Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Intel SMP support routines. |
| 3 | * |
| 4 | * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| 5 | * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com> |
| 6 | * (c) 2002,2003 Andi Kleen, SuSE Labs. |
| 7 | * |
| 8 | * This code is released under the GNU General Public License version 2 or |
| 9 | * later. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/init.h> |
| 13 | |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/irq.h> |
| 16 | #include <linux/delay.h> |
| 17 | #include <linux/spinlock.h> |
| 18 | #include <linux/smp_lock.h> |
| 19 | #include <linux/smp.h> |
| 20 | #include <linux/kernel_stat.h> |
| 21 | #include <linux/mc146818rtc.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | |
| 24 | #include <asm/mtrr.h> |
| 25 | #include <asm/pgalloc.h> |
| 26 | #include <asm/tlbflush.h> |
| 27 | #include <asm/mach_apic.h> |
| 28 | #include <asm/mmu_context.h> |
| 29 | #include <asm/proto.h> |
| 30 | |
| 31 | /* |
| 32 | * Smarter SMP flushing macros. |
| 33 | * c/o Linus Torvalds. |
| 34 | * |
| 35 | * These mean you can really definitely utterly forget about |
| 36 | * writing to user space from interrupts. (Its not allowed anyway). |
| 37 | * |
| 38 | * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| 39 | */ |
| 40 | |
| 41 | static cpumask_t flush_cpumask; |
| 42 | static struct mm_struct * flush_mm; |
| 43 | static unsigned long flush_va; |
| 44 | static DEFINE_SPINLOCK(tlbstate_lock); |
| 45 | #define FLUSH_ALL -1ULL |
| 46 | |
| 47 | /* |
| 48 | * We cannot call mmdrop() because we are in interrupt context, |
| 49 | * instead update mm->cpu_vm_mask. |
| 50 | */ |
| 51 | static inline void leave_mm (unsigned long cpu) |
| 52 | { |
| 53 | if (read_pda(mmu_state) == TLBSTATE_OK) |
| 54 | BUG(); |
| 55 | clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask); |
| 56 | load_cr3(swapper_pg_dir); |
| 57 | } |
| 58 | |
| 59 | /* |
| 60 | * |
| 61 | * The flush IPI assumes that a thread switch happens in this order: |
| 62 | * [cpu0: the cpu that switches] |
| 63 | * 1) switch_mm() either 1a) or 1b) |
| 64 | * 1a) thread switch to a different mm |
| 65 | * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask); |
| 66 | * Stop ipi delivery for the old mm. This is not synchronized with |
| 67 | * the other cpus, but smp_invalidate_interrupt ignore flush ipis |
| 68 | * for the wrong mm, and in the worst case we perform a superfluous |
| 69 | * tlb flush. |
| 70 | * 1a2) set cpu mmu_state to TLBSTATE_OK |
| 71 | * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 |
| 72 | * was in lazy tlb mode. |
| 73 | * 1a3) update cpu active_mm |
| 74 | * Now cpu0 accepts tlb flushes for the new mm. |
| 75 | * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask); |
| 76 | * Now the other cpus will send tlb flush ipis. |
| 77 | * 1a4) change cr3. |
| 78 | * 1b) thread switch without mm change |
| 79 | * cpu active_mm is correct, cpu0 already handles |
| 80 | * flush ipis. |
| 81 | * 1b1) set cpu mmu_state to TLBSTATE_OK |
| 82 | * 1b2) test_and_set the cpu bit in cpu_vm_mask. |
| 83 | * Atomically set the bit [other cpus will start sending flush ipis], |
| 84 | * and test the bit. |
| 85 | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. |
| 86 | * 2) switch %%esp, ie current |
| 87 | * |
