Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* $Id: ide.c,v 1.4 2004/10/12 07:55:48 starvik Exp $ |
| 2 | * |
| 3 | * Etrax specific IDE functions, like init and PIO-mode setting etc. |
| 4 | * Almost the entire ide.c is used for the rest of the Etrax ATA driver. |
| 5 | * Copyright (c) 2000-2004 Axis Communications AB |
| 6 | * |
| 7 | * Authors: Bjorn Wesen (initial version) |
| 8 | * Mikael Starvik (pio setup stuff, Linux 2.6 port) |
| 9 | */ |
| 10 | |
| 11 | /* Regarding DMA: |
| 12 | * |
| 13 | * There are two forms of DMA - "DMA handshaking" between the interface and the drive, |
| 14 | * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's |
| 15 | * something built-in in the Etrax. However only some drives support the DMA-mode handshaking |
| 16 | * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the |
| 17 | * device can't do DMA handshaking for some stupid reason. We don't need to do that. |
| 18 | */ |
| 19 | |
| 20 | #undef REALLY_SLOW_IO /* most systems can safely undef this */ |
| 21 | |
| 22 | #include <linux/config.h> |
| 23 | #include <linux/types.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/timer.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/interrupt.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/blkdev.h> |
| 30 | #include <linux/hdreg.h> |
| 31 | #include <linux/ide.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/scatterlist.h> |
| 34 | |
| 35 | #include <asm/io.h> |
| 36 | #include <asm/arch/svinto.h> |
| 37 | #include <asm/dma.h> |
| 38 | |
| 39 | /* number of Etrax DMA descriptors */ |
| 40 | #define MAX_DMA_DESCRS 64 |
| 41 | |
| 42 | /* number of times to retry busy-flags when reading/writing IDE-registers |
| 43 | * this can't be too high because a hung harddisk might cause the watchdog |
| 44 | * to trigger (sometimes INB and OUTB are called with irq's disabled) |
| 45 | */ |
| 46 | |
| 47 | #define IDE_REGISTER_TIMEOUT 300 |
| 48 | |
| 49 | static int e100_read_command = 0; |
| 50 | |
| 51 | #define LOWDB(x) |
| 52 | #define D(x) |
| 53 | |
| 54 | static int e100_ide_build_dmatable (ide_drive_t *drive); |
| 55 | static ide_startstop_t etrax_dma_intr (ide_drive_t *drive); |
| 56 | |
| 57 | void |
| 58 | etrax100_ide_outw(unsigned short data, unsigned long reg) { |
| 59 | int timeleft; |
| 60 | LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg)); |
| 61 | |
| 62 | /* note the lack of handling any timeouts. we stop waiting, but we don't |
| 63 | * really notify anybody. |
| 64 | */ |
| 65 | |
| 66 | timeleft = IDE_REGISTER_TIMEOUT; |
| 67 | /* wait for busy flag */ |
| 68 | while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))) |
| 69 | timeleft--; |
| 70 | |
| 71 | /* |
| 72 | * Fall through at a timeout, so the ongoing command will be |
| 73 | * aborted by the write below, which is expected to be a dummy |
| 74 | * command to the command register. This happens when a faulty |
| 75 | * drive times out on a command. See comment on timeout in |
| 76 | * INB. |
| 77 | */ |
| 78 | if(!timeleft) |
| 79 | printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data); |
| 80 | |
| 81 | *R_ATA_CTRL_DATA = reg | data; /* write data to the drive's register */ |
| 82 | |
| 83 | timeleft = IDE_REGISTER_TIMEOUT; |
| 84 | /* wait for transmitter ready */ |
| 85 | while(timeleft && !(*R_ATA_STATUS_DATA & |
| 86 | IO_MASK(R_ATA_STATUS_DATA, tr_rdy))) |
| 87 | timeleft--; |
| 88 | } |
| 89 | |
| 90 | void |
| 91 | etrax100_ide_outb(unsigned char data, unsigned long reg) |
| 92 | { |
| 93 | etrax100_ide_outw(data, reg); |
| 94 | } |
| 95 | |
| 96 | void |
| 97 | etrax100_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port) |
| 98 | { |
| 99 | etrax100_ide_outw(addr, port); |
| 100 | } |
| 101 | |
| 102 | unsigned short |
| 103 | etrax100_ide_inw(unsigned long reg) { |
| 104 | int status; |
| 105 | int timeleft; |
| 106 | |
| 107 | timeleft = IDE_REGISTER_TIMEOUT; |
| 108 | /* wait for busy flag */ |
