 481 | |
| 482 | static struct pci_ops sabre_ops = { |
| 483 | .read = sabre_read_pci_cfg, |
| 484 | .write = sabre_write_pci_cfg, |
| 485 | }; |
| 486 | |
| 487 | static unsigned long sabre_pcislot_imap_offset(unsigned long ino) |
| 488 | { |
| 489 | unsigned int bus = (ino & 0x10) >> 4; |
| 490 | unsigned int slot = (ino & 0x0c) >> 2; |
| 491 | |
| 492 | if (bus == 0) |
| 493 | return SABRE_IMAP_A_SLOT0 + (slot * 8); |
| 494 | else |
| 495 | return SABRE_IMAP_B_SLOT0 + (slot * 8); |
| 496 | } |
| 497 | |
| 498 | static unsigned long __onboard_imap_off[] = { |
| 499 | /*0x20*/ SABRE_IMAP_SCSI, |
| 500 | /*0x21*/ SABRE_IMAP_ETH, |
| 501 | /*0x22*/ SABRE_IMAP_BPP, |
| 502 | /*0x23*/ SABRE_IMAP_AU_REC, |
| 503 | /*0x24*/ SABRE_IMAP_AU_PLAY, |
| 504 | /*0x25*/ SABRE_IMAP_PFAIL, |
| 505 | /*0x26*/ SABRE_IMAP_KMS, |
| 506 | /*0x27*/ SABRE_IMAP_FLPY, |
| 507 | /*0x28*/ SABRE_IMAP_SHW, |
| 508 | /*0x29*/ SABRE_IMAP_KBD, |
| 509 | /*0x2a*/ SABRE_IMAP_MS, |
| 510 | /*0x2b*/ SABRE_IMAP_SER, |
| 511 | /*0x2c*/ 0 /* reserved */, |
| 512 | /*0x2d*/ 0 /* reserved */, |
| 513 | /*0x2e*/ SABRE_IMAP_UE, |
| 514 | /*0x2f*/ SABRE_IMAP_CE, |
| 515 | /*0x30*/ SABRE_IMAP_PCIERR, |
| 516 | }; |
| 517 | #define SABRE_ONBOARD_IRQ_BASE 0x20 |
| 518 | #define SABRE_ONBOARD_IRQ_LAST 0x30 |
| 519 | #define sabre_onboard_imap_offset(__ino) \ |
| 520 | __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE] |
| 521 | |
| 522 | #define sabre_iclr_offset(ino) \ |
| 523 | ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ |
| 524 | (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) |
| 525 | |
| 526 | /* PCI SABRE INO number to Sparc PIL level. */ |
| 527 | static unsigned char sabre_pil_table[] = { |
| 528 | /*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */ |
| 529 | /*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */ |
| 530 | /*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */ |
| 531 | /*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */ |
| 532 | /*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */ |
| 533 | /*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */ |
| 534 | /*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */ |
| 535 | /*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */ |
| 536 | /*0x20*/4, /* SCSI */ |
| 537 | /*0x21*/5, /* Ethernet */ |
| 538 | /*0x22*/8, /* Parallel Port */ |
| 539 | /*0x23*/13, /* Audio Record */ |
| 540 | /*0x24*/14, /* Audio Playback */ |
| 541 | /*0x25*/15, /* PowerFail */ |
| 542 | /*0x26*/4, /* second SCSI */ |
| 543 | /*0x27*/11, /* Floppy */ |
| 544 | /*0x28*/4, /* Spare Hardware */ |
| 545 | /*0x29*/9, /* Keyboard */ |
| 546 | /*0x2a*/4, /* Mouse */ |
| 547 | /*0x2b*/12, /* Serial */ |
| 548 | /*0x2c*/10, /* Timer 0 */ |
| 549 | /*0x2d*/11, /* Timer 1 */ |
| 550 | /*0x2e*/15, /* Uncorrectable ECC */ |
| 551 | /*0x2f*/15, /* Correctable ECC */ |
| 552 | /*0x30*/15, /* PCI Bus A Error */ |
| 553 | /*0x31*/15, /* PCI Bus B Error */ |
| 554 | /*0x32*/15, /* Power Management */ |
| 555 | }; |
| 556 | |
| 557 | static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino) |
| 558 | { |
| 559 | int ret; |
| 560 | |
| 561 | if (pdev && |
| 562 | pdev->vendor == PCI_VENDOR_ID_SUN && |
| 563 | pdev->device == PCI_DEVICE_ID_SUN_RIO_USB) |
| 564 | return 9; |
| 565 | |
| 566 | ret = sabre_pil_table[ino]; |
| 567 | if (ret == 0 && pdev == NULL) { |
| 568 | ret = 4; |
| 569 | } else if (ret == 0) { |
| 570 | switch ((pdev->class >> 16) & 0xff) { |
| 571 | case PCI_BASE_CLASS_STORAGE: |
| 572 | ret = 4; |
| 573 | break; |
| 574 | |
| 575 | case PCI_BASE_CLASS_NETWORK: |
| 576 | ret = 6; |
| 577 | break; |
| 578 | |
| 579 | case PCI_BASE_CLASS_DISPLAY: |
| 580 | ret = 9; |
| 581 | break; |
| 582 | |
| 583 | case PCI_BASE_CLASS_MULTIMEDIA: |
| 584 | case PCI_BASE_CLASS_MEMORY: |
| 585 | case PCI_BASE_CLASS_BRIDGE: |
| 586 | case PCI_BASE_CLASS_SERIAL: |
| 587 | ret = 10; |
| 588 | break; |
| 589 | |
| 590 | default: |
| 591 | ret = 4; |
| 592 | break; |
| 593 | }; |
| 594 | } |
| 595 | return ret; |
| 596 | } |
| 597 | |
| 598 | static unsigned int __init sabre_irq_build(struct pci_pbm_info *pbm, |
| 599 | struct pci_dev *pdev, |
| 600 | unsigned int ino) |
| 601 | { |
| 602 | struct ino_bucket *bucket; |
| 603 | unsigned long imap, iclr; |
| 604 | unsigned long imap_off, iclr_off; |
| 605 | int pil, inofixup = 0; |
| 606 | |
| 607 | ino &= PCI_IRQ_INO; |
| 608 | if (ino < SABRE_ONBOARD_IRQ_BASE) { |
| 609 | /* PCI slot */ |
| 610 | imap_off = sabre_pcislot_imap_offset(ino); |
| 611 | } else { |
| 612 | /* onboard device */ |
| 613 | if (ino > SABRE_ONBOARD_IRQ_LAST) { |
| 614 | prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino); |
| 615 | prom_halt(); |
| 616 | } |
| 617 | imap_off = sabre_onboard_imap_offset(ino); |
| 618 | } |
| 619 | |
| 620 | /* Now build the IRQ bucket. */ |
| 621 | pil = sabre_ino_to_pil(pdev, ino); |
| 622 | |
| 623 | if (PIL_RESERVED(pil)) |
| 624 | BUG(); |
| 625 | |
| 626 | imap = pbm->controller_regs + imap_off; |
| 627 | imap += 4; |
| 628 | |
| 629 | iclr_off = sabre_iclr_offset(ino); |
| 630 | iclr = pbm->controller_regs + iclr_off; |
| 631 | iclr += 4; |
| 632 | |
| 633 | if ((ino & 0x20) == 0) |
| 634 | inofixup = ino & 0x03; |
| 635 | |
| 636 | bucket = __bucket(build_irq(pil, inofixup, iclr, imap)); |
| 637 | bucket->flags |= IBF_PCI; |
| 638 | |
| 639 | if (pdev) { |
| 640 | struct pcidev_cookie *pcp = pdev->sysdata; |
| 641 | |
| 642 | /* When a device lives behind a bridge deeper in the |
| 643 | * PCI bus topology than APB, a special sequence must |
| 644 | * run to make sure all pending DMA transfers at the |