| 88 | * The interrupt must handle 2 special cases: |
| 89 | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. |
| 90 | * - the cpu performs speculative tlb reads, i.e. even if the cpu only |
| 91 | * runs in kernel space, the cpu could load tlb entries for user space |
| 92 | * pages. |
| 93 | * |
| 94 | * The good news is that cpu mmu_state is local to each cpu, no |
| 95 | * write/read ordering problems. |
| 96 | */ |
| 97 | |
| 98 | /* |
| 99 | * TLB flush IPI: |
| 100 | * |
| 101 | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. |
| 102 | * 2) Leave the mm if we are in the lazy tlb mode. |
| 103 | */ |
| 104 | |
| 105 | asmlinkage void smp_invalidate_interrupt (void) |
| 106 | { |
| 107 | unsigned long cpu; |
| 108 | |
| 109 | cpu = get_cpu(); |
| 110 | |
| 111 | if (!cpu_isset(cpu, flush_cpumask)) |
| 112 | goto out; |
| 113 | /* |
| 114 | * This was a BUG() but until someone can quote me the |
| 115 | * line from the intel manual that guarantees an IPI to |
| 116 | * multiple CPUs is retried _only_ on the erroring CPUs |
| 117 | * its staying as a return |
| 118 | * |
| 119 | * BUG(); |
| 120 | */ |
| 121 | |
| 122 | if (flush_mm == read_pda(active_mm)) { |
| 123 | if (read_pda(mmu_state) == TLBSTATE_OK) { |
| 124 | if (flush_va == FLUSH_ALL) |
| 125 | local_flush_tlb(); |
| 126 | else |
| 127 | __flush_tlb_one(flush_va); |
| 128 | } else |
| 129 | leave_mm(cpu); |
| 130 | } |
| 131 | ack_APIC_irq(); |
| 132 | cpu_clear(cpu, flush_cpumask); |
| 133 | |
| 134 | out: |
| 135 | put_cpu_no_resched(); |
| 136 | } |
| 137 | |
| 138 | static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, |
| 139 | unsigned long va) |
| 140 | { |
| 141 | cpumask_t tmp; |
| 142 | /* |
| 143 | * A couple of (to be removed) sanity checks: |
| 144 | * |
| 145 | * - we do not send IPIs to not-yet booted CPUs. |
| 146 | * - current CPU must not be in mask |
| 147 | * - mask must exist :) |
| 148 | */ |
| 149 | BUG_ON(cpus_empty(cpumask)); |
| 150 | cpus_and(tmp, cpumask, cpu_online_map); |
| 151 | BUG_ON(!cpus_equal(tmp, cpumask)); |
| 152 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); |
| 153 | if (!mm) |
| 154 | BUG(); |
| 155 | |
| 156 | /* |
| 157 | * I'm not happy about this global shared spinlock in the |
| 158 | * MM hot path, but we'll see how contended it is. |
| 159 | * Temporarily this turns IRQs off, so that lockups are |
| 160 | * detected by the NMI watchdog. |
| 161 | */ |
| 162 | spin_lock(&tlbstate_lock); |
| 163 | |
| 164 | flush_mm = mm; |
| 165 | flush_va = va; |
| 166 | cpus_or(flush_cpumask, cpumask, flush_cpumask); |
| 167 | |
| 168 | /* |
| 169 | * We have to send the IPI only to |
| 170 | * CPUs affected. |
| 171 | */ |
| 172 | send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR); |
| 173 | |
| 174 | while (!cpus_empty(flush_cpumask)) |
| 175 | mb(); /* nothing. lockup detection does not belong here */; |
| 176 | |
| 177 | flush_mm = NULL; |
| 178 | flush_va = 0; |
| 179 | spin_unlock(&tlbstate_lock); |
| 180 | } |
| 181 | |
| 182 | void flush_tlb_current_task(void) |
| 183 | { |
| 184 | struct mm_struct *mm = current->mm; |
| 185 | cpumask_t cpu_mask; |
| 186 | |
| 187 | preempt_disable(); |
| 188 | cpu_mask = mm->cpu_vm_mask; |
| 189 | cpu_clear(smp_processor_id(), cpu_mask); |
| 190 | |
| 191 | local_flush_tlb(); |
| 192 | if (!cpus_empty(cpu_mask)) |
