blob: 0f2837ebaab88e5432f25d36121b695cc43ddd47 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
135 */
136
137#include <linux/config.h>
138#include <linux/module.h>
139#include <linux/moduleparam.h>
140#include <linux/kernel.h>
141#include <linux/types.h>
142#include <linux/slab.h>
143#include <linux/delay.h>
144#include <linux/init.h>
145#include <linux/pci.h>
146#include <linux/netdevice.h>
147#include <linux/etherdevice.h>
148#include <linux/mii.h>
149#include <linux/if_vlan.h>
150#include <linux/skbuff.h>
151#include <linux/ethtool.h>
152#include <linux/string.h>
153#include <asm/unaligned.h>
154
155
156#define DRV_NAME "e100"
157#define DRV_EXT "-NAPI"
158#define DRV_VERSION "3.3.6-k2"DRV_EXT
159#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
160#define DRV_COPYRIGHT "Copyright(c) 1999-2004 Intel Corporation"
161#define PFX DRV_NAME ": "
162
163#define E100_WATCHDOG_PERIOD (2 * HZ)
164#define E100_NAPI_WEIGHT 16
165
166MODULE_DESCRIPTION(DRV_DESCRIPTION);
167MODULE_AUTHOR(DRV_COPYRIGHT);
168MODULE_LICENSE("GPL");
169MODULE_VERSION(DRV_VERSION);
170
171static int debug = 3;
172module_param(debug, int, 0);
173MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
174#define DPRINTK(nlevel, klevel, fmt, args...) \
175 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
176 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
177 __FUNCTION__ , ## args))
178
179#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182static struct pci_device_id e100_id_table[] = {
183 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
216 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
217 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
218 { 0, }
219};
220MODULE_DEVICE_TABLE(pci, e100_id_table);
221
222enum mac {
223 mac_82557_D100_A = 0,
224 mac_82557_D100_B = 1,
225 mac_82557_D100_C = 2,
226 mac_82558_D101_A4 = 4,
227 mac_82558_D101_B0 = 5,
228 mac_82559_D101M = 8,
229 mac_82559_D101S = 9,
230 mac_82550_D102 = 12,
231 mac_82550_D102_C = 13,
232 mac_82551_E = 14,
233 mac_82551_F = 15,
234 mac_82551_10 = 16,
235 mac_unknown = 0xFF,
236};
237
238enum phy {
239 phy_100a = 0x000003E0,
240 phy_100c = 0x035002A8,
241 phy_82555_tx = 0x015002A8,
242 phy_nsc_tx = 0x5C002000,
243 phy_82562_et = 0x033002A8,
244 phy_82562_em = 0x032002A8,
245 phy_82562_ek = 0x031002A8,
246 phy_82562_eh = 0x017002A8,
247 phy_unknown = 0xFFFFFFFF,
248};
249
250/* CSR (Control/Status Registers) */
251struct csr {
252 struct {
253 u8 status;
254 u8 stat_ack;
255 u8 cmd_lo;
256 u8 cmd_hi;
257 u32 gen_ptr;
258 } scb;
259 u32 port;
260 u16 flash_ctrl;
261 u8 eeprom_ctrl_lo;
262 u8 eeprom_ctrl_hi;
263 u32 mdi_ctrl;
264 u32 rx_dma_count;
265};
266
267enum scb_status {
268 rus_ready = 0x10,
269 rus_mask = 0x3C,
270};
271
272enum scb_stat_ack {
273 stat_ack_not_ours = 0x00,
274 stat_ack_sw_gen = 0x04,
275 stat_ack_rnr = 0x10,
276 stat_ack_cu_idle = 0x20,
277 stat_ack_frame_rx = 0x40,
278 stat_ack_cu_cmd_done = 0x80,
279 stat_ack_not_present = 0xFF,
280 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
281 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
282};
283
284enum scb_cmd_hi {
285 irq_mask_none = 0x00,
286 irq_mask_all = 0x01,
287 irq_sw_gen = 0x02,
288};
289
290enum scb_cmd_lo {
291 cuc_nop = 0x00,
292 ruc_start = 0x01,
293 ruc_load_base = 0x06,
294 cuc_start = 0x10,
295 cuc_resume = 0x20,
296 cuc_dump_addr = 0x40,
297 cuc_dump_stats = 0x50,
298 cuc_load_base = 0x60,
299 cuc_dump_reset = 0x70,
300};
301
302enum cuc_dump {
303 cuc_dump_complete = 0x0000A005,
304 cuc_dump_reset_complete = 0x0000A007,
305};
306
307enum port {
308 software_reset = 0x0000,
309 selftest = 0x0001,
310 selective_reset = 0x0002,
311};
312
313enum eeprom_ctrl_lo {
314 eesk = 0x01,
315 eecs = 0x02,
316 eedi = 0x04,
317 eedo = 0x08,
318};
319
320enum mdi_ctrl {
321 mdi_write = 0x04000000,
322 mdi_read = 0x08000000,
323 mdi_ready = 0x10000000,
324};
325
326enum eeprom_op {
327 op_write = 0x05,
328 op_read = 0x06,
329 op_ewds = 0x10,
330 op_ewen = 0x13,
331};
332
333enum eeprom_offsets {
334 eeprom_cnfg_mdix = 0x03,
335 eeprom_id = 0x0A,
336 eeprom_config_asf = 0x0D,
337 eeprom_smbus_addr = 0x90,
338};
339
340enum eeprom_cnfg_mdix {
341 eeprom_mdix_enabled = 0x0080,
342};
343
344enum eeprom_id {
345 eeprom_id_wol = 0x0020,
346};
347
348enum eeprom_config_asf {
349 eeprom_asf = 0x8000,
350 eeprom_gcl = 0x4000,
351};
352
353enum cb_status {
354 cb_complete = 0x8000,
355 cb_ok = 0x2000,
356};
357
358enum cb_command {
359 cb_nop = 0x0000,
360 cb_iaaddr = 0x0001,
361 cb_config = 0x0002,
362 cb_multi = 0x0003,
363 cb_tx = 0x0004,
364 cb_ucode = 0x0005,
365 cb_dump = 0x0006,
366 cb_tx_sf = 0x0008,
367 cb_cid = 0x1f00,
368 cb_i = 0x2000,
369 cb_s = 0x4000,
370 cb_el = 0x8000,
371};
372
373struct rfd {
374 u16 status;
375 u16 command;
376 u32 link;
377 u32 rbd;
378 u16 actual_size;
379 u16 size;
380};
381
382struct rx {
383 struct rx *next, *prev;
384 struct sk_buff *skb;
385 dma_addr_t dma_addr;
386};
387
388#if defined(__BIG_ENDIAN_BITFIELD)
389#define X(a,b) b,a
390#else
391#define X(a,b) a,b
392#endif
393struct config {
394/*0*/ u8 X(byte_count:6, pad0:2);
395/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
396/*2*/ u8 adaptive_ifs;
397/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
398 term_write_cache_line:1), pad3:4);
399/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
400/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
401/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
402 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
403 rx_discard_overruns:1), rx_save_bad_frames:1);
404/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
405 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