| 645 | * time of IRQ delivery are visible in the coherency |
| 646 | * domain by the cpu. This sequence is to perform |
| 647 | * a read on the far side of the non-APB bridge, then |
| 648 | * perform a read of Sabre's DMA write-sync register. |
| 649 | * |
| 650 | * Currently, the PCI_CONFIG register for the device |
| 651 | * is used for this read from the far side of the bridge. |
| 652 | */ |
| 653 | if (pdev->bus->number != pcp->pbm->pci_first_busno) { |
| 654 | bucket->flags |= IBF_DMA_SYNC; |
| 655 | bucket->synctab_ent = dma_sync_reg_table_entry++; |
| 656 | dma_sync_reg_table[bucket->synctab_ent] = |
| 657 | (unsigned long) sabre_pci_config_mkaddr( |
| 658 | pcp->pbm, |
| 659 | pdev->bus->number, pdev->devfn, PCI_COMMAND); |
| 660 | } |
| 661 | } |
| 662 | return __irq(bucket); |
| 663 | } |
| 664 | |
| 665 | /* SABRE error handling support. */ |
| 666 | static void sabre_check_iommu_error(struct pci_controller_info *p, |
| 667 | unsigned long afsr, |
| 668 | unsigned long afar) |
| 669 | { |
| 670 | struct pci_iommu *iommu = p->pbm_A.iommu; |
| 671 | unsigned long iommu_tag[16]; |
| 672 | unsigned long iommu_data[16]; |
| 673 | unsigned long flags; |
| 674 | u64 control; |
| 675 | int i; |
| 676 | |
| 677 | spin_lock_irqsave(&iommu->lock, flags); |
| 678 | control = sabre_read(iommu->iommu_control); |
| 679 | if (control & SABRE_IOMMUCTRL_ERR) { |
| 680 | char *type_string; |
| 681 | |
| 682 | /* Clear the error encountered bit. |
| 683 | * NOTE: On Sabre this is write 1 to clear, |
| 684 | * which is different from Psycho. |
| 685 | */ |
| 686 | sabre_write(iommu->iommu_control, control); |
| 687 | switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { |
| 688 | case 1: |
| 689 | type_string = "Invalid Error"; |
| 690 | break; |
| 691 | case 3: |
| 692 | type_string = "ECC Error"; |
| 693 | break; |
| 694 | default: |
| 695 | type_string = "Unknown"; |
| 696 | break; |
| 697 | }; |
| 698 | printk("SABRE%d: IOMMU Error, type[%s]\n", |
| 699 | p->index, type_string); |
| 700 | |
| 701 | /* Enter diagnostic mode and probe for error'd |
| 702 | * entries in the IOTLB. |
| 703 | */ |
| 704 | control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); |
| 705 | sabre_write(iommu->iommu_control, |
| 706 | (control | SABRE_IOMMUCTRL_DENAB)); |
| 707 | for (i = 0; i < 16; i++) { |
| 708 | unsigned long base = p->pbm_A.controller_regs; |
| 709 | |
| 710 | iommu_tag[i] = |
| 711 | sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); |
| 712 | iommu_data[i] = |
| 713 | sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); |
| 714 | sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); |
| 715 | sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); |
| 716 | } |
| 717 | sabre_write(iommu->iommu_control, control); |
| 718 | |
| 719 | for (i = 0; i < 16; i++) { |
| 720 | unsigned long tag, data; |
| 721 | |
| 722 | tag = iommu_tag[i]; |
| 723 | if (!(tag & SABRE_IOMMUTAG_ERR)) |
| 724 | continue; |
| 725 | |
| 726 | data = iommu_data[i]; |
| 727 | switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { |
| 728 | case 1: |
| 729 | type_string = "Invalid Error"; |
| 730 | break; |
| 731 | case 3: |
| 732 | type_string = "ECC Error"; |
| 733 | break; |
| 734 | default: |
| 735 | type_string = "Unknown"; |
| 736 | break; |
| 737 | }; |
| 738 | printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", |
| 739 | p->index, i, tag, type_string, |
| 740 | ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), |
| 741 | ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), |
| 742 | ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT)); |
| 743 | printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", |
| 744 | p->index, i, data, |
| 745 | ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), |
| 746 | ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), |
| 747 | ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), |
| 748 | ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT)); |
| 749 | } |
| 750 | } |
| 751 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 752 | } |
| 753 | |
| 754 | static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 755 | { |
| 756 | struct pci_controller_info *p = dev_id; |
| 757 | unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR; |
| 758 | unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; |
| 759 | unsigned long afsr, afar, error_bits; |
| 760 | int reported; |
| 761 | |
| 762 | /* Latch uncorrectable error status. */ |
| 763 | afar = sabre_read(afar_reg); |
| 764 | afsr = sabre_read(afsr_reg); |
| 765 | |
| 766 | /* Clear the primary/secondary error status bits. */ |
| 767 | error_bits = afsr & |
| 768 | (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | |
| 769 | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | |
| 770 | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); |
| 771 | if (!error_bits) |
| 772 | return IRQ_NONE; |
| 773 | sabre_write(afsr_reg, error_bits); |
| 774 | |
| 775 | /* Log the error. */ |
| 776 | printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n", |
| 777 | p->index, |
| 778 | ((error_bits & SABRE_UEAFSR_PDRD) ? |
| 779 | "DMA Read" : |
| 780 | ((error_bits & SABRE_UEAFSR_PDWR) ? |
| 781 | "DMA Write" : "???")), |
| 782 | ((error_bits & SABRE_UEAFSR_PDTE) ? |
| 783 | ":Translation Error" : "")); |
| 784 | printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", |
| 785 | p->index, |
| 786 | (afsr & SABRE_UEAFSR_BMSK) >> 32UL, |
| 787 | (afsr & SABRE_UEAFSR_OFF) >> 29UL, |
| 788 | ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); |