| 109 | while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))) |
| 110 | timeleft--; |
| 111 | |
| 112 | if(!timeleft) { |
| 113 | /* |
| 114 | * If we're asked to read the status register, like for |
| 115 | * example when a command does not complete for an |
| 116 | * extended time, but the ATA interface is stuck in a |
| 117 | * busy state at the *ETRAX* ATA interface level (as has |
| 118 | * happened repeatedly with at least one bad disk), then |
| 119 | * the best thing to do is to pretend that we read |
| 120 | * "busy" in the status register, so the IDE driver will |
| 121 | * time-out, abort the ongoing command and perform a |
| 122 | * reset sequence. Note that the subsequent OUT_BYTE |
| 123 | * call will also timeout on busy, but as long as the |
| 124 | * write is still performed, everything will be fine. |
| 125 | */ |
| 126 | if ((reg & IO_MASK (R_ATA_CTRL_DATA, addr)) |
| 127 | == IO_FIELD (R_ATA_CTRL_DATA, addr, IDE_STATUS_OFFSET)) |
| 128 | return BUSY_STAT; |
| 129 | else |
| 130 | /* For other rare cases we assume 0 is good enough. */ |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | *R_ATA_CTRL_DATA = reg | IO_STATE(R_ATA_CTRL_DATA, rw, read); /* read data */ |
| 135 | |
| 136 | timeleft = IDE_REGISTER_TIMEOUT; |
| 137 | /* wait for available */ |
| 138 | while(timeleft && !((status = *R_ATA_STATUS_DATA) & |
| 139 | IO_MASK(R_ATA_STATUS_DATA, dav))) |
| 140 | timeleft--; |
| 141 | |
| 142 | if(!timeleft) |
| 143 | return 0; |
| 144 | |
| 145 | LOWDB(printk("inb: 0x%x from reg 0x%x\n", status & 0xff, reg)); |
| 146 | |
| 147 | return (unsigned short)status; |
| 148 | } |
| 149 | |
| 150 | unsigned char |
| 151 | etrax100_ide_inb(unsigned long reg) |
| 152 | { |
| 153 | return (unsigned char)etrax100_ide_inw(reg); |
| 154 | } |
| 155 | |
| 156 | /* PIO timing (in R_ATA_CONFIG) |
| 157 | * |
| 158 | * _____________________________ |
| 159 | * ADDRESS : ________/ |
| 160 | * |
| 161 | * _______________ |
| 162 | * DIOR : ____________/ \__________ |
| 163 | * |
| 164 | * _______________ |
| 165 | * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX |
| 166 | * |
| 167 | * |
| 168 | * DIOR is unbuffered while address and data is buffered. |
| 169 | * This creates two problems: |
| 170 | * 1. The DIOR pulse is to early (because it is unbuffered) |
| 171 | * 2. The rise time of DIOR is long |
| 172 | * |
| 173 | * There are at least three different plausible solutions |
| 174 | * 1. Use a pad capable of larger currents in Etrax |
| 175 | * 2. Use an external buffer |
| 176 | * 3. Make the strobe pulse longer |
| 177 | * |
| 178 | * Some of the strobe timings below are modified to compensate |
| 179 | * for this. This implies a slight performance decrease. |
| 180 | * |
| 181 | * THIS SHOULD NEVER BE CHANGED! |
| 182 | * |
| 183 | * TODO: Is this true for the latest LX boards still ? |
| 184 | */ |
| 185 | |
| 186 | #define ATA_DMA2_STROBE 4 |
| 187 | #define ATA_DMA2_HOLD 0 |
| 188 | #define ATA_DMA1_STROBE 4 |
| 189 | #define ATA_DMA1_HOLD 1 |
| 190 | #define ATA_DMA0_STROBE 12 |
| 191 | #define ATA_DMA0_HOLD 9 |
| 192 | #define ATA_PIO4_SETUP 1 |
| 193 | #define ATA_PIO4_STROBE 5 |
| 194 | #define ATA_PIO4_HOLD 0 |
| 195 | #define ATA_PIO3_SETUP 1 |
| 196 | #define ATA_PIO3_STROBE 5 |
| 197 | #define ATA_PIO3_HOLD 1 |
| 198 | #define ATA_PIO2_SETUP 1 |
| 199 | #define ATA_PIO2_STROBE 6 |
| 200 | #define ATA_PIO2_HOLD 2 |
| 201 | #define ATA_PIO1_SETUP 2 |
| 202 | #define ATA_PIO1_STROBE 11 |
| 203 | #define ATA_PIO1_HOLD 4 |
| 204 | #define ATA_PIO0_SETUP 4 |
| 205 | #define ATA_PIO0_STROBE 19 |
| 206 | #define ATA_PIO0_HOLD 4 |
| 207 | |
| 208 | static int e100_dma_check (ide_drive_t *drive); |
| 209 | static void e100_dma_start(ide_drive_t *drive); |
| 210 | static int e100_dma_end (ide_drive_t *drive); |
| 211 | static void e100_ide_input_data (ide_drive_t *drive, void *, unsigned int); |
| 212 | static void e100_ide_output_data (ide_drive_t *drive, void *, unsigned int); |