406 tx_dynamic_tbd:1);
407/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
408/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
409 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
410/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
411 loopback:2);
412/*11*/ u8 X(linear_priority:3, pad11:5);
413/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
414/*13*/ u8 ip_addr_lo;
415/*14*/ u8 ip_addr_hi;
416/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
417 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
418 pad15_2:1), crs_or_cdt:1);
419/*16*/ u8 fc_delay_lo;
420/*17*/ u8 fc_delay_hi;
421/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
422 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
423/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
424 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
425 full_duplex_force:1), full_duplex_pin:1);
426/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
427/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
428/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
429 u8 pad_d102[9];
430};
431
432#define E100_MAX_MULTICAST_ADDRS 64
433struct multi {
434 u16 count;
435 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
436};
437
438/* Important: keep total struct u32-aligned */
439#define UCODE_SIZE 134
440struct cb {
441 u16 status;
442 u16 command;
443 u32 link;
444 union {
445 u8 iaaddr[ETH_ALEN];
446 u32 ucode[UCODE_SIZE];
447 struct config config;
448 struct multi multi;
449 struct {
450 u32 tbd_array;
451 u16 tcb_byte_count;
452 u8 threshold;
453 u8 tbd_count;
454 struct {
455 u32 buf_addr;
456 u16 size;
457 u16 eol;
458 } tbd;
459 } tcb;
460 u32 dump_buffer_addr;
461 } u;
462 struct cb *next, *prev;
463 dma_addr_t dma_addr;
464 struct sk_buff *skb;
465};
466
467enum loopback {
468 lb_none = 0, lb_mac = 1, lb_phy = 3,
469};
470
471struct stats {
472 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
473 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
474 tx_multiple_collisions, tx_total_collisions;
475 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
476 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
477 rx_short_frame_errors;
478 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
479 u16 xmt_tco_frames, rcv_tco_frames;
480 u32 complete;
481};
482
483struct mem {
484 struct {
485 u32 signature;
486 u32 result;
487 } selftest;
488 struct stats stats;
489 u8 dump_buf[596];
490};
491
492struct param_range {
493 u32 min;
494 u32 max;
495 u32 count;
496};
497
498struct params {
499 struct param_range rfds;
500 struct param_range cbs;
501};
502
503struct nic {
504 /* Begin: frequently used values: keep adjacent for cache effect */
505 u32 msg_enable ____cacheline_aligned;
506 struct net_device *netdev;
507 struct pci_dev *pdev;
508
509 struct rx *rxs ____cacheline_aligned;
510 struct rx *rx_to_use;
511 struct rx *rx_to_clean;
512 struct rfd blank_rfd;
513 int ru_running;
514
515 spinlock_t cb_lock ____cacheline_aligned;
516 spinlock_t cmd_lock;
517 struct csr __iomem *csr;
518 enum scb_cmd_lo cuc_cmd;
519 unsigned int cbs_avail;
520 struct cb *cbs;
521 struct cb *cb_to_use;
522 struct cb *cb_to_send;
523 struct cb *cb_to_clean;
524 u16 tx_command;
525 /* End: frequently used values: keep adjacent for cache effect */
526
527 enum {
528 ich = (1 << 0),
529 promiscuous = (1 << 1),
530 multicast_all = (1 << 2),
531 wol_magic = (1 << 3),
532 ich_10h_workaround = (1 << 4),
533 } flags ____cacheline_aligned;
534
535 enum mac mac;
536 enum phy phy;
537 struct params params;
538 struct net_device_stats net_stats;
539 struct timer_list watchdog;
540 struct timer_list blink_timer;
541 struct mii_if_info mii;
Malli Chilakala2acdb1e2005-04-28 19:16:58 -0700542 struct work_struct tx_timeout_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700543 enum loopback loopback;
544
545 struct mem *mem;
546 dma_addr_t dma_addr;
547
548 dma_addr_t cbs_dma_addr;
549 u8 adaptive_ifs;
550 u8 tx_threshold;
551 u32 tx_frames;
552 u32 tx_collisions;
553 u32 tx_deferred;
554 u32 tx_single_collisions;
555 u32 tx_multiple_collisions;
556 u32 tx_fc_pause;
557 u32 tx_tco_frames;
558
559 u32 rx_fc_pause;
560 u32 rx_fc_unsupported;
561 u32 rx_tco_frames;
562 u32 rx_over_length_errors;
563
564 u8 rev_id;
565 u16 leds;
566 u16 eeprom_wc;
567 u16 eeprom[256];
568};
569
570static inline void e100_write_flush(struct nic *nic)
571{
572 /* Flush previous PCI writes through intermediate bridges
573 * by doing a benign read */
574 (void)readb(&nic->csr->scb.status);
575}
576
577static inline void e100_enable_irq(struct nic *nic)
578{
579 unsigned long flags;
580
581 spin_lock_irqsave(&nic->cmd_lock, flags);
582 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
583 spin_unlock_irqrestore(&nic->cmd_lock, flags);
584 e100_write_flush(nic);
585}
586
587static inline void e100_disable_irq(struct nic *nic)
588{
589 unsigned long flags;
590
591 spin_lock_irqsave(&nic->cmd_lock, flags);
592 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
593 spin_unlock_irqrestore(&nic->cmd_lock, flags);
594 e100_write_flush(nic);
595}
596
597static void e100_hw_reset(struct nic *nic)
598{
599 /* Put CU and RU into idle with a selective reset to get
600 * device off of PCI bus */
601 writel(selective_reset, &nic->csr->port);
602 e100_write_flush(nic); udelay(20);
603
604 /* Now fully reset device */
605 writel(software_reset, &nic->csr->port);
606 e100_write_flush(nic); udelay(20);
607
608 /* Mask off our interrupt line - it's unmasked after reset */
609 e100_disable_irq(nic);
610}
611
612static int e100_self_test(struct nic *nic)
613{
614 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
615