| 789 | printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar); |
| 790 | printk("SABRE%d: UE Secondary errors [", p->index); |
| 791 | reported = 0; |
| 792 | if (afsr & SABRE_UEAFSR_SDRD) { |
| 793 | reported++; |
| 794 | printk("(DMA Read)"); |
| 795 | } |
| 796 | if (afsr & SABRE_UEAFSR_SDWR) { |
| 797 | reported++; |
| 798 | printk("(DMA Write)"); |
| 799 | } |
| 800 | if (afsr & SABRE_UEAFSR_SDTE) { |
| 801 | reported++; |
| 802 | printk("(Translation Error)"); |
| 803 | } |
| 804 | if (!reported) |
| 805 | printk("(none)"); |
| 806 | printk("]\n"); |
| 807 | |
| 808 | /* Interrogate IOMMU for error status. */ |
| 809 | sabre_check_iommu_error(p, afsr, afar); |
| 810 | |
| 811 | return IRQ_HANDLED; |
| 812 | } |
| 813 | |
| 814 | static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 815 | { |
| 816 | struct pci_controller_info *p = dev_id; |
| 817 | unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR; |
| 818 | unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; |
| 819 | unsigned long afsr, afar, error_bits; |
| 820 | int reported; |
| 821 | |
| 822 | /* Latch error status. */ |
| 823 | afar = sabre_read(afar_reg); |
| 824 | afsr = sabre_read(afsr_reg); |
| 825 | |
| 826 | /* Clear primary/secondary error status bits. */ |
| 827 | error_bits = afsr & |
| 828 | (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | |
| 829 | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); |
| 830 | if (!error_bits) |
| 831 | return IRQ_NONE; |
| 832 | sabre_write(afsr_reg, error_bits); |
| 833 | |
| 834 | /* Log the error. */ |
| 835 | printk("SABRE%d: Correctable Error, primary error type[%s]\n", |
| 836 | p->index, |
| 837 | ((error_bits & SABRE_CEAFSR_PDRD) ? |
| 838 | "DMA Read" : |
| 839 | ((error_bits & SABRE_CEAFSR_PDWR) ? |
| 840 | "DMA Write" : "???"))); |
| 841 | |
| 842 | /* XXX Use syndrome and afar to print out module string just like |
| 843 | * XXX UDB CE trap handler does... -DaveM |
| 844 | */ |
| 845 | printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " |
| 846 | "was_block(%d)\n", |
| 847 | p->index, |
| 848 | (afsr & SABRE_CEAFSR_ESYND) >> 48UL, |
| 849 | (afsr & SABRE_CEAFSR_BMSK) >> 32UL, |
| 850 | (afsr & SABRE_CEAFSR_OFF) >> 29UL, |
| 851 | ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); |
| 852 | printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar); |
| 853 | printk("SABRE%d: CE Secondary errors [", p->index); |
| 854 | reported = 0; |
| 855 | if (afsr & SABRE_CEAFSR_SDRD) { |
| 856 | reported++; |
| 857 | printk("(DMA Read)"); |
| 858 | } |
| 859 | if (afsr & SABRE_CEAFSR_SDWR) { |
| 860 | reported++; |
| 861 | printk("(DMA Write)"); |
| 862 | } |
| 863 | if (!reported) |
| 864 | printk("(none)"); |
| 865 | printk("]\n"); |
| 866 | |
| 867 | return IRQ_HANDLED; |
| 868 | } |
| 869 | |
| 870 | static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p) |
| 871 | { |
| 872 | unsigned long csr_reg, csr, csr_error_bits; |
| 873 | irqreturn_t ret = IRQ_NONE; |
| 874 | u16 stat; |
| 875 | |
| 876 | csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL; |
| 877 | csr = sabre_read(csr_reg); |
| 878 | csr_error_bits = |
| 879 | csr & SABRE_PCICTRL_SERR; |
| 880 | if (csr_error_bits) { |
| 881 | /* Clear the errors. */ |
| 882 | sabre_write(csr_reg, csr); |
| 883 | |
| 884 | /* Log 'em. */ |
| 885 | if (csr_error_bits & SABRE_PCICTRL_SERR) |
| 886 | printk("SABRE%d: PCI SERR signal asserted.\n", |
| 887 | p->index); |
| 888 | ret = IRQ_HANDLED; |
| 889 | } |
| 890 | pci_read_config_word(sabre_root_bus->self, |
| 891 | PCI_STATUS, &stat); |
| 892 | if (stat & (PCI_STATUS_PARITY | |
| 893 | PCI_STATUS_SIG_TARGET_ABORT | |
| 894 | PCI_STATUS_REC_TARGET_ABORT | |
| 895 | PCI_STATUS_REC_MASTER_ABORT | |
| 896 | PCI_STATUS_SIG_SYSTEM_ERROR)) { |
| 897 | printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n", |
| 898 | p->index, stat); |
| 899 | pci_write_config_word(sabre_root_bus->self, |
| 900 | PCI_STATUS, 0xffff); |
| 901 | ret = IRQ_HANDLED; |
| 902 | } |
| 903 | return ret; |
| 904 | } |
| 905 | |
| 906 | static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 907 | { |
| 908 | struct pci_controller_info *p = dev_id; |
| 909 | unsigned long afsr_reg, afar_reg; |
| 910 | unsigned long afsr, afar, error_bits; |
| 911 | int reported; |
| 912 | |
| 913 | afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR; |
| 914 | afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR; |
| 915 | |
| 916 | /* Latch error status. */ |
| 917 | afar = sabre_read(afar_reg); |
| 918 | afsr = sabre_read(afsr_reg); |
| 919 | |
| 920 | /* Clear primary/secondary error status bits. */ |
| 921 | error_bits = afsr & |
| 922 | (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | |
| 923 | SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | |
| 924 | SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | |
| 925 | SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); |
| 926 | if (!error_bits) |
| 927 | return sabre_pcierr_intr_other(p); |
| 928 | sabre_write(afsr_reg, error_bits); |
| 929 | |
| 930 | /* Log the error. */ |
| 931 | printk("SABRE%d: PCI Error, primary error type[%s]\n", |
| 932 | p->index, |
| 933 | (((error_bits & SABRE_PIOAFSR_PMA) ? |
| 934 | "Master Abort" : |
| 935 | ((error_bits & SABRE_PIOAFSR_PTA) ? |
| 936 | "Target Abort" : |
| 937 | ((error_bits & SABRE_PIOAFSR_PRTRY) ? |
| 938 | "Excessive Retries" : |
| 939 | ((error_bits & SABRE_PIOAFSR_PPERR) ? |
| 940 | "Parity Error" : "???")))))); |
| 941 | printk("SABRE%d: bytemask[%04lx] was_block(%d)\n", |
| 942 | p->index, |
| 943 | (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, |