| 213 | static void e100_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int); |
| 214 | static void e100_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int); |
| 215 | static int e100_dma_off (ide_drive_t *drive); |
| 216 | |
| 217 | |
| 218 | /* |
| 219 | * good_dma_drives() lists the model names (from "hdparm -i") |
| 220 | * of drives which do not support mword2 DMA but which are |
| 221 | * known to work fine with this interface under Linux. |
| 222 | */ |
| 223 | |
| 224 | const char *good_dma_drives[] = {"Micropolis 2112A", |
| 225 | "CONNER CTMA 4000", |
| 226 | "CONNER CTT8000-A", |
| 227 | NULL}; |
| 228 | |
| 229 | static void tune_e100_ide(ide_drive_t *drive, byte pio) |
| 230 | { |
| 231 | pio = 4; |
| 232 | /* pio = ide_get_best_pio_mode(drive, pio, 4, NULL); */ |
| 233 | |
| 234 | /* set pio mode! */ |
| 235 | |
| 236 | switch(pio) { |
| 237 | case 0: |
| 238 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| 239 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| 240 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| 241 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO0_SETUP ) | |
| 242 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO0_STROBE ) | |
| 243 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO0_HOLD ) ); |
| 244 | break; |
| 245 | case 1: |
| 246 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| 247 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| 248 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| 249 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO1_SETUP ) | |
| 250 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO1_STROBE ) | |
| 251 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO1_HOLD ) ); |
| 252 | break; |
| 253 | case 2: |
| 254 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| 255 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| 256 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| 257 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO2_SETUP ) | |
| 258 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO2_STROBE ) | |
| 259 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO2_HOLD ) ); |
| 260 | break; |
| 261 | case 3: |
| 262 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| 263 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| 264 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| 265 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO3_SETUP ) | |
| 266 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO3_STROBE ) | |
| 267 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO3_HOLD ) ); |
| 268 | break; |
| 269 | case 4: |
| 270 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| 271 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| 272 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| 273 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) | |
| 274 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) | |
| 275 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) ); |
| 276 | break; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | static int e100_dma_setup(ide_drive_t *drive) |
| 281 | { |
| 282 | struct request *rq = drive->hwif->hwgroup->rq; |
| 283 | |
| 284 | if (rq_data_dir(rq)) { |
| 285 | e100_read_command = 0; |
| 286 | |
| 287 | RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ |
| 288 | WAIT_DMA(ATA_TX_DMA_NBR); |
| 289 | } else { |
| 290 | e100_read_command = 1; |
| 291 | |
| 292 | RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ |
| 293 | WAIT_DMA(ATA_RX_DMA_NBR); |
| 294 | } |
| 295 | |
| 296 | /* set up the Etrax DMA descriptors */ |
| 297 | if (e100_ide_build_dmatable(drive)) { |
| 298 | ide_map_sg(drive, rq); |
| 299 | return 1; |
| 300 | } |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | static void e100_dma_exec_cmd(ide_drive_t *drive, u8 command) |
| 306 | { |
| 307 | /* set the irq handler which will finish the request when DMA is done */ |
| 308 | ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL); |
| 309 | |