616 /* Passing the self-test is a pretty good indication
617 * that the device can DMA to/from host memory */
618
619 nic->mem->selftest.signature = 0;
620 nic->mem->selftest.result = 0xFFFFFFFF;
621
622 writel(selftest | dma_addr, &nic->csr->port);
623 e100_write_flush(nic);
624 /* Wait 10 msec for self-test to complete */
625 msleep(10);
626
627 /* Interrupts are enabled after self-test */
628 e100_disable_irq(nic);
629
630 /* Check results of self-test */
631 if(nic->mem->selftest.result != 0) {
632 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
633 nic->mem->selftest.result);
634 return -ETIMEDOUT;
635 }
636 if(nic->mem->selftest.signature == 0) {
637 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
638 return -ETIMEDOUT;
639 }
640
641 return 0;
642}
643
644static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
645{
646 u32 cmd_addr_data[3];
647 u8 ctrl;
648 int i, j;
649
650 /* Three cmds: write/erase enable, write data, write/erase disable */
651 cmd_addr_data[0] = op_ewen << (addr_len - 2);
652 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
653 cpu_to_le16(data);
654 cmd_addr_data[2] = op_ewds << (addr_len - 2);
655
656 /* Bit-bang cmds to write word to eeprom */
657 for(j = 0; j < 3; j++) {
658
659 /* Chip select */
660 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
661 e100_write_flush(nic); udelay(4);
662
663 for(i = 31; i >= 0; i--) {
664 ctrl = (cmd_addr_data[j] & (1 << i)) ?
665 eecs | eedi : eecs;
666 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
667 e100_write_flush(nic); udelay(4);
668
669 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
670 e100_write_flush(nic); udelay(4);
671 }
672 /* Wait 10 msec for cmd to complete */
673 msleep(10);
674
675 /* Chip deselect */
676 writeb(0, &nic->csr->eeprom_ctrl_lo);
677 e100_write_flush(nic); udelay(4);
678 }
679};
680
681/* General technique stolen from the eepro100 driver - very clever */
682static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
683{
684 u32 cmd_addr_data;
685 u16 data = 0;
686 u8 ctrl;
687 int i;
688
689 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
690
691 /* Chip select */
692 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
693 e100_write_flush(nic); udelay(4);
694
695 /* Bit-bang to read word from eeprom */
696 for(i = 31; i >= 0; i--) {
697 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
698 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
699 e100_write_flush(nic); udelay(4);
700
701 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
702 e100_write_flush(nic); udelay(4);
703
704 /* Eeprom drives a dummy zero to EEDO after receiving
705 * complete address. Use this to adjust addr_len. */
706 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
707 if(!(ctrl & eedo) && i > 16) {
708 *addr_len -= (i - 16);
709 i = 17;
710 }
711
712 data = (data << 1) | (ctrl & eedo ? 1 : 0);
713 }
714
715 /* Chip deselect */
716 writeb(0, &nic->csr->eeprom_ctrl_lo);
717 e100_write_flush(nic); udelay(4);
718
719 return le16_to_cpu(data);
720};
721
722/* Load entire EEPROM image into driver cache and validate checksum */
723static int e100_eeprom_load(struct nic *nic)
724{
725 u16 addr, addr_len = 8, checksum = 0;
726
727 /* Try reading with an 8-bit addr len to discover actual addr len */
728 e100_eeprom_read(nic, &addr_len, 0);
729 nic->eeprom_wc = 1 << addr_len;
730
731 for(addr = 0; addr < nic->eeprom_wc; addr++) {
732 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
733 if(addr < nic->eeprom_wc - 1)
734 checksum += cpu_to_le16(nic->eeprom[addr]);
735 }
736
737 /* The checksum, stored in the last word, is calculated such that
738 * the sum of words should be 0xBABA */
739 checksum = le16_to_cpu(0xBABA - checksum);
740 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
741 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
742 return -EAGAIN;
743 }
744
745 return 0;
746}
747
748/* Save (portion of) driver EEPROM cache to device and update checksum */
749static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
750{
751 u16 addr, addr_len = 8, checksum = 0;
752
753 /* Try reading with an 8-bit addr len to discover actual addr len */
754 e100_eeprom_read(nic, &addr_len, 0);
755 nic->eeprom_wc = 1 << addr_len;
756
757 if(start + count >= nic->eeprom_wc)
758 return -EINVAL;
759
760 for(addr = start; addr < start + count; addr++)
761 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
762
763 /* The checksum, stored in the last word, is calculated such that
764 * the sum of words should be 0xBABA */
765 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
766 checksum += cpu_to_le16(nic->eeprom[addr]);
767 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
768 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
769 nic->eeprom[nic->eeprom_wc - 1]);
770
771 return 0;
772}
773
774#define E100_WAIT_SCB_TIMEOUT 40
775static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
776{
777 unsigned long flags;
778 unsigned int i;
779 int err = 0;
780
781 spin_lock_irqsave(&nic->cmd_lock, flags);
782
783 /* Previous command is accepted when SCB clears */
784 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
785 if(likely(!readb(&nic->csr->scb.cmd_lo)))
786 break;
787 cpu_relax();
788 if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1)))
789 udelay(5);
790 }
791 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
792 err = -EAGAIN;
793 goto err_unlock;
794 }
795
796 if(unlikely(cmd != cuc_resume))
797 writel(dma_addr, &nic->csr->scb.gen_ptr);
798 writeb(cmd, &nic->csr->scb.cmd_lo);
799
800err_unlock:
801 spin_unlock_irqrestore(&nic->cmd_lock, flags);
802
803 return err;
804}
805
806static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