| 944 | (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); |
| 945 | printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar); |
| 946 | printk("SABRE%d: PCI Secondary errors [", p->index); |
| 947 | reported = 0; |
| 948 | if (afsr & SABRE_PIOAFSR_SMA) { |
| 949 | reported++; |
| 950 | printk("(Master Abort)"); |
| 951 | } |
| 952 | if (afsr & SABRE_PIOAFSR_STA) { |
| 953 | reported++; |
| 954 | printk("(Target Abort)"); |
| 955 | } |
| 956 | if (afsr & SABRE_PIOAFSR_SRTRY) { |
| 957 | reported++; |
| 958 | printk("(Excessive Retries)"); |
| 959 | } |
| 960 | if (afsr & SABRE_PIOAFSR_SPERR) { |
| 961 | reported++; |
| 962 | printk("(Parity Error)"); |
| 963 | } |
| 964 | if (!reported) |
| 965 | printk("(none)"); |
| 966 | printk("]\n"); |
| 967 | |
| 968 | /* For the error types shown, scan both PCI buses for devices |
| 969 | * which have logged that error type. |
| 970 | */ |
| 971 | |
| 972 | /* If we see a Target Abort, this could be the result of an |
| 973 | * IOMMU translation error of some sort. It is extremely |
| 974 | * useful to log this information as usually it indicates |
| 975 | * a bug in the IOMMU support code or a PCI device driver. |
| 976 | */ |
| 977 | if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { |
| 978 | sabre_check_iommu_error(p, afsr, afar); |
| 979 | pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus); |
| 980 | pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus); |
| 981 | } |
| 982 | if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) { |
| 983 | pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus); |
| 984 | pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus); |
| 985 | } |
| 986 | /* For excessive retries, SABRE/PBM will abort the device |
| 987 | * and there is no way to specifically check for excessive |
| 988 | * retries in the config space status registers. So what |
| 989 | * we hope is that we'll catch it via the master/target |
| 990 | * abort events. |
| 991 | */ |
| 992 | |
| 993 | if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) { |
| 994 | pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus); |
| 995 | pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus); |
| 996 | } |
| 997 | |
| 998 | return IRQ_HANDLED; |
| 999 | } |
| 1000 | |
| 1001 | /* XXX What about PowerFail/PowerManagement??? -DaveM */ |
| 1002 | #define SABRE_UE_INO 0x2e |
| 1003 | #define SABRE_CE_INO 0x2f |
| 1004 | #define SABRE_PCIERR_INO 0x30 |
| 1005 | static void __init sabre_register_error_handlers(struct pci_controller_info *p) |
| 1006 | { |
| 1007 | struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */ |
| 1008 | unsigned long base = pbm->controller_regs; |
| 1009 | unsigned long irq, portid = pbm->portid; |
| 1010 | u64 tmp; |
| 1011 | |
| 1012 | /* We clear the error bits in the appropriate AFSR before |
| 1013 | * registering the handler so that we don't get spurious |
| 1014 | * interrupts. |
| 1015 | */ |
| 1016 | sabre_write(base + SABRE_UE_AFSR, |
| 1017 | (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | |
| 1018 | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | |
| 1019 | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); |
| 1020 | irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO); |
| 1021 | if (request_irq(irq, sabre_ue_intr, |
| 1022 | SA_SHIRQ, "SABRE UE", p) < 0) { |
| 1023 | prom_printf("SABRE%d: Cannot register UE interrupt.\n", |
| 1024 | p->index); |
| 1025 | prom_halt(); |
| 1026 | } |
| 1027 | |
| 1028 | sabre_write(base + SABRE_CE_AFSR, |
| 1029 | (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | |
| 1030 | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); |
| 1031 | irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO); |
| 1032 | if (request_irq(irq, sabre_ce_intr, |
| 1033 | SA_SHIRQ, "SABRE CE", p) < 0) { |
| 1034 | prom_printf("SABRE%d: Cannot register CE interrupt.\n", |
| 1035 | p->index); |
| 1036 | prom_halt(); |
| 1037 | } |
| 1038 | |
| 1039 | irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO); |
| 1040 | if (request_irq(irq, sabre_pcierr_intr, |
| 1041 | SA_SHIRQ, "SABRE PCIERR", p) < 0) { |
| 1042 | prom_printf("SABRE%d: Cannot register PciERR interrupt.\n", |
| 1043 | p->index); |
| 1044 | prom_halt(); |
| 1045 | } |
| 1046 | |
| 1047 | tmp = sabre_read(base + SABRE_PCICTRL); |
| 1048 | tmp |= SABRE_PCICTRL_ERREN; |
| 1049 | sabre_write(base + SABRE_PCICTRL, tmp); |
| 1050 | } |
| 1051 | |
| 1052 | static void __init sabre_resource_adjust(struct pci_dev *pdev, |
| 1053 | struct resource *res, |
| 1054 | struct resource *root) |
| 1055 | { |
| 1056 | struct pci_pbm_info *pbm = pdev->bus->sysdata; |
| 1057 | unsigned long base; |
| 1058 | |
| 1059 | if (res->flags & IORESOURCE_IO) |
| 1060 | base = pbm->controller_regs + SABRE_IOSPACE; |
| 1061 | else |
| 1062 | base = pbm->controller_regs + SABRE_MEMSPACE; |
| 1063 | |
| 1064 | res->start += base; |
| 1065 | res->end += base; |
| 1066 | } |
| 1067 | |
| 1068 | static void __init sabre_base_address_update(struct pci_dev *pdev, int resource) |
| 1069 | { |
| 1070 | struct pcidev_cookie *pcp = pdev->sysdata; |
| 1071 | struct pci_pbm_info *pbm = pcp->pbm; |
| 1072 | struct resource *res; |
| 1073 | unsigned long base; |
| 1074 | u32 reg; |
| 1075 | int where, size, is_64bit; |
| 1076 | |
| 1077 | res = &pdev->resource[resource]; |
| 1078 | if (resource < 6) { |
| 1079 | where = PCI_BASE_ADDRESS_0 + (resource * 4); |
| 1080 | } else if (resource == PCI_ROM_RESOURCE) { |
| 1081 | where = pdev->rom_base_reg; |
| 1082 | } else { |
| 1083 | /* Somebody might have asked allocation of a non-standard resource */ |
