Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * arch/v850/kernel/setup.c -- Arch-dependent initialization functions |
| 3 | * |
| 4 | * Copyright (C) 2001,02,03 NEC Electronics Corporation |
| 5 | * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> |
| 6 | * |
| 7 | * This file is subject to the terms and conditions of the GNU General |
| 8 | * Public License. See the file COPYING in the main directory of this |
| 9 | * archive for more details. |
| 10 | * |
| 11 | * Written by Miles Bader <miles@gnu.org> |
| 12 | */ |
| 13 | |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/bootmem.h> |
| 16 | #include <linux/swap.h> /* we don't have swap, but for nr_free_pages */ |
| 17 | #include <linux/irq.h> |
| 18 | #include <linux/reboot.h> |
| 19 | #include <linux/personality.h> |
| 20 | #include <linux/major.h> |
| 21 | #include <linux/root_dev.h> |
| 22 | #include <linux/mtd/mtd.h> |
| 23 | #include <linux/init.h> |
| 24 | |
| 25 | #include <asm/irq.h> |
| 26 | #include <asm/setup.h> |
| 27 | |
| 28 | #include "mach.h" |
| 29 | |
| 30 | /* These symbols are all defined in the linker map to delineate various |
| 31 | statically allocated regions of memory. */ |
| 32 | |
| 33 | extern char _intv_start, _intv_end; |
| 34 | /* `kram' is only used if the kernel uses part of normal user RAM. */ |
| 35 | extern char _kram_start __attribute__ ((__weak__)); |
| 36 | extern char _kram_end __attribute__ ((__weak__)); |
| 37 | extern char _init_start, _init_end; |
| 38 | extern char _bootmap; |
| 39 | extern char _stext, _etext, _sdata, _edata, _sbss, _ebss; |
| 40 | /* Many platforms use an embedded root image. */ |
| 41 | extern char _root_fs_image_start __attribute__ ((__weak__)); |
| 42 | extern char _root_fs_image_end __attribute__ ((__weak__)); |
| 43 | |
| 44 | |
| 45 | char command_line[COMMAND_LINE_SIZE]; |
| 46 | |
| 47 | /* Memory not used by the kernel. */ |
| 48 | static unsigned long total_ram_pages; |
| 49 | |
| 50 | /* System RAM. */ |
| 51 | static unsigned long ram_start = 0, ram_len = 0; |
| 52 | |
| 53 | |
| 54 | #define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT) |
| 55 | #define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT) |
| 56 | #define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT) |
| 57 | |
| 58 | static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len); |
| 59 | |
| 60 | void set_mem_root (void *addr, size_t len, char *cmd_line); |
| 61 | |
| 62 | |
| 63 | void __init setup_arch (char **cmdline) |
| 64 | { |
| 65 | /* Keep a copy of command line */ |
| 66 | *cmdline = command_line; |
| 67 | memcpy (saved_command_line, command_line, COMMAND_LINE_SIZE); |
| 68 | saved_command_line[COMMAND_LINE_SIZE - 1] = '\0'; |
| 69 | |
| 70 | console_verbose (); |
| 71 | |
| 72 | init_mm.start_code = (unsigned long) &_stext; |
| 73 | init_mm.end_code = (unsigned long) &_etext; |
| 74 | init_mm.end_data = (unsigned long) &_edata; |
| 75 | init_mm.brk = (unsigned long) &_kram_end; |
| 76 | |
| 77 | /* Find out what mem this machine has. */ |
| 78 | mach_get_physical_ram (&ram_start, &ram_len); |
| 79 | /* ... and tell the kernel about it. */ |
| 80 | init_mem_alloc (ram_start, ram_len); |
| 81 | |
| 82 | printk (KERN_INFO "CPU: %s\nPlatform: %s\n", |
| 83 | CPU_MODEL_LONG, PLATFORM_LONG); |
| 84 | |
| 85 | /* do machine-specific setups. */ |
| 86 | mach_setup (cmdline); |
| 87 | |
| 88 | #ifdef CONFIG_MTD |
| 89 | if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start) |
| 90 | set_mem_root (&_root_fs_image_start, |
| 91 | &_root_fs_image_end - &_root_fs_image_start, |
| 92 | *cmdline); |
| 93 | #endif |
| 94 | } |
| 95 | |
| 96 | void __init trap_init (void) |
| 97 | { |
| 98 | } |
| 99 | |
| 100 | #ifdef CONFIG_MTD |