| 310 | /* issue cmd to drive */ |
| 311 | etrax100_ide_outb(command, IDE_COMMAND_REG); |
| 312 | } |
| 313 | |
| 314 | void __init |
| 315 | init_e100_ide (void) |
| 316 | { |
| 317 | volatile unsigned int dummy; |
| 318 | int h; |
| 319 | |
| 320 | printk("ide: ETRAX 100LX built-in ATA DMA controller\n"); |
| 321 | |
| 322 | /* first fill in some stuff in the ide_hwifs fields */ |
| 323 | |
| 324 | for(h = 0; h < MAX_HWIFS; h++) { |
| 325 | ide_hwif_t *hwif = &ide_hwifs[h]; |
| 326 | hwif->mmio = 2; |
| 327 | hwif->chipset = ide_etrax100; |
| 328 | hwif->tuneproc = &tune_e100_ide; |
| 329 | hwif->ata_input_data = &e100_ide_input_data; |
| 330 | hwif->ata_output_data = &e100_ide_output_data; |
| 331 | hwif->atapi_input_bytes = &e100_atapi_input_bytes; |
| 332 | hwif->atapi_output_bytes = &e100_atapi_output_bytes; |
| 333 | hwif->ide_dma_check = &e100_dma_check; |
| 334 | hwif->ide_dma_end = &e100_dma_end; |
| 335 | hwif->dma_setup = &e100_dma_setup; |
| 336 | hwif->dma_exec_cmd = &e100_dma_exec_cmd; |
| 337 | hwif->dma_start = &e100_dma_start; |
| 338 | hwif->OUTB = &etrax100_ide_outb; |
| 339 | hwif->OUTW = &etrax100_ide_outw; |
| 340 | hwif->OUTBSYNC = &etrax100_ide_outbsync; |
| 341 | hwif->INB = &etrax100_ide_inb; |
| 342 | hwif->INW = &etrax100_ide_inw; |
| 343 | hwif->ide_dma_off_quietly = &e100_dma_off; |
| 344 | } |
| 345 | |
| 346 | /* actually reset and configure the etrax100 ide/ata interface */ |
| 347 | |
| 348 | *R_ATA_CTRL_DATA = 0; |
| 349 | *R_ATA_TRANSFER_CNT = 0; |
| 350 | *R_ATA_CONFIG = 0; |
| 351 | |
| 352 | genconfig_shadow = (genconfig_shadow & |
| 353 | ~IO_MASK(R_GEN_CONFIG, dma2) & |
| 354 | ~IO_MASK(R_GEN_CONFIG, dma3) & |
| 355 | ~IO_MASK(R_GEN_CONFIG, ata)) | |
| 356 | ( IO_STATE( R_GEN_CONFIG, dma3, ata ) | |
| 357 | IO_STATE( R_GEN_CONFIG, dma2, ata ) | |
| 358 | IO_STATE( R_GEN_CONFIG, ata, select ) ); |
| 359 | |
| 360 | *R_GEN_CONFIG = genconfig_shadow; |
| 361 | |
| 362 | /* pull the chosen /reset-line low */ |
| 363 | |
| 364 | #ifdef CONFIG_ETRAX_IDE_G27_RESET |
| 365 | REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 0); |
| 366 | #endif |
| 367 | #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET |
| 368 | REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 0); |
| 369 | #endif |
| 370 | #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET |
| 371 | REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 0); |
| 372 | #endif |
| 373 | #ifdef CONFIG_ETRAX_IDE_PB7_RESET |
| 374 | port_pb_dir_shadow = port_pb_dir_shadow | |
| 375 | IO_STATE(R_PORT_PB_DIR, dir7, output); |
| 376 | *R_PORT_PB_DIR = port_pb_dir_shadow; |
| 377 | REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, 1); |
| 378 | #endif |
| 379 | |
| 380 | /* wait some */ |
| 381 | |
| 382 | udelay(25); |
| 383 | |
| 384 | /* de-assert bus-reset */ |
| 385 | |
| 386 | #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET |
| 387 | REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 1); |
| 388 | #endif |
| 389 | #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET |
| 390 | REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 1); |
| 391 | #endif |
| 392 | #ifdef CONFIG_ETRAX_IDE_G27_RESET |
| 393 | REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 1); |
| 394 | #endif |
| 395 | |
| 396 | /* make a dummy read to set the ata controller in a proper state */ |
| 397 | dummy = *R_ATA_STATUS_DATA; |
| 398 | |
| 399 | *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) | |
| 400 | IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) | |
| 401 | IO_FIELD( R_ATA_CONFIG, dma_hold, ATA_DMA2_HOLD ) | |
| 402 | IO_FIELD( R_ATA_CONFIG, pio_setup, ATA_PIO4_SETUP ) | |
| 403 | IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) | |
| 404 | IO_FIELD( R_ATA_CONFIG, pio_hold, ATA_PIO4_HOLD ) ); |
| 405 | |
| 406 | *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) | |
| 407 | IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) ); |
| 408 | |