807 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
808{
809 struct cb *cb;
810 unsigned long flags;
811 int err = 0;
812
813 spin_lock_irqsave(&nic->cb_lock, flags);
814
815 if(unlikely(!nic->cbs_avail)) {
816 err = -ENOMEM;
817 goto err_unlock;
818 }
819
820 cb = nic->cb_to_use;
821 nic->cb_to_use = cb->next;
822 nic->cbs_avail--;
823 cb->skb = skb;
824
825 if(unlikely(!nic->cbs_avail))
826 err = -ENOSPC;
827
828 cb_prepare(nic, cb, skb);
829
830 /* Order is important otherwise we'll be in a race with h/w:
831 * set S-bit in current first, then clear S-bit in previous. */
832 cb->command |= cpu_to_le16(cb_s);
833 wmb();
834 cb->prev->command &= cpu_to_le16(~cb_s);
835
836 while(nic->cb_to_send != nic->cb_to_use) {
837 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
838 nic->cb_to_send->dma_addr))) {
839 /* Ok, here's where things get sticky. It's
840 * possible that we can't schedule the command
841 * because the controller is too busy, so
842 * let's just queue the command and try again
843 * when another command is scheduled. */
844 break;
845 } else {
846 nic->cuc_cmd = cuc_resume;
847 nic->cb_to_send = nic->cb_to_send->next;
848 }
849 }
850
851err_unlock:
852 spin_unlock_irqrestore(&nic->cb_lock, flags);
853
854 return err;
855}
856
857static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
858{
859 u32 data_out = 0;
860 unsigned int i;
861
862 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
863
864 for(i = 0; i < 100; i++) {
865 udelay(20);
866 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
867 break;
868 }
869
870 DPRINTK(HW, DEBUG,
871 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
872 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
873 return (u16)data_out;
874}
875
876static int mdio_read(struct net_device *netdev, int addr, int reg)
877{
878 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
879}
880
881static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
882{
883 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
884}
885
886static void e100_get_defaults(struct nic *nic)
887{
888 struct param_range rfds = { .min = 64, .max = 256, .count = 64 };
889 struct param_range cbs = { .min = 64, .max = 256, .count = 64 };
890
891 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
892 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
893 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
894 if(nic->mac == mac_unknown)
895 nic->mac = mac_82557_D100_A;
896
897 nic->params.rfds = rfds;
898 nic->params.cbs = cbs;
899
900 /* Quadwords to DMA into FIFO before starting frame transmit */
901 nic->tx_threshold = 0xE0;
902
903 nic->tx_command = cpu_to_le16(cb_tx | cb_i | cb_tx_sf |
904 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : 0));
905
906 /* Template for a freshly allocated RFD */
907 nic->blank_rfd.command = cpu_to_le16(cb_el);
908 nic->blank_rfd.rbd = 0xFFFFFFFF;
909 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
910
911 /* MII setup */
912 nic->mii.phy_id_mask = 0x1F;
913 nic->mii.reg_num_mask = 0x1F;
914 nic->mii.dev = nic->netdev;
915 nic->mii.mdio_read = mdio_read;
916 nic->mii.mdio_write = mdio_write;
917}
918
919static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
920{
921 struct config *config = &cb->u.config;
922 u8 *c = (u8 *)config;
923
924 cb->command = cpu_to_le16(cb_config);
925
926 memset(config, 0, sizeof(struct config));
927
928 config->byte_count = 0x16; /* bytes in this struct */
929 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
930 config->direct_rx_dma = 0x1; /* reserved */
931 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
932 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
933 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
934 config->tx_underrun_retry = 0x3; /* # of underrun retries */
935 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
936 config->pad10 = 0x6;
937 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
938 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
939 config->ifs = 0x6; /* x16 = inter frame spacing */
940 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
941 config->pad15_1 = 0x1;
942 config->pad15_2 = 0x1;
943 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
944 config->fc_delay_hi = 0x40; /* time delay for fc frame */
945 config->tx_padding = 0x1; /* 1=pad short frames */
946 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
947 config->pad18 = 0x1;
948 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
949 config->pad20_1 = 0x1F;
950 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
951 config->pad21_1 = 0x5;
952
953 config->adaptive_ifs = nic->adaptive_ifs;
954 config->loopback = nic->loopback;
955
956 if(nic->mii.force_media && nic->mii.full_duplex)
957 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
958
959 if(nic->flags & promiscuous || nic->loopback) {
960 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
961 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
962 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
963 }
964
965 if(nic->flags & multicast_all)
966 config->multicast_all = 0x1; /* 1=accept, 0=no */
967
968 if(!(nic->flags & wol_magic))
969 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
970
971 if(nic->mac >= mac_82558_D101_A4) {
972 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
973 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
974 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
975 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
976 if(nic->mac >= mac_82559_D101M)
977 config->tno_intr = 0x1; /* TCO stats enable */
978 else
979 config->standard_stat_counter = 0x0;
980 }
981
982 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