| 193 | flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| 194 | preempt_enable(); |
| 195 | } |
| 196 | |
| 197 | void flush_tlb_mm (struct mm_struct * mm) |
| 198 | { |
| 199 | cpumask_t cpu_mask; |
| 200 | |
| 201 | preempt_disable(); |
| 202 | cpu_mask = mm->cpu_vm_mask; |
| 203 | cpu_clear(smp_processor_id(), cpu_mask); |
| 204 | |
| 205 | if (current->active_mm == mm) { |
| 206 | if (current->mm) |
| 207 | local_flush_tlb(); |
| 208 | else |
| 209 | leave_mm(smp_processor_id()); |
| 210 | } |
| 211 | if (!cpus_empty(cpu_mask)) |
| 212 | flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| 213 | |
| 214 | preempt_enable(); |
| 215 | } |
| 216 | |
| 217 | void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) |
| 218 | { |
| 219 | struct mm_struct *mm = vma->vm_mm; |
| 220 | cpumask_t cpu_mask; |
| 221 | |
| 222 | preempt_disable(); |
| 223 | cpu_mask = mm->cpu_vm_mask; |
| 224 | cpu_clear(smp_processor_id(), cpu_mask); |
| 225 | |
| 226 | if (current->active_mm == mm) { |
| 227 | if(current->mm) |
| 228 | __flush_tlb_one(va); |
| 229 | else |
| 230 | leave_mm(smp_processor_id()); |
| 231 | } |
| 232 | |
| 233 | if (!cpus_empty(cpu_mask)) |
| 234 | flush_tlb_others(cpu_mask, mm, va); |
| 235 | |
| 236 | preempt_enable(); |
| 237 | } |
| 238 | |
| 239 | static void do_flush_tlb_all(void* info) |
| 240 | { |
| 241 | unsigned long cpu = smp_processor_id(); |
| 242 | |
| 243 | __flush_tlb_all(); |
| 244 | if (read_pda(mmu_state) == TLBSTATE_LAZY) |
| 245 | leave_mm(cpu); |
| 246 | } |
| 247 | |
| 248 | void flush_tlb_all(void) |
| 249 | { |
| 250 | on_each_cpu(do_flush_tlb_all, NULL, 1, 1); |
| 251 | } |
| 252 | |
| 253 | void smp_kdb_stop(void) |
| 254 | { |
| 255 | send_IPI_allbutself(KDB_VECTOR); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * this function sends a 'reschedule' IPI to another CPU. |
| 260 | * it goes straight through and wastes no time serializing |
| 261 | * anything. Worst case is that we lose a reschedule ... |
| 262 | */ |
| 263 | |
| 264 | void smp_send_reschedule(int cpu) |
| 265 | { |
| 266 | send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * Structure and data for smp_call_function(). This is designed to minimise |
| 271 | * static memory requirements. It also looks cleaner. |
| 272 | */ |
| 273 | static DEFINE_SPINLOCK(call_lock); |
| 274 | |
| 275 | struct call_data_struct { |
| 276 | void (*func) (void *info); |
| 277 | void *info; |
| 278 | atomic_t started; |
| 279 | atomic_t finished; |
| 280 | int wait; |
| 281 | }; |
| 282 | |
| 283 | static struct call_data_struct * call_data; |
| 284 | |
| 285 | /* |
| 286 | * this function sends a 'generic call function' IPI to all other CPUs |
| 287 | * in the system. |
| 288 | */ |
| 289 | static void __smp_call_function (void (*func) (void *info), void *info, |
| 290 | int nonatomic, int wait) |
| 291 | { |
| 292 | struct call_data_struct data; |
| 293 | int cpus = num_online_cpus()-1; |
| 294 | |
| 295 | if (!cpus) |
| 296 | return; |
| 297 | |
| 298 | data.func = func; |
| 299 | data.info = info; |
| 300 | atomic_set(&data.started, 0); |
| 301 | data.wait = wait; |
| 302 | if (wait) |
| 303 | atomic_set(&data.finished, 0); |
| 304 | |
| 305 | call_data = &data; |
| 306 | wmb(); |
| 307 | /* Send a message to all other CPUs and wait for them to respond */ |
| 308 | send_IPI_allbutself(CALL_FUNCTION_VECTOR); |