| 409 | while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/ |
| 410 | |
| 411 | *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) | |
| 412 | IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) | |
| 413 | IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) | |
| 414 | IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) ); |
| 415 | |
| 416 | printk("ide: waiting %d seconds for drives to regain consciousness\n", |
| 417 | CONFIG_ETRAX_IDE_DELAY); |
| 418 | |
| 419 | h = jiffies + (CONFIG_ETRAX_IDE_DELAY * HZ); |
| 420 | while(time_before(jiffies, h)) /* nothing */ ; |
| 421 | |
| 422 | /* reset the dma channels we will use */ |
| 423 | |
| 424 | RESET_DMA(ATA_TX_DMA_NBR); |
| 425 | RESET_DMA(ATA_RX_DMA_NBR); |
| 426 | WAIT_DMA(ATA_TX_DMA_NBR); |
| 427 | WAIT_DMA(ATA_RX_DMA_NBR); |
| 428 | |
| 429 | } |
| 430 | |
| 431 | static int e100_dma_off (ide_drive_t *drive) |
| 432 | { |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | static etrax_dma_descr mydescr; |
| 437 | |
| 438 | /* |
| 439 | * The following routines are mainly used by the ATAPI drivers. |
| 440 | * |
| 441 | * These routines will round up any request for an odd number of bytes, |
| 442 | * so if an odd bytecount is specified, be sure that there's at least one |
| 443 | * extra byte allocated for the buffer. |
| 444 | */ |
| 445 | static void |
| 446 | e100_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) |
| 447 | { |
| 448 | unsigned long data_reg = IDE_DATA_REG; |
| 449 | |
| 450 | D(printk("atapi_input_bytes, dreg 0x%x, buffer 0x%x, count %d\n", |
| 451 | data_reg, buffer, bytecount)); |
| 452 | |
| 453 | if(bytecount & 1) { |
| 454 | printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount); |
| 455 | bytecount++; /* to round off */ |
| 456 | } |
| 457 | |
| 458 | /* make sure the DMA channel is available */ |
| 459 | RESET_DMA(ATA_RX_DMA_NBR); |
| 460 | WAIT_DMA(ATA_RX_DMA_NBR); |
| 461 | |
| 462 | /* setup DMA descriptor */ |
| 463 | |
| 464 | mydescr.sw_len = bytecount; |
| 465 | mydescr.ctrl = d_eol; |
| 466 | mydescr.buf = virt_to_phys(buffer); |
| 467 | |
| 468 | /* start the dma channel */ |
| 469 | |
| 470 | *R_DMA_CH3_FIRST = virt_to_phys(&mydescr); |
| 471 | *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); |
| 472 | |
| 473 | /* initiate a multi word dma read using PIO handshaking */ |
| 474 | |
| 475 | *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); |
| 476 | |
| 477 | *R_ATA_CTRL_DATA = data_reg | |
| 478 | IO_STATE(R_ATA_CTRL_DATA, rw, read) | |
| 479 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| 480 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| 481 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| 482 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| 483 | |
| 484 | /* wait for completion */ |
| 485 | |
| 486 | LED_DISK_READ(1); |
| 487 | WAIT_DMA(ATA_RX_DMA_NBR); |
| 488 | LED_DISK_READ(0); |
| 489 | |
| 490 | #if 0 |
| 491 | /* old polled transfer code |
| 492 | * this should be moved into a new function that can do polled |
| 493 | * transfers if DMA is not available |
| 494 | */ |
| 495 | |
| 496 | /* initiate a multi word read */ |
| 497 | |
| 498 | *R_ATA_TRANSFER_CNT = wcount << 1; |
| 499 | |
| 500 | *R_ATA_CTRL_DATA = data_reg | |
| 501 | IO_STATE(R_ATA_CTRL_DATA, rw, read) | |
| 502 | IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | |
| 503 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| 504 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| 505 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| 506 | |
| 507 | /* svinto has a latency until the busy bit actually is set */ |
| 508 | |
| 509 | nop(); nop(); |
| 510 | nop(); nop(); |
| 511 | nop(); nop(); |
| 512 | nop(); nop(); |
| 513 | nop(); nop(); |
| 514 | |
| 515 | /* unit should be busy during multi transfer */ |
| 516 | while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) { |
| 517 | while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav))) |
| 518 | status = *R_ATA_STATUS_DATA; |