983 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
984 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
985 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
986 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
987 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
988}
989
990static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
991{
992 int i;
993 static const u32 ucode[UCODE_SIZE] = {
994 /* NFS packets are misinterpreted as TCO packets and
995 * incorrectly routed to the BMC over SMBus. This
996 * microcode patch checks the fragmented IP bit in the
997 * NFS/UDP header to distinguish between NFS and TCO. */
998 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF,
999 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000,
1000 0x00906EFD, 0x00900EFD, 0x00E00EF8,
1001 };
1002
1003 if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1004 for(i = 0; i < UCODE_SIZE; i++)
1005 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1006 cb->command = cpu_to_le16(cb_ucode);
1007 } else
1008 cb->command = cpu_to_le16(cb_nop);
1009}
1010
1011static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1012 struct sk_buff *skb)
1013{
1014 cb->command = cpu_to_le16(cb_iaaddr);
1015 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1016}
1017
1018static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1019{
1020 cb->command = cpu_to_le16(cb_dump);
1021 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1022 offsetof(struct mem, dump_buf));
1023}
1024
1025#define NCONFIG_AUTO_SWITCH 0x0080
1026#define MII_NSC_CONG MII_RESV1
1027#define NSC_CONG_ENABLE 0x0100
1028#define NSC_CONG_TXREADY 0x0400
1029#define ADVERTISE_FC_SUPPORTED 0x0400
1030static int e100_phy_init(struct nic *nic)
1031{
1032 struct net_device *netdev = nic->netdev;
1033 u32 addr;
1034 u16 bmcr, stat, id_lo, id_hi, cong;
1035
1036 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1037 for(addr = 0; addr < 32; addr++) {
1038 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1039 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1040 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1041 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1042 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1043 break;
1044 }
1045 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1046 if(addr == 32)
1047 return -EAGAIN;
1048
1049 /* Selected the phy and isolate the rest */
1050 for(addr = 0; addr < 32; addr++) {
1051 if(addr != nic->mii.phy_id) {
1052 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1053 } else {
1054 bmcr = mdio_read(netdev, addr, MII_BMCR);
1055 mdio_write(netdev, addr, MII_BMCR,
1056 bmcr & ~BMCR_ISOLATE);
1057 }
1058 }
1059
1060 /* Get phy ID */
1061 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1062 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1063 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1064 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1065
1066 /* Handle National tx phys */
1067#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1068 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1069 /* Disable congestion control */
1070 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1071 cong |= NSC_CONG_TXREADY;
1072 cong &= ~NSC_CONG_ENABLE;
1073 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1074 }
1075
1076 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1077 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1078 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)))
1079 /* enable/disable MDI/MDI-X auto-switching */
1080 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1081 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1082
1083 return 0;
1084}
1085
1086static int e100_hw_init(struct nic *nic)
1087{
1088 int err;
1089
1090 e100_hw_reset(nic);
1091
1092 DPRINTK(HW, ERR, "e100_hw_init\n");
1093 if(!in_interrupt() && (err = e100_self_test(nic)))
1094 return err;
1095
1096 if((err = e100_phy_init(nic)))
1097 return err;
1098 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1099 return err;
1100 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1101 return err;
1102 if((err = e100_exec_cb(nic, NULL, e100_load_ucode)))
1103 return err;
1104 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1105 return err;
1106 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1107 return err;
1108 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1109 nic->dma_addr + offsetof(struct mem, stats))))
1110 return err;
1111 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1112 return err;
1113
1114 e100_disable_irq(nic);
1115
1116 return 0;
1117}
1118
1119static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1120{
1121 struct net_device *netdev = nic->netdev;
1122 struct dev_mc_list *list = netdev->mc_list;
1123 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1124
1125 cb->command = cpu_to_le16(cb_multi);
1126 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1127 for(i = 0; list && i < count; i++, list = list->next)
1128 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1129 ETH_ALEN);
1130}
1131
1132static void e100_set_multicast_list(struct net_device *netdev)
1133{
1134 struct nic *nic = netdev_priv(netdev);
1135
1136 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1137 netdev->mc_count, netdev->flags);
1138
1139 if(netdev->flags & IFF_PROMISC)
1140 nic->flags |= promiscuous;
1141 else
1142 nic->flags &= ~promiscuous;
1143
1144 if(netdev->flags & IFF_ALLMULTI ||
1145 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1146 nic->flags |= multicast_all;
1147 else
1148 nic->flags &= ~multicast_all;
1149
1150 e100_exec_cb(nic, NULL, e100_configure);