| 1084 | return; |
| 1085 | } |
| 1086 | |
| 1087 | is_64bit = 0; |
| 1088 | if (res->flags & IORESOURCE_IO) |
| 1089 | base = pbm->controller_regs + SABRE_IOSPACE; |
| 1090 | else { |
| 1091 | base = pbm->controller_regs + SABRE_MEMSPACE; |
| 1092 | if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) |
| 1093 | == PCI_BASE_ADDRESS_MEM_TYPE_64) |
| 1094 | is_64bit = 1; |
| 1095 | } |
| 1096 | |
| 1097 | size = res->end - res->start; |
| 1098 | pci_read_config_dword(pdev, where, ®); |
| 1099 | reg = ((reg & size) | |
| 1100 | (((u32)(res->start - base)) & ~size)); |
| 1101 | if (resource == PCI_ROM_RESOURCE) { |
| 1102 | reg |= PCI_ROM_ADDRESS_ENABLE; |
| 1103 | res->flags |= IORESOURCE_ROM_ENABLE; |
| 1104 | } |
| 1105 | pci_write_config_dword(pdev, where, reg); |
| 1106 | |
| 1107 | /* This knows that the upper 32-bits of the address |
| 1108 | * must be zero. Our PCI common layer enforces this. |
| 1109 | */ |
| 1110 | if (is_64bit) |
| 1111 | pci_write_config_dword(pdev, where + 4, 0); |
| 1112 | } |
| 1113 | |
| 1114 | static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus) |
| 1115 | { |
| 1116 | struct pci_dev *pdev; |
| 1117 | |
| 1118 | list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { |
| 1119 | |
| 1120 | if (pdev->vendor == PCI_VENDOR_ID_SUN && |
| 1121 | pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { |
| 1122 | u32 word32; |
| 1123 | u16 word16; |
| 1124 | |
| 1125 | sabre_read_pci_cfg(pdev->bus, pdev->devfn, |
| 1126 | PCI_COMMAND, 2, &word32); |
| 1127 | word16 = (u16) word32; |
| 1128 | word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | |
| 1129 | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | |
| 1130 | PCI_COMMAND_IO; |
| 1131 | word32 = (u32) word16; |
| 1132 | sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| 1133 | PCI_COMMAND, 2, word32); |
| 1134 | |
| 1135 | /* Status register bits are "write 1 to clear". */ |
| 1136 | sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| 1137 | PCI_STATUS, 2, 0xffff); |
| 1138 | sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| 1139 | PCI_SEC_STATUS, 2, 0xffff); |
| 1140 | |
| 1141 | /* Use a primary/seconday latency timer value |
| 1142 | * of 64. |
| 1143 | */ |
| 1144 | sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| 1145 | PCI_LATENCY_TIMER, 1, 64); |
| 1146 | sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| 1147 | PCI_SEC_LATENCY_TIMER, 1, 64); |
| 1148 | |
| 1149 | /* Enable reporting/forwarding of master aborts, |
| 1150 | * parity, and SERR. |
| 1151 | */ |
| 1152 | sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| 1153 | PCI_BRIDGE_CONTROL, 1, |
| 1154 | (PCI_BRIDGE_CTL_PARITY | |
| 1155 | PCI_BRIDGE_CTL_SERR | |
| 1156 | PCI_BRIDGE_CTL_MASTER_ABORT)); |
| 1157 | } |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm) |
| 1162 | { |
| 1163 | struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL); |
| 1164 | |
| 1165 | if (!cookie) { |
| 1166 | prom_printf("SABRE: Critical allocation failure.\n"); |
| 1167 | prom_halt(); |
| 1168 | } |
| 1169 | |
| 1170 | /* All we care about is the PBM. */ |
| 1171 | memset(cookie, 0, sizeof(*cookie)); |
| 1172 | cookie->pbm = pbm; |
| 1173 | |
| 1174 | return cookie; |
| 1175 | } |
| 1176 | |
| 1177 | static void __init sabre_scan_bus(struct pci_controller_info *p) |
| 1178 | { |
| 1179 | static int once; |
| 1180 | struct pci_bus *sabre_bus, *pbus; |
| 1181 | struct pci_pbm_info *pbm; |
| 1182 | struct pcidev_cookie *cookie; |
| 1183 | int sabres_scanned; |
| 1184 | |
| 1185 | /* The APB bridge speaks to the Sabre host PCI bridge |
| 1186 | * at 66Mhz, but the front side of APB runs at 33Mhz |
| 1187 | * for both segments. |
| 1188 | */ |
| 1189 | p->pbm_A.is_66mhz_capable = 0; |
| 1190 | p->pbm_B.is_66mhz_capable = 0; |
| 1191 | |
| 1192 | /* This driver has not been verified to handle |
| 1193 | * multiple SABREs yet, so trap this. |
| 1194 | * |
| 1195 | * Also note that the SABRE host bridge is hardwired |
| 1196 | * to live at bus 0. |
| 1197 | */ |
| 1198 | if (once != 0) { |
| 1199 | prom_printf("SABRE: Multiple controllers unsupported.\n"); |
| 1200 | prom_halt(); |
| 1201 | } |
| 1202 | once++; |
| 1203 | |
| 1204 | cookie = alloc_bridge_cookie(&p->pbm_A); |
| 1205 | |
| 1206 | sabre_bus = pci_scan_bus(p->pci_first_busno, |
| 1207 | p->pci_ops, |
| 1208 | &p->pbm_A); |
| 1209 | pci_fixup_host_bridge_self(sabre_bus); |
| 1210 | sabre_bus->self->sysdata = cookie; |
| 1211 | |
| 1212 | sabre_root_bus = sabre_bus; |
| 1213 | |
| 1214 | apb_init(p, sabre_bus); |
| 1215 | |
| 1216 | sabres_scanned = 0; |
| 1217 | |
| 1218 | list_for_each_entry(pbus, &sabre_bus->children, node) { |
| 1219 | |
| 1220 | if (pbus->number == p->pbm_A.pci_first_busno) { |
| 1221 | pbm = &p->pbm_A; |
| 1222 | } else if (pbus->number == p->pbm_B.pci_first_busno) { |
| 1223 | pbm = &p->pbm_B; |
| 1224 | } else |
| 1225 | continue; |
| 1226 | |
| 1227 | cookie = alloc_bridge_cookie(pbm); |
| 1228 | pbus->self->sysdata = cookie; |
| 1229 | |
| 1230 | sabres_scanned++; |
| 1231 | |
| 1232 | pbus->sysdata = pbm; |
| 1233 | pbm->pci_bus = pbus; |
| 1234 | pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node); |
| 1235 | pci_record_assignments(pbm, pbus); |
| 1236 | pci_assign_unassigned(pbm, pbus); |
| 1237 | pci_fixup_irq(pbm, pbus); |
| 1238 | pci_determine_66mhz_disposition(pbm, pbus); |
| 1239 | pci_setup_busmastering(pbm, pbus); |
| 1240 | } |
| 1241 | |
| 1242 | if (!sabres_scanned) { |
| 1243 | /* Hummingbird, no APBs. */ |
| 1244 | pbm = &p->pbm_A; |
| 1245 | sabre_bus->sysdata = pbm; |
| 1246 | pbm->pci_bus = sabre_bus; |