| 101 | /* Set the root filesystem to be the given memory region. |
| 102 | Some parameter may be appended to CMD_LINE. */ |
| 103 | void set_mem_root (void *addr, size_t len, char *cmd_line) |
| 104 | { |
| 105 | /* The only way to pass info to the MTD slram driver is via |
| 106 | the command line. */ |
| 107 | if (*cmd_line) { |
| 108 | cmd_line += strlen (cmd_line); |
| 109 | *cmd_line++ = ' '; |
| 110 | } |
| 111 | sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len); |
| 112 | |
| 113 | ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0); |
| 114 | } |
| 115 | #endif |
| 116 | |
| 117 | |
| 118 | static void irq_nop (unsigned irq) { } |
| 119 | static unsigned irq_zero (unsigned irq) { return 0; } |
| 120 | |
| 121 | static void nmi_end (unsigned irq) |
| 122 | { |
| 123 | if (irq != IRQ_NMI (0)) { |
| 124 | printk (KERN_CRIT "NMI %d is unrecoverable; restarting...", |
| 125 | irq - IRQ_NMI (0)); |
| 126 | machine_restart (0); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | static struct hw_interrupt_type nmi_irq_type = { |
| 131 | "NMI", |
| 132 | irq_zero, /* startup */ |
| 133 | irq_nop, /* shutdown */ |
| 134 | irq_nop, /* enable */ |
| 135 | irq_nop, /* disable */ |
| 136 | irq_nop, /* ack */ |
| 137 | nmi_end, /* end */ |
| 138 | }; |
| 139 | |
| 140 | void __init init_IRQ (void) |
| 141 | { |
| 142 | init_irq_handlers (0, NUM_MACH_IRQS, 1, 0); |
| 143 | init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type); |
| 144 | mach_init_irqs (); |
| 145 | } |
| 146 | |
| 147 | |
| 148 | void __init mem_init (void) |
| 149 | { |
| 150 | max_mapnr = MAP_NR (ram_start + ram_len); |
| 151 | |
| 152 | num_physpages = ADDR_TO_PAGE (ram_len); |
| 153 | |
| 154 | total_ram_pages = free_all_bootmem (); |
| 155 | |
| 156 | printk (KERN_INFO |
| 157 | "Memory: %luK/%luK available" |
| 158 | " (%luK kernel code, %luK data)\n", |
| 159 | PAGE_TO_ADDR (nr_free_pages()) / 1024, |
| 160 | ram_len / 1024, |
| 161 | ((unsigned long)&_etext - (unsigned long)&_stext) / 1024, |
| 162 | ((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024); |
| 163 | } |
| 164 | |
| 165 | void free_initmem (void) |
| 166 | { |
| 167 | unsigned long ram_end = ram_start + ram_len; |
| 168 | unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start)); |
| 169 | |
| 170 | if (start >= ram_start && start < ram_end) { |
| 171 | unsigned long addr; |
| 172 | unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end)); |
| 173 | |
| 174 | if (end > ram_end) |
| 175 | end = ram_end; |
| 176 | |
| 177 | printk("Freeing unused kernel memory: %ldK freed\n", |
| 178 | (end - start) / 1024); |
| 179 | |
| 180 | for (addr = start; addr < end; addr += PAGE_SIZE) { |
| 181 | struct page *page = virt_to_page (addr); |
| 182 | ClearPageReserved (page); |
| 183 | set_page_count (page, 1); |
| 184 | __free_page (page); |
| 185 | total_ram_pages++; |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | |
| 191 | /* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify |
| 192 | what RAM may be used. */ |
| 193 | static void __init |
| 194 | init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len) |
| 195 | { |
| 196 | /* The part of the kernel that's in the same managed RAM space |
| 197 | used for general allocation. */ |
| 198 | unsigned long kram_start = (unsigned long)&_kram_start; |
| 199 | unsigned long kram_end = (unsigned long)&_kram_end; |
| 200 | /* End of the managed RAM space. */ |
| 201 | unsigned long ram_end = ram_start + ram_len; |
| 202 | /* Address range of the interrupt vector table. */ |
| 203 | unsigned long intv_start = (unsigned long)&_intv_start; |
| 204 | unsigned long intv_end = (unsigned long)&_intv_end; |
| 205 | /* True if the interrupt vectors are in the managed RAM area. */ |