1151 e100_exec_cb(nic, NULL, e100_multi);
1152}
1153
1154static void e100_update_stats(struct nic *nic)
1155{
1156 struct net_device_stats *ns = &nic->net_stats;
1157 struct stats *s = &nic->mem->stats;
1158 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1159 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1160 &s->complete;
1161
1162 /* Device's stats reporting may take several microseconds to
1163 * complete, so where always waiting for results of the
1164 * previous command. */
1165
1166 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1167 *complete = 0;
1168 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1169 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1170 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1171 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1172 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1173 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1174 ns->collisions += nic->tx_collisions;
1175 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1176 le32_to_cpu(s->tx_lost_crs);
1177 ns->rx_dropped += le32_to_cpu(s->rx_resource_errors);
1178 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1179 nic->rx_over_length_errors;
1180 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1181 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1182 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1183 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1184 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1185 le32_to_cpu(s->rx_alignment_errors) +
1186 le32_to_cpu(s->rx_short_frame_errors) +
1187 le32_to_cpu(s->rx_cdt_errors);
1188 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1189 nic->tx_single_collisions +=
1190 le32_to_cpu(s->tx_single_collisions);
1191 nic->tx_multiple_collisions +=
1192 le32_to_cpu(s->tx_multiple_collisions);
1193 if(nic->mac >= mac_82558_D101_A4) {
1194 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1195 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1196 nic->rx_fc_unsupported +=
1197 le32_to_cpu(s->fc_rcv_unsupported);
1198 if(nic->mac >= mac_82559_D101M) {
1199 nic->tx_tco_frames +=
1200 le16_to_cpu(s->xmt_tco_frames);
1201 nic->rx_tco_frames +=
1202 le16_to_cpu(s->rcv_tco_frames);
1203 }
1204 }
1205 }
1206
1207 e100_exec_cmd(nic, cuc_dump_reset, 0);
1208}
1209
1210static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1211{
1212 /* Adjust inter-frame-spacing (IFS) between two transmits if
1213 * we're getting collisions on a half-duplex connection. */
1214
1215 if(duplex == DUPLEX_HALF) {
1216 u32 prev = nic->adaptive_ifs;
1217 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1218
1219 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1220 (nic->tx_frames > min_frames)) {
1221 if(nic->adaptive_ifs < 60)
1222 nic->adaptive_ifs += 5;
1223 } else if (nic->tx_frames < min_frames) {
1224 if(nic->adaptive_ifs >= 5)
1225 nic->adaptive_ifs -= 5;
1226 }
1227 if(nic->adaptive_ifs != prev)
1228 e100_exec_cb(nic, NULL, e100_configure);
1229 }
1230}
1231
1232static void e100_watchdog(unsigned long data)
1233{
1234 struct nic *nic = (struct nic *)data;
1235 struct ethtool_cmd cmd;
1236
1237 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1238
1239 /* mii library handles link maintenance tasks */
1240
1241 mii_ethtool_gset(&nic->mii, &cmd);
1242
1243 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1244 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1245 cmd.speed == SPEED_100 ? "100" : "10",
1246 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1247 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1248 DPRINTK(LINK, INFO, "link down\n");
1249 }
1250
1251 mii_check_link(&nic->mii);
1252
1253 /* Software generated interrupt to recover from (rare) Rx
1254 * allocation failure.
1255 * Unfortunately have to use a spinlock to not re-enable interrupts
1256 * accidentally, due to hardware that shares a register between the
1257 * interrupt mask bit and the SW Interrupt generation bit */
1258 spin_lock_irq(&nic->cmd_lock);
1259 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1260 spin_unlock_irq(&nic->cmd_lock);
1261 e100_write_flush(nic);
1262
1263 e100_update_stats(nic);
1264 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1265
1266 if(nic->mac <= mac_82557_D100_C)
1267 /* Issue a multicast command to workaround a 557 lock up */
1268 e100_set_multicast_list(nic->netdev);
1269
1270 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1271 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1272 nic->flags |= ich_10h_workaround;
1273 else
1274 nic->flags &= ~ich_10h_workaround;
1275
1276 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1277}
1278
1279static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1280 struct sk_buff *skb)
1281{
1282 cb->command = nic->tx_command;
1283 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1284 cb->u.tcb.tcb_byte_count = 0;
1285 cb->u.tcb.threshold = nic->tx_threshold;
1286 cb->u.tcb.tbd_count = 1;
1287 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1288 skb->data, skb->len, PCI_DMA_TODEVICE));
1289 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1290}
1291
1292static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1293{
1294 struct nic *nic = netdev_priv(netdev);
1295 int err;
1296
1297 if(nic->flags & ich_10h_workaround) {
1298 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1299 Issue a NOP command followed by a 1us delay before
1300 issuing the Tx command. */
1301 e100_exec_cmd(nic, cuc_nop, 0);
1302 udelay(1);
1303 }
1304
1305 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1306
1307 switch(err) {
1308 case -ENOSPC:
1309 /* We queued the skb, but now we're out of space. */