| 1247 | pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node); |
| 1248 | pci_record_assignments(pbm, sabre_bus); |
| 1249 | pci_assign_unassigned(pbm, sabre_bus); |
| 1250 | pci_fixup_irq(pbm, sabre_bus); |
| 1251 | pci_determine_66mhz_disposition(pbm, sabre_bus); |
| 1252 | pci_setup_busmastering(pbm, sabre_bus); |
| 1253 | } |
| 1254 | |
| 1255 | sabre_register_error_handlers(p); |
| 1256 | } |
| 1257 | |
| 1258 | static void __init sabre_iommu_init(struct pci_controller_info *p, |
| 1259 | int tsbsize, unsigned long dvma_offset, |
| 1260 | u32 dma_mask) |
| 1261 | { |
| 1262 | struct pci_iommu *iommu = p->pbm_A.iommu; |
| 1263 | unsigned long tsbbase, i, order; |
| 1264 | u64 control; |
| 1265 | |
| 1266 | /* Setup initial software IOMMU state. */ |
| 1267 | spin_lock_init(&iommu->lock); |
| 1268 | iommu->iommu_cur_ctx = 0; |
| 1269 | |
| 1270 | /* Register addresses. */ |
| 1271 | iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL; |
| 1272 | iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE; |
| 1273 | iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH; |
| 1274 | iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC; |
| 1275 | /* Sabre's IOMMU lacks ctx flushing. */ |
| 1276 | iommu->iommu_ctxflush = 0; |
| 1277 | |
| 1278 | /* Invalidate TLB Entries. */ |
| 1279 | control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); |
| 1280 | control |= SABRE_IOMMUCTRL_DENAB; |
| 1281 | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); |
| 1282 | |
| 1283 | for(i = 0; i < 16; i++) { |
| 1284 | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); |
| 1285 | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); |
| 1286 | } |
| 1287 | |
| 1288 | /* Leave diag mode enabled for full-flushing done |
| 1289 | * in pci_iommu.c |
| 1290 | */ |
| 1291 | |
| 1292 | iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0); |
| 1293 | if (!iommu->dummy_page) { |
| 1294 | prom_printf("PSYCHO_IOMMU: Error, gfp(dummy_page) failed.\n"); |
| 1295 | prom_halt(); |
| 1296 | } |
| 1297 | memset((void *)iommu->dummy_page, 0, PAGE_SIZE); |
| 1298 | iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page); |
| 1299 | |
| 1300 | tsbbase = __get_free_pages(GFP_KERNEL, order = get_order(tsbsize * 1024 * 8)); |
| 1301 | if (!tsbbase) { |
| 1302 | prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n"); |
| 1303 | prom_halt(); |
| 1304 | } |
| 1305 | iommu->page_table = (iopte_t *)tsbbase; |
| 1306 | iommu->page_table_map_base = dvma_offset; |
| 1307 | iommu->dma_addr_mask = dma_mask; |
| 1308 | pci_iommu_table_init(iommu, PAGE_SIZE << order); |
| 1309 | |
| 1310 | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase)); |
| 1311 | |
| 1312 | control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); |
| 1313 | control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); |
| 1314 | control |= SABRE_IOMMUCTRL_ENAB; |
| 1315 | switch(tsbsize) { |
| 1316 | case 64: |
| 1317 | control |= SABRE_IOMMU_TSBSZ_64K; |
| 1318 | iommu->page_table_sz_bits = 16; |
| 1319 | break; |
| 1320 | case 128: |
| 1321 | control |= SABRE_IOMMU_TSBSZ_128K; |
| 1322 | iommu->page_table_sz_bits = 17; |
| 1323 | break; |
| 1324 | default: |
| 1325 | prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); |
| 1326 | prom_halt(); |
| 1327 | break; |
| 1328 | } |
| 1329 | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); |
| 1330 | |
| 1331 | /* We start with no consistent mappings. */ |
| 1332 | iommu->lowest_consistent_map = |
| 1333 | 1 << (iommu->page_table_sz_bits - PBM_LOGCLUSTERS); |
| 1334 | |
| 1335 | for (i = 0; i < PBM_NCLUSTERS; i++) { |
| 1336 | iommu->alloc_info[i].flush = 0; |
| 1337 | iommu->alloc_info[i].next = 0; |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | static void __init pbm_register_toplevel_resources(struct pci_controller_info *p, |
| 1342 | struct pci_pbm_info *pbm) |
| 1343 | { |
| 1344 | char *name = pbm->name; |
| 1345 | unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE; |
| 1346 | unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE; |
| 1347 | unsigned int devfn; |
| 1348 | unsigned long first, last, i; |
| 1349 | u8 *addr, map; |
| 1350 | |
| 1351 | sprintf(name, "SABRE%d PBM%c", |
| 1352 | p->index, |
| 1353 | (pbm == &p->pbm_A ? 'A' : 'B')); |
| 1354 | pbm->io_space.name = pbm->mem_space.name = name; |
| 1355 | |
| 1356 | devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1); |
| 1357 | addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP); |
| 1358 | map = 0; |
| 1359 | pci_config_read8(addr, &map); |
| 1360 | |
| 1361 | first = 8; |
| 1362 | last = 0; |
| 1363 | for (i = 0; i < 8; i++) { |
| 1364 | if ((map & (1 << i)) != 0) { |
| 1365 | if (first > i) |
| 1366 | first = i; |
| 1367 | if (last < i) |
| 1368 | last = i; |
| 1369 | } |
| 1370 | } |
| 1371 | pbm->io_space.start = ibase + (first << 21UL); |
| 1372 | pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1); |
| 1373 | pbm->io_space.flags = IORESOURCE_IO; |
| 1374 | |
| 1375 | addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP); |
| 1376 | map = 0; |
| 1377 | pci_config_read8(addr, &map); |
| 1378 | |
| 1379 | first = 8; |
| 1380 | last = 0; |
| 1381 | for (i = 0; i < 8; i++) { |
| 1382 | if ((map & (1 << i)) != 0) { |
| 1383 | if (first > i) |
| 1384 | first = i; |
| 1385 | if (last < i) |
| 1386 | last = i; |
| 1387 | } |
| 1388 | } |
| 1389 | pbm->mem_space.start = mbase + (first << 29UL); |
| 1390 | pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1); |
| 1391 | pbm->mem_space.flags = IORESOURCE_MEM; |
| 1392 | |
| 1393 | if (request_resource(&ioport_resource, &pbm->io_space) < 0) { |