| 206 | int intv_in_ram = (intv_end > ram_start && intv_start < ram_end); |
| 207 | /* True if the interrupt vectors are inside the kernel's RAM. */ |
| 208 | int intv_in_kram = (intv_end > kram_start && intv_start < kram_end); |
| 209 | /* A pointer to an optional function that reserves platform-specific |
| 210 | memory regions. We declare the pointer `volatile' to avoid gcc |
| 211 | turning the call into a static call (the problem is that since |
| 212 | it's a weak symbol, a static call may end up trying to reference |
| 213 | the location 0x0, which is not always reachable). */ |
| 214 | void (*volatile mrb) (void) = mach_reserve_bootmem; |
| 215 | /* The bootmem allocator's allocation bitmap. */ |
| 216 | unsigned long bootmap = (unsigned long)&_bootmap; |
| 217 | unsigned long bootmap_len; |
| 218 | |
| 219 | /* Round bootmap location up to next page. */ |
| 220 | bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap)); |
| 221 | |
| 222 | /* Initialize bootmem allocator. */ |
| 223 | bootmap_len = init_bootmem_node (NODE_DATA (0), |
| 224 | ADDR_TO_PAGE (bootmap), |
| 225 | ADDR_TO_PAGE (PAGE_OFFSET), |
| 226 | ADDR_TO_PAGE (ram_end)); |
| 227 | |
| 228 | /* Now make the RAM actually allocatable (it starts out `reserved'). */ |
| 229 | free_bootmem (ram_start, ram_len); |
| 230 | |
| 231 | if (kram_end > kram_start) |
| 232 | /* Reserve the RAM part of the kernel's address space, so it |
| 233 | doesn't get allocated. */ |
| 234 | reserve_bootmem (kram_start, kram_end - kram_start); |
| 235 | |
| 236 | if (intv_in_ram && !intv_in_kram) |
| 237 | /* Reserve the interrupt vector space. */ |
| 238 | reserve_bootmem (intv_start, intv_end - intv_start); |
| 239 | |
| 240 | if (bootmap >= ram_start && bootmap < ram_end) |
| 241 | /* Reserve the bootmap space. */ |
| 242 | reserve_bootmem (bootmap, bootmap_len); |
| 243 | |
| 244 | /* Reserve the memory used by the root filesystem image if it's |
| 245 | in RAM. */ |
| 246 | if (&_root_fs_image_end > &_root_fs_image_start |
| 247 | && (unsigned long)&_root_fs_image_start >= ram_start |
| 248 | && (unsigned long)&_root_fs_image_start < ram_end) |
| 249 | reserve_bootmem ((unsigned long)&_root_fs_image_start, |
| 250 | &_root_fs_image_end - &_root_fs_image_start); |
| 251 | |
| 252 | /* Let the platform-dependent code reserve some too. */ |
| 253 | if (mrb) |
| 254 | (*mrb) (); |
| 255 | } |
| 256 | |
| 257 | /* Tell the kernel about what RAM it may use for memory allocation. */ |
| 258 | static void __init |
| 259 | init_mem_alloc (unsigned long ram_start, unsigned long ram_len) |
| 260 | { |
| 261 | unsigned i; |
| 262 | unsigned long zones_size[MAX_NR_ZONES]; |
| 263 | |
| 264 | init_bootmem_alloc (ram_start, ram_len); |
| 265 | |
| 266 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 267 | zones_size[i] = 0; |
| 268 | |
| 269 | /* We stuff all the memory into one area, which includes the |
| 270 | initial gap from PAGE_OFFSET to ram_start. */ |
| 271 | zones_size[ZONE_DMA] |
| 272 | = ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET)); |
| 273 | |
| 274 | /* The allocator is very picky about the address of the first |
| 275 | allocatable page -- it must be at least as aligned as the |
| 276 | maximum allocation -- so try to detect cases where it will get |
| 277 | confused and signal them at compile time (this is a common |
| 278 | problem when porting to a new platform with ). There is a |
| 279 | similar runtime check in free_area_init_core. */ |
| 280 | #if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1)) |
| 281 | #error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it) |
| 282 | #endif |
| 283 | NODE_DATA(0)->node_mem_map = NULL; |
| 284 | free_area_init_node (0, NODE_DATA(0), zones_size, |
| 285 | ADDR_TO_PAGE (PAGE_OFFSET), 0); |
| 286 | } |