1310 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1311 netif_stop_queue(netdev);
1312 break;
1313 case -ENOMEM:
1314 /* This is a hard error - log it. */
1315 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1316 netif_stop_queue(netdev);
1317 return 1;
1318 }
1319
1320 netdev->trans_start = jiffies;
1321 return 0;
1322}
1323
1324static inline int e100_tx_clean(struct nic *nic)
1325{
1326 struct cb *cb;
1327 int tx_cleaned = 0;
1328
1329 spin_lock(&nic->cb_lock);
1330
1331 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1332 nic->cb_to_clean->status);
1333
1334 /* Clean CBs marked complete */
1335 for(cb = nic->cb_to_clean;
1336 cb->status & cpu_to_le16(cb_complete);
1337 cb = nic->cb_to_clean = cb->next) {
1338 if(likely(cb->skb != NULL)) {
1339 nic->net_stats.tx_packets++;
1340 nic->net_stats.tx_bytes += cb->skb->len;
1341
1342 pci_unmap_single(nic->pdev,
1343 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1344 le16_to_cpu(cb->u.tcb.tbd.size),
1345 PCI_DMA_TODEVICE);
1346 dev_kfree_skb_any(cb->skb);
1347 cb->skb = NULL;
1348 tx_cleaned = 1;
1349 }
1350 cb->status = 0;
1351 nic->cbs_avail++;
1352 }
1353
1354 spin_unlock(&nic->cb_lock);
1355
1356 /* Recover from running out of Tx resources in xmit_frame */
1357 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1358 netif_wake_queue(nic->netdev);
1359
1360 return tx_cleaned;
1361}
1362
1363static void e100_clean_cbs(struct nic *nic)
1364{
1365 if(nic->cbs) {
1366 while(nic->cbs_avail != nic->params.cbs.count) {
1367 struct cb *cb = nic->cb_to_clean;
1368 if(cb->skb) {
1369 pci_unmap_single(nic->pdev,
1370 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1371 le16_to_cpu(cb->u.tcb.tbd.size),
1372 PCI_DMA_TODEVICE);
1373 dev_kfree_skb(cb->skb);
1374 }
1375 nic->cb_to_clean = nic->cb_to_clean->next;
1376 nic->cbs_avail++;
1377 }
1378 pci_free_consistent(nic->pdev,
1379 sizeof(struct cb) * nic->params.cbs.count,
1380 nic->cbs, nic->cbs_dma_addr);
1381 nic->cbs = NULL;
1382 nic->cbs_avail = 0;
1383 }
1384 nic->cuc_cmd = cuc_start;
1385 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1386 nic->cbs;
1387}
1388
1389static int e100_alloc_cbs(struct nic *nic)
1390{
1391 struct cb *cb;
1392 unsigned int i, count = nic->params.cbs.count;
1393
1394 nic->cuc_cmd = cuc_start;
1395 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1396 nic->cbs_avail = 0;
1397
1398 nic->cbs = pci_alloc_consistent(nic->pdev,
1399 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1400 if(!nic->cbs)
1401 return -ENOMEM;
1402
1403 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1404 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1405 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1406
1407 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1408 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1409 ((i+1) % count) * sizeof(struct cb));
1410 cb->skb = NULL;
1411 }
1412
1413 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1414 nic->cbs_avail = count;
1415
1416 return 0;
1417}
1418
1419static inline void e100_start_receiver(struct nic *nic)
1420{
1421 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1422 if(!nic->ru_running && nic->rx_to_clean->skb) {
1423 e100_exec_cmd(nic, ruc_start, nic->rx_to_clean->dma_addr);
1424 nic->ru_running = 1;
1425 }
1426}
1427
1428#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1429static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1430{
1431 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1432 return -ENOMEM;
1433
1434 /* Align, init, and map the RFD. */
1435 rx->skb->dev = nic->netdev;
1436 skb_reserve(rx->skb, NET_IP_ALIGN);
1437 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1438 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1439 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1440
1441 /* Link the RFD to end of RFA by linking previous RFD to
1442 * this one, and clearing EL bit of previous. */
1443 if(rx->prev->skb) {
1444 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1445 put_unaligned(cpu_to_le32(rx->dma_addr),
1446 (u32 *)&prev_rfd->link);
1447 wmb();
1448 prev_rfd->command &= ~cpu_to_le16(cb_el);
1449 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1450 sizeof(struct rfd), PCI_DMA_TODEVICE);
1451 }
1452
1453 return 0;
1454}
1455
1456static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
1457 unsigned int *work_done, unsigned int work_to_do)
1458{
1459 struct sk_buff *skb = rx->skb;
1460 struct rfd *rfd = (struct rfd *)skb->data;
1461 u16 rfd_status, actual_size;
1462
1463 if(unlikely(work_done && *work_done >= work_to_do))
1464 return -EAGAIN;
1465
1466 /* Need to sync before taking a peek at cb_complete bit */
1467 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1468 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1469 rfd_status = le16_to_cpu(rfd->status);
1470
1471 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1472
1473 /* If data isn't ready, nothing to indicate */
1474 if(unlikely(!(rfd_status & cb_complete)))
1475 return -EAGAIN;
1476
1477 /* Get actual data size */
1478 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1479 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1480 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1481
1482 /* Get data */
1483 pci_unmap_single(nic->pdev, rx->dma_addr,
1484 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1485
1486 /* Pull off the RFD and put the actual data (minus eth hdr) */
1487 skb_reserve(skb, sizeof(struct rfd));
1488 skb_put(skb, actual_size);
1489 skb->protocol = eth_type_trans(skb, nic->netdev);
1490
1491 if(unlikely(!(rfd_status & cb_ok))) {
1492 /* Don't indicate if hardware indicates errors */