| 519 | *ptr++ = (unsigned short)(status & 0xffff); |
| 520 | } |
| 521 | #endif |
| 522 | } |
| 523 | |
| 524 | static void |
| 525 | e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) |
| 526 | { |
| 527 | unsigned long data_reg = IDE_DATA_REG; |
| 528 | |
| 529 | D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n", |
| 530 | data_reg, buffer, bytecount)); |
| 531 | |
| 532 | if(bytecount & 1) { |
| 533 | printk("odd bytecount %d in atapi_out_bytes!\n", bytecount); |
| 534 | bytecount++; |
| 535 | } |
| 536 | |
| 537 | /* make sure the DMA channel is available */ |
| 538 | RESET_DMA(ATA_TX_DMA_NBR); |
| 539 | WAIT_DMA(ATA_TX_DMA_NBR); |
| 540 | |
| 541 | /* setup DMA descriptor */ |
| 542 | |
| 543 | mydescr.sw_len = bytecount; |
| 544 | mydescr.ctrl = d_eol; |
| 545 | mydescr.buf = virt_to_phys(buffer); |
| 546 | |
| 547 | /* start the dma channel */ |
| 548 | |
| 549 | *R_DMA_CH2_FIRST = virt_to_phys(&mydescr); |
| 550 | *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); |
| 551 | |
| 552 | /* initiate a multi word dma write using PIO handshaking */ |
| 553 | |
| 554 | *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); |
| 555 | |
| 556 | *R_ATA_CTRL_DATA = data_reg | |
| 557 | IO_STATE(R_ATA_CTRL_DATA, rw, write) | |
| 558 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| 559 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| 560 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| 561 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| 562 | |
| 563 | /* wait for completion */ |
| 564 | |
| 565 | LED_DISK_WRITE(1); |
| 566 | WAIT_DMA(ATA_TX_DMA_NBR); |
| 567 | LED_DISK_WRITE(0); |
| 568 | |
| 569 | #if 0 |
| 570 | /* old polled write code - see comment in input_bytes */ |
| 571 | |
| 572 | /* wait for busy flag */ |
| 573 | while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); |
| 574 | |
| 575 | /* initiate a multi word write */ |
| 576 | |
| 577 | *R_ATA_TRANSFER_CNT = bytecount >> 1; |
| 578 | |
| 579 | ctrl = data_reg | |
| 580 | IO_STATE(R_ATA_CTRL_DATA, rw, write) | |
| 581 | IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | |
| 582 | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | |
| 583 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| 584 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| 585 | |
| 586 | LED_DISK_WRITE(1); |
| 587 | |
| 588 | /* Etrax will set busy = 1 until the multi pio transfer has finished |
| 589 | * and tr_rdy = 1 after each successful word transfer. |
| 590 | * When the last byte has been transferred Etrax will first set tr_tdy = 1 |
| 591 | * and then busy = 0 (not in the same cycle). If we read busy before it |
| 592 | * has been set to 0 we will think that we should transfer more bytes |
| 593 | * and then tr_rdy would be 0 forever. This is solved by checking busy |
| 594 | * in the inner loop. |
| 595 | */ |
| 596 | |
| 597 | do { |
| 598 | *R_ATA_CTRL_DATA = ctrl | *ptr++; |
| 599 | while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) && |
| 600 | (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))); |
| 601 | } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); |
| 602 | |
| 603 | LED_DISK_WRITE(0); |
| 604 | #endif |
| 605 | |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * This is used for most PIO data transfers *from* the IDE interface |
| 610 | */ |
| 611 | static void |
| 612 | e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) |
| 613 | { |
| 614 | e100_atapi_input_bytes(drive, buffer, wcount << 2); |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * This is used for most PIO data transfers *to* the IDE interface |
| 619 | */ |
| 620 | static void |
| 621 | e100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) |
| 622 | { |
| 623 | e100_atapi_output_bytes(drive, buffer, wcount << 2); |
| 624 | } |
| 625 | |
| 626 | /* we only have one DMA channel on the chip for ATA, so we can keep these statically */ |