| 1394 | prom_printf("Cannot register PBM-%c's IO space.\n", |
| 1395 | (pbm == &p->pbm_A ? 'A' : 'B')); |
| 1396 | prom_halt(); |
| 1397 | } |
| 1398 | if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { |
| 1399 | prom_printf("Cannot register PBM-%c's MEM space.\n", |
| 1400 | (pbm == &p->pbm_A ? 'A' : 'B')); |
| 1401 | prom_halt(); |
| 1402 | } |
| 1403 | |
| 1404 | /* Register legacy regions if this PBM covers that area. */ |
| 1405 | if (pbm->io_space.start == ibase && |
| 1406 | pbm->mem_space.start == mbase) |
| 1407 | pci_register_legacy_regions(&pbm->io_space, |
| 1408 | &pbm->mem_space); |
| 1409 | } |
| 1410 | |
| 1411 | static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node, u32 dma_begin) |
| 1412 | { |
| 1413 | struct pci_pbm_info *pbm; |
| 1414 | char namebuf[128]; |
| 1415 | u32 busrange[2]; |
| 1416 | int node, simbas_found; |
| 1417 | |
| 1418 | simbas_found = 0; |
| 1419 | node = prom_getchild(sabre_node); |
| 1420 | while ((node = prom_searchsiblings(node, "pci")) != 0) { |
| 1421 | int err; |
| 1422 | |
| 1423 | err = prom_getproperty(node, "model", namebuf, sizeof(namebuf)); |
| 1424 | if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err)) |
| 1425 | goto next_pci; |
| 1426 | |
| 1427 | err = prom_getproperty(node, "bus-range", |
| 1428 | (char *)&busrange[0], sizeof(busrange)); |
| 1429 | if (err == 0 || err == -1) { |
| 1430 | prom_printf("APB: Error, cannot get PCI bus-range.\n"); |
| 1431 | prom_halt(); |
| 1432 | } |
| 1433 | |
| 1434 | simbas_found++; |
| 1435 | if (busrange[0] == 1) |
| 1436 | pbm = &p->pbm_B; |
| 1437 | else |
| 1438 | pbm = &p->pbm_A; |
| 1439 | pbm->chip_type = PBM_CHIP_TYPE_SABRE; |
| 1440 | pbm->parent = p; |
| 1441 | pbm->prom_node = node; |
| 1442 | pbm->pci_first_slot = 1; |
| 1443 | pbm->pci_first_busno = busrange[0]; |
| 1444 | pbm->pci_last_busno = busrange[1]; |
| 1445 | |
| 1446 | prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name)); |
| 1447 | err = prom_getproperty(node, "ranges", |
| 1448 | (char *)pbm->pbm_ranges, |
| 1449 | sizeof(pbm->pbm_ranges)); |
| 1450 | if (err != -1) |
| 1451 | pbm->num_pbm_ranges = |
| 1452 | (err / sizeof(struct linux_prom_pci_ranges)); |
| 1453 | else |
| 1454 | pbm->num_pbm_ranges = 0; |
| 1455 | |
| 1456 | err = prom_getproperty(node, "interrupt-map", |
| 1457 | (char *)pbm->pbm_intmap, |
| 1458 | sizeof(pbm->pbm_intmap)); |
| 1459 | if (err != -1) { |
| 1460 | pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); |
| 1461 | err = prom_getproperty(node, "interrupt-map-mask", |
| 1462 | (char *)&pbm->pbm_intmask, |
| 1463 | sizeof(pbm->pbm_intmask)); |
| 1464 | if (err == -1) { |
| 1465 | prom_printf("APB: Fatal error, no interrupt-map-mask.\n"); |
| 1466 | prom_halt(); |
| 1467 | } |
| 1468 | } else { |
| 1469 | pbm->num_pbm_intmap = 0; |
| 1470 | memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); |
| 1471 | } |
| 1472 | |
| 1473 | pbm_register_toplevel_resources(p, pbm); |
| 1474 | |
| 1475 | next_pci: |
| 1476 | node = prom_getsibling(node); |
| 1477 | if (!node) |
| 1478 | break; |
| 1479 | } |
| 1480 | if (simbas_found == 0) { |
| 1481 | int err; |
| 1482 | |
| 1483 | /* No APBs underneath, probably this is a hummingbird |
| 1484 | * system. |
| 1485 | */ |
| 1486 | pbm = &p->pbm_A; |
| 1487 | pbm->parent = p; |
| 1488 | pbm->prom_node = sabre_node; |
| 1489 | pbm->pci_first_busno = p->pci_first_busno; |
| 1490 | pbm->pci_last_busno = p->pci_last_busno; |
| 1491 | |
| 1492 | prom_getstring(sabre_node, "name", pbm->prom_name, sizeof(pbm->prom_name)); |
| 1493 | err = prom_getproperty(sabre_node, "ranges", |
| 1494 | (char *) pbm->pbm_ranges, |
| 1495 | sizeof(pbm->pbm_ranges)); |
| 1496 | if (err != -1) |
| 1497 | pbm->num_pbm_ranges = |
| 1498 | (err / sizeof(struct linux_prom_pci_ranges)); |
| 1499 | else |
| 1500 | pbm->num_pbm_ranges = 0; |
| 1501 | |
| 1502 | err = prom_getproperty(sabre_node, "interrupt-map", |
| 1503 | (char *) pbm->pbm_intmap, |
| 1504 | sizeof(pbm->pbm_intmap)); |
| 1505 | |
| 1506 | if (err != -1) { |
| 1507 | pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); |
| 1508 | err = prom_getproperty(sabre_node, "interrupt-map-mask", |
| 1509 | (char *)&pbm->pbm_intmask, |
| 1510 | sizeof(pbm->pbm_intmask)); |
| 1511 | if (err == -1) { |
| 1512 | prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n"); |
| 1513 | prom_halt(); |
| 1514 | } |
| 1515 | } else { |
| 1516 | pbm->num_pbm_intmap = 0; |
| 1517 | memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); |
| 1518 | } |
| 1519 | |
| 1520 | |
| 1521 | sprintf(pbm->name, "SABRE%d PBM%c", p->index, |
| 1522 | (pbm == &p->pbm_A ? 'A' : 'B')); |
| 1523 | pbm->io_space.name = pbm->mem_space.name = pbm->name; |
| 1524 | |
| 1525 | /* Hack up top-level resources. */ |
| 1526 | pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE; |
| 1527 | pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL; |
| 1528 | pbm->io_space.flags = IORESOURCE_IO; |
| 1529 | |
| 1530 | pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE; |
| 1531 | pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL; |
| 1532 | pbm->mem_space.flags = IORESOURCE_MEM; |
| 1533 | |
| 1534 | if (request_resource(&ioport_resource, &pbm->io_space) < 0) { |
| 1535 | prom_printf("Cannot register Hummingbird's IO space.\n"); |
| 1536 | prom_halt(); |
| 1537 | } |
| 1538 | if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { |
| 1539 | prom_printf("Cannot register Hummingbird's MEM space.\n"); |
| 1540 | prom_halt(); |
| 1541 | } |
| 1542 | |
| 1543 | pci_register_legacy_regions(&pbm->io_space, |