| 309 | |
| 310 | /* Wait for response */ |
| 311 | while (atomic_read(&data.started) != cpus) |
| 312 | cpu_relax(); |
| 313 | |
| 314 | if (!wait) |
| 315 | return; |
| 316 | |
| 317 | while (atomic_read(&data.finished) != cpus) |
| 318 | cpu_relax(); |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * smp_call_function - run a function on all other CPUs. |
| 323 | * @func: The function to run. This must be fast and non-blocking. |
| 324 | * @info: An arbitrary pointer to pass to the function. |
| 325 | * @nonatomic: currently unused. |
| 326 | * @wait: If true, wait (atomically) until function has completed on other |
| 327 | * CPUs. |
| 328 | * |
| 329 | * Returns 0 on success, else a negative status code. Does not return until |
| 330 | * remote CPUs are nearly ready to execute func or are or have executed. |
| 331 | * |
| 332 | * You must not call this function with disabled interrupts or from a |
| 333 | * hardware interrupt handler or from a bottom half handler. |
| 334 | * Actually there are a few legal cases, like panic. |
| 335 | */ |
| 336 | int smp_call_function (void (*func) (void *info), void *info, int nonatomic, |
| 337 | int wait) |
| 338 | { |
| 339 | spin_lock(&call_lock); |
| 340 | __smp_call_function(func,info,nonatomic,wait); |
| 341 | spin_unlock(&call_lock); |
| 342 | return 0; |
| 343 | } |
| 344 | |
| 345 | void smp_stop_cpu(void) |
| 346 | { |
| 347 | /* |
| 348 | * Remove this CPU: |
| 349 | */ |
| 350 | cpu_clear(smp_processor_id(), cpu_online_map); |
| 351 | local_irq_disable(); |
| 352 | disable_local_APIC(); |
| 353 | local_irq_enable(); |
| 354 | } |
| 355 | |
| 356 | static void smp_really_stop_cpu(void *dummy) |
| 357 | { |
| 358 | smp_stop_cpu(); |
| 359 | for (;;) |
| 360 | asm("hlt"); |
| 361 | } |
| 362 | |
| 363 | void smp_send_stop(void) |
| 364 | { |
| 365 | int nolock = 0; |
| 366 | if (reboot_force) |
| 367 | return; |
| 368 | /* Don't deadlock on the call lock in panic */ |
| 369 | if (!spin_trylock(&call_lock)) { |
| 370 | /* ignore locking because we have paniced anyways */ |
| 371 | nolock = 1; |
| 372 | } |
| 373 | __smp_call_function(smp_really_stop_cpu, NULL, 0, 0); |
| 374 | if (!nolock) |
| 375 | spin_unlock(&call_lock); |
| 376 | |
| 377 | local_irq_disable(); |
| 378 | disable_local_APIC(); |
| 379 | local_irq_enable(); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Reschedule call back. Nothing to do, |
| 384 | * all the work is done automatically when |
| 385 | * we return from the interrupt. |
| 386 | */ |
| 387 | asmlinkage void smp_reschedule_interrupt(void) |
| 388 | { |
| 389 | ack_APIC_irq(); |
| 390 | } |
| 391 | |
| 392 | asmlinkage void smp_call_function_interrupt(void) |
| 393 | { |
| 394 | void (*func) (void *info) = call_data->func; |
| 395 | void *info = call_data->info; |
| 396 | int wait = call_data->wait; |
| 397 | |
| 398 | ack_APIC_irq(); |
| 399 | /* |
| 400 | * Notify initiating CPU that I've grabbed the data and am |
| 401 | * about to execute the function |
| 402 | */ |
| 403 | mb(); |
| 404 | atomic_inc(&call_data->started); |
| 405 | /* |
| 406 | * At this point the info structure may be out of scope unless wait==1 |
| 407 | */ |
| 408 | irq_enter(); |
| 409 | (*func)(info); |
| 410 | irq_exit(); |
| 411 | if (wait) { |
| 412 | mb(); |
| 413 | atomic_inc(&call_data->finished); |
| 414 | } |
| 415 | } |