| 627 | static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS]; |
| 628 | static unsigned int ata_tot_size; |
| 629 | |
| 630 | /* |
| 631 | * e100_ide_build_dmatable() prepares a dma request. |
| 632 | * Returns 0 if all went okay, returns 1 otherwise. |
| 633 | */ |
| 634 | static int e100_ide_build_dmatable (ide_drive_t *drive) |
| 635 | { |
| 636 | ide_hwif_t *hwif = HWIF(drive); |
| 637 | struct scatterlist* sg; |
| 638 | struct request *rq = HWGROUP(drive)->rq; |
| 639 | unsigned long size, addr; |
| 640 | unsigned int count = 0; |
| 641 | int i = 0; |
| 642 | |
| 643 | sg = hwif->sg_table; |
| 644 | |
| 645 | ata_tot_size = 0; |
| 646 | |
| 647 | ide_map_sg(drive, rq); |
| 648 | |
| 649 | i = hwif->sg_nents; |
| 650 | |
| 651 | while(i) { |
| 652 | /* |
| 653 | * Determine addr and size of next buffer area. We assume that |
| 654 | * individual virtual buffers are always composed linearly in |
| 655 | * physical memory. For example, we assume that any 8kB buffer |
| 656 | * is always composed of two adjacent physical 4kB pages rather |
| 657 | * than two possibly non-adjacent physical 4kB pages. |
| 658 | */ |
| 659 | /* group sequential buffers into one large buffer */ |
| 660 | addr = page_to_phys(sg->page) + sg->offset; |
| 661 | size = sg_dma_len(sg); |
| 662 | while (sg++, --i) { |
| 663 | if ((addr + size) != page_to_phys(sg->page) + sg->offset) |
| 664 | break; |
| 665 | size += sg_dma_len(sg); |
| 666 | } |
| 667 | |
| 668 | /* did we run out of descriptors? */ |
| 669 | |
| 670 | if(count >= MAX_DMA_DESCRS) { |
| 671 | printk("%s: too few DMA descriptors\n", drive->name); |
| 672 | return 1; |
| 673 | } |
| 674 | |
| 675 | /* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more |
| 676 | than 65536 words per transfer, so in that case we need to either |
| 677 | 1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with |
| 678 | the descriptors, or |
| 679 | 2) simply do the request here, and get dma_intr to only ide_end_request on |
| 680 | those blocks that were actually set-up for transfer. |
| 681 | */ |
| 682 | |
| 683 | if(ata_tot_size + size > 131072) { |
| 684 | printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size); |
| 685 | return 1; |
| 686 | } |
| 687 | |
| 688 | /* If size > 65536 it has to be splitted into new descriptors. Since we don't handle |
| 689 | size > 131072 only one split is necessary */ |
| 690 | |
| 691 | if(size > 65536) { |
| 692 | /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ |
| 693 | ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ |
| 694 | ata_descrs[count].ctrl = 0; |
| 695 | ata_descrs[count].buf = addr; |
| 696 | ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); |
| 697 | count++; |
| 698 | ata_tot_size += 65536; |
| 699 | /* size and addr should refere to not handled data */ |
| 700 | size -= 65536; |
| 701 | addr += 65536; |
| 702 | } |
| 703 | /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ |
| 704 | if(size == 65536) { |
| 705 | ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ |
| 706 | } else { |
| 707 | ata_descrs[count].sw_len = size; |
| 708 | } |
| 709 | ata_descrs[count].ctrl = 0; |
| 710 | ata_descrs[count].buf = addr; |
| 711 | ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); |
| 712 | count++; |
| 713 | ata_tot_size += size; |
| 714 | } |
| 715 | |
| 716 | if (count) { |
| 717 | /* set the end-of-list flag on the last descriptor */ |
| 718 | ata_descrs[count - 1].ctrl |= d_eol; |
| 719 | /* return and say all is ok */ |
| 720 | return 0; |
| 721 | } |
| 722 | |
| 723 | printk("%s: empty DMA table?\n", drive->name); |
| 724 | return 1; /* let the PIO routines handle this weirdness */ |
| 725 | } |
| 726 | |
| 727 | static int config_drive_for_dma (ide_drive_t *drive) |
| 728 | { |
| 729 | const char **list; |
| 730 | struct hd_driveid *id = drive->id; |
| 731 | |
| 732 | if (id && (id->capability & 1)) { |
| 733 | /* Enable DMA on any drive that supports mword2 DMA */ |
| 734 | if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) { |