| 1544 | &pbm->mem_space); |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | void __init sabre_init(int pnode, char *model_name) |
| 1549 | { |
| 1550 | struct linux_prom64_registers pr_regs[2]; |
| 1551 | struct pci_controller_info *p; |
| 1552 | struct pci_iommu *iommu; |
| 1553 | int tsbsize, err; |
| 1554 | u32 busrange[2]; |
| 1555 | u32 vdma[2]; |
| 1556 | u32 upa_portid, dma_mask; |
| 1557 | u64 clear_irq; |
| 1558 | |
| 1559 | hummingbird_p = 0; |
| 1560 | if (!strcmp(model_name, "pci108e,a001")) |
| 1561 | hummingbird_p = 1; |
| 1562 | else if (!strcmp(model_name, "SUNW,sabre")) { |
| 1563 | char compat[64]; |
| 1564 | |
| 1565 | if (prom_getproperty(pnode, "compatible", |
| 1566 | compat, sizeof(compat)) > 0 && |
| 1567 | !strcmp(compat, "pci108e,a001")) { |
| 1568 | hummingbird_p = 1; |
| 1569 | } else { |
| 1570 | int cpu_node; |
| 1571 | |
| 1572 | /* Of course, Sun has to encode things a thousand |
| 1573 | * different ways, inconsistently. |
| 1574 | */ |
| 1575 | cpu_find_by_instance(0, &cpu_node, NULL); |
| 1576 | if (prom_getproperty(cpu_node, "name", |
| 1577 | compat, sizeof(compat)) > 0 && |
| 1578 | !strcmp(compat, "SUNW,UltraSPARC-IIe")) |
| 1579 | hummingbird_p = 1; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | p = kmalloc(sizeof(*p), GFP_ATOMIC); |
| 1584 | if (!p) { |
| 1585 | prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n"); |
| 1586 | prom_halt(); |
| 1587 | } |
| 1588 | memset(p, 0, sizeof(*p)); |
| 1589 | |
| 1590 | iommu = kmalloc(sizeof(*iommu), GFP_ATOMIC); |
| 1591 | if (!iommu) { |
| 1592 | prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n"); |
| 1593 | prom_halt(); |
| 1594 | } |
| 1595 | memset(iommu, 0, sizeof(*iommu)); |
| 1596 | p->pbm_A.iommu = p->pbm_B.iommu = iommu; |
| 1597 | |
| 1598 | upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff); |
| 1599 | |
| 1600 | p->next = pci_controller_root; |
| 1601 | pci_controller_root = p; |
| 1602 | |
| 1603 | p->pbm_A.portid = upa_portid; |
| 1604 | p->pbm_B.portid = upa_portid; |
| 1605 | p->index = pci_num_controllers++; |
| 1606 | p->pbms_same_domain = 1; |
| 1607 | p->scan_bus = sabre_scan_bus; |
| 1608 | p->irq_build = sabre_irq_build; |
| 1609 | p->base_address_update = sabre_base_address_update; |
| 1610 | p->resource_adjust = sabre_resource_adjust; |
| 1611 | p->pci_ops = &sabre_ops; |
| 1612 | |
| 1613 | /* |
| 1614 | * Map in SABRE register set and report the presence of this SABRE. |
| 1615 | */ |
| 1616 | err = prom_getproperty(pnode, "reg", |
| 1617 | (char *)&pr_regs[0], sizeof(pr_regs)); |
| 1618 | if(err == 0 || err == -1) { |
| 1619 | prom_printf("SABRE: Error, cannot get U2P registers " |
| 1620 | "from PROM.\n"); |
| 1621 | prom_halt(); |
| 1622 | } |
| 1623 | |
| 1624 | /* |
| 1625 | * First REG in property is base of entire SABRE register space. |
| 1626 | */ |
| 1627 | p->pbm_A.controller_regs = pr_regs[0].phys_addr; |
| 1628 | p->pbm_B.controller_regs = pr_regs[0].phys_addr; |
| 1629 | pci_dma_wsync = p->pbm_A.controller_regs + SABRE_WRSYNC; |
| 1630 | |
| 1631 | printk("PCI: Found SABRE, main regs at %016lx, wsync at %016lx\n", |
| 1632 | p->pbm_A.controller_regs, pci_dma_wsync); |
| 1633 | |
| 1634 | /* Clear interrupts */ |
| 1635 | |
| 1636 | /* PCI first */ |
| 1637 | for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) |
| 1638 | sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); |
| 1639 | |
| 1640 | /* Then OBIO */ |
| 1641 | for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) |
| 1642 | sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); |
| 1643 | |
| 1644 | /* Error interrupts are enabled later after the bus scan. */ |
| 1645 | sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL, |
| 1646 | (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR | |
| 1647 | SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); |
| 1648 | |
| 1649 | /* Now map in PCI config space for entire SABRE. */ |
| 1650 | p->pbm_A.config_space = p->pbm_B.config_space = |
| 1651 | (p->pbm_A.controller_regs + SABRE_CONFIGSPACE); |
| 1652 | printk("SABRE: Shared PCI config space at %016lx\n", |
| 1653 | p->pbm_A.config_space); |
| 1654 | |
| 1655 | err = prom_getproperty(pnode, "virtual-dma", |
| 1656 | (char *)&vdma[0], sizeof(vdma)); |
| 1657 | if(err == 0 || err == -1) { |
| 1658 | prom_printf("SABRE: Error, cannot get virtual-dma property " |
| 1659 | "from PROM.\n"); |
| 1660 | prom_halt(); |
| 1661 | } |
| 1662 | |
| 1663 | dma_mask = vdma[0]; |
| 1664 | switch(vdma[1]) { |
| 1665 | case 0x20000000: |
| 1666 | dma_mask |= 0x1fffffff; |
| 1667 | tsbsize = 64; |
| 1668 | break; |
| 1669 | case 0x40000000: |
| 1670 | dma_mask |= 0x3fffffff; |
| 1671 | tsbsize = 128; |
| 1672 | break; |
| 1673 | |
| 1674 | case 0x80000000: |
| 1675 | dma_mask |= 0x7fffffff; |
| 1676 | tsbsize = 128; |
| 1677 | break; |
| 1678 | default: |
| 1679 | prom_printf("SABRE: strange virtual-dma size.\n"); |
| 1680 | prom_halt(); |
| 1681 | } |
| 1682 | |
| 1683 | sabre_iommu_init(p, tsbsize, vdma[0], dma_mask); |
| 1684 | |
| 1685 | printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]); |
| 1686 | |
| 1687 | err = prom_getproperty(pnode, "bus-range", |
| 1688 | (char *)&busrange[0], sizeof(busrange)); |
| 1689 | if(err == 0 || err == -1) { |
| 1690 | prom_printf("SABRE: Error, cannot get PCI bus-range " |
| 1691 | " from PROM.\n"); |
| 1692 | prom_halt(); |
| 1693 | } |
| 1694 | |
| 1695 | p->pci_first_busno = busrange[0]; |
| 1696 | p->pci_last_busno = busrange[1]; |
| 1697 | |
| 1698 | /* |
| 1699 | * Look for APB underneath. |
| 1700 | */ |
| 1701 | sabre_pbm_init(p, pnode, vdma[0]); |
| 1702 | } |