| 735 | drive->using_dma = 1; |
| 736 | return 0; /* DMA enabled */ |
| 737 | } |
| 738 | |
| 739 | /* Consult the list of known "good" drives */ |
| 740 | list = good_dma_drives; |
| 741 | while (*list) { |
| 742 | if (!strcmp(*list++,id->model)) { |
| 743 | drive->using_dma = 1; |
| 744 | return 0; /* DMA enabled */ |
| 745 | } |
| 746 | } |
| 747 | } |
| 748 | return 1; /* DMA not enabled */ |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * etrax_dma_intr() is the handler for disk read/write DMA interrupts |
| 753 | */ |
| 754 | static ide_startstop_t etrax_dma_intr (ide_drive_t *drive) |
| 755 | { |
| 756 | LED_DISK_READ(0); |
| 757 | LED_DISK_WRITE(0); |
| 758 | |
| 759 | return ide_dma_intr(drive); |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | * Functions below initiates/aborts DMA read/write operations on a drive. |
| 764 | * |
| 765 | * The caller is assumed to have selected the drive and programmed the drive's |
| 766 | * sector address using CHS or LBA. All that remains is to prepare for DMA |
| 767 | * and then issue the actual read/write DMA/PIO command to the drive. |
| 768 | * |
| 769 | * Returns 0 if all went well. |
| 770 | * Returns 1 if DMA read/write could not be started, in which case |
| 771 | * the caller should revert to PIO for the current request. |
| 772 | */ |
| 773 | |
| 774 | static int e100_dma_check(ide_drive_t *drive) |
| 775 | { |
| 776 | return config_drive_for_dma (drive); |
| 777 | } |
| 778 | |
| 779 | static int e100_dma_end(ide_drive_t *drive) |
| 780 | { |
| 781 | /* TODO: check if something went wrong with the DMA */ |
| 782 | return 0; |
| 783 | } |
| 784 | |
| 785 | static void e100_dma_start(ide_drive_t *drive) |
| 786 | { |
| 787 | if (e100_read_command) { |
| 788 | /* begin DMA */ |
| 789 | |
| 790 | /* need to do this before RX DMA due to a chip bug |
| 791 | * it is enough to just flush the part of the cache that |
| 792 | * corresponds to the buffers we start, but since HD transfers |
| 793 | * usually are more than 8 kB, it is easier to optimize for the |
| 794 | * normal case and just flush the entire cache. its the only |
| 795 | * way to be sure! (OB movie quote) |
| 796 | */ |
| 797 | flush_etrax_cache(); |
| 798 | *R_DMA_CH3_FIRST = virt_to_phys(ata_descrs); |
| 799 | *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); |
| 800 | |
| 801 | /* initiate a multi word dma read using DMA handshaking */ |
| 802 | |
| 803 | *R_ATA_TRANSFER_CNT = |
| 804 | IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); |
| 805 | |
| 806 | *R_ATA_CTRL_DATA = |
| 807 | IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | |
| 808 | IO_STATE(R_ATA_CTRL_DATA, rw, read) | |
| 809 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| 810 | IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | |
| 811 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| 812 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| 813 | |
| 814 | LED_DISK_READ(1); |
| 815 | |
| 816 | D(printk("dma read of %d bytes.\n", ata_tot_size)); |
| 817 | |
| 818 | } else { |
| 819 | /* writing */ |
| 820 | /* begin DMA */ |
| 821 | |
| 822 | *R_DMA_CH2_FIRST = virt_to_phys(ata_descrs); |
| 823 | *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); |
| 824 | |
| 825 | /* initiate a multi word dma write using DMA handshaking */ |
| 826 | |
| 827 | *R_ATA_TRANSFER_CNT = |
| 828 | IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); |
| 829 | |
| 830 | *R_ATA_CTRL_DATA = |
| 831 | IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | |
| 832 | IO_STATE(R_ATA_CTRL_DATA, rw, write) | |
| 833 | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | |
| 834 | IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | |
| 835 | IO_STATE(R_ATA_CTRL_DATA, multi, on) | |
| 836 | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); |
| 837 | |
| 838 | LED_DISK_WRITE(1); |
| 839 | |
| 840 | D(printk("dma write of %d bytes.\n", ata_tot_size)); |
| 841 | } |
| 842 | } |