1493 nic->net_stats.rx_dropped++;
1494 dev_kfree_skb_any(skb);
1495 } else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) {
1496 /* Don't indicate oversized frames */
1497 nic->rx_over_length_errors++;
1498 nic->net_stats.rx_dropped++;
1499 dev_kfree_skb_any(skb);
1500 } else {
1501 nic->net_stats.rx_packets++;
1502 nic->net_stats.rx_bytes += actual_size;
1503 nic->netdev->last_rx = jiffies;
1504 netif_receive_skb(skb);
1505 if(work_done)
1506 (*work_done)++;
1507 }
1508
1509 rx->skb = NULL;
1510
1511 return 0;
1512}
1513
1514static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1515 unsigned int work_to_do)
1516{
1517 struct rx *rx;
1518
1519 /* Indicate newly arrived packets */
1520 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1521 if(e100_rx_indicate(nic, rx, work_done, work_to_do))
1522 break; /* No more to clean */
1523 }
1524
1525 /* Alloc new skbs to refill list */
1526 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1527 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1528 break; /* Better luck next time (see watchdog) */
1529 }
1530
1531 e100_start_receiver(nic);
1532}
1533
1534static void e100_rx_clean_list(struct nic *nic)
1535{
1536 struct rx *rx;
1537 unsigned int i, count = nic->params.rfds.count;
1538
1539 if(nic->rxs) {
1540 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1541 if(rx->skb) {
1542 pci_unmap_single(nic->pdev, rx->dma_addr,
1543 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1544 dev_kfree_skb(rx->skb);
1545 }
1546 }
1547 kfree(nic->rxs);
1548 nic->rxs = NULL;
1549 }
1550
1551 nic->rx_to_use = nic->rx_to_clean = NULL;
1552 nic->ru_running = 0;
1553}
1554
1555static int e100_rx_alloc_list(struct nic *nic)
1556{
1557 struct rx *rx;
1558 unsigned int i, count = nic->params.rfds.count;
1559
1560 nic->rx_to_use = nic->rx_to_clean = NULL;
1561
1562 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1563 return -ENOMEM;
1564 memset(nic->rxs, 0, sizeof(struct rx) * count);
1565
1566 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1567 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1568 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1569 if(e100_rx_alloc_skb(nic, rx)) {
1570 e100_rx_clean_list(nic);
1571 return -ENOMEM;
1572 }
1573 }
1574
1575 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1576
1577 return 0;
1578}
1579
1580static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1581{
1582 struct net_device *netdev = dev_id;
1583 struct nic *nic = netdev_priv(netdev);
1584 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1585
1586 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1587
1588 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1589 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1590 return IRQ_NONE;
1591
1592 /* Ack interrupt(s) */
1593 writeb(stat_ack, &nic->csr->scb.stat_ack);
1594
1595 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1596 if(stat_ack & stat_ack_rnr)
1597 nic->ru_running = 0;
1598
1599 e100_disable_irq(nic);
1600 netif_rx_schedule(netdev);
1601
1602 return IRQ_HANDLED;
1603}
1604
1605static int e100_poll(struct net_device *netdev, int *budget)
1606{
1607 struct nic *nic = netdev_priv(netdev);
1608 unsigned int work_to_do = min(netdev->quota, *budget);
1609 unsigned int work_done = 0;
1610 int tx_cleaned;
1611
1612 e100_rx_clean(nic, &work_done, work_to_do);
1613 tx_cleaned = e100_tx_clean(nic);
1614
1615 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1616 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1617 netif_rx_complete(netdev);
1618 e100_enable_irq(nic);
1619 return 0;
1620 }
1621
1622 *budget -= work_done;
1623 netdev->quota -= work_done;
1624
1625 return 1;
1626}
1627
1628#ifdef CONFIG_NET_POLL_CONTROLLER
1629static void e100_netpoll(struct net_device *netdev)
1630{
1631 struct nic *nic = netdev_priv(netdev);
1632 e100_disable_irq(nic);
1633 e100_intr(nic->pdev->irq, netdev, NULL);
1634 e100_tx_clean(nic);
1635 e100_enable_irq(nic);
1636}
1637#endif
1638
1639static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1640{
1641 struct nic *nic = netdev_priv(netdev);
1642 return &nic->net_stats;
1643}
1644
1645static int e100_set_mac_address(struct net_device *netdev, void *p)
1646{
1647 struct nic *nic = netdev_priv(netdev);
1648 struct sockaddr *addr = p;
1649
1650 if (!is_valid_ether_addr(addr->sa_data))
1651 return -EADDRNOTAVAIL;
1652
1653 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1654 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1655
1656 return 0;
1657}
1658
1659static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1660{
1661 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1662 return -EINVAL;
1663 netdev->mtu = new_mtu;
1664 return 0;
1665}
1666
1667static int e100_asf(struct nic *nic)
1668{
1669 /* ASF can be enabled from eeprom */
1670 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1671 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1672 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1673 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1674}
1675
1676static int e100_up(struct nic *nic)
1677{
1678 int err;
1679
1680 if((err = e100_rx_alloc_list(nic)))
1681 return err;
1682 if((err = e100_alloc_cbs(nic)))
1683 goto err_rx_clean_list;
1684 if((err = e100_hw_init(nic)))
1685 goto err_clean_cbs;
1686 e100_set_multicast_list(nic->netdev);
1687 e100_start_receiver(nic);
1688 mod_timer(&nic->watchdog, jiffies);
1689 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
1690 nic->netdev->name, nic->netdev)))
1691 goto err_no_irq;
1692 e100_enable_irq(nic);
1693 netif_wake_queue(nic->netdev);
1694 return 0;
1695
1696err_no_irq:
1697 del_timer_sync(&nic->watchdog);
1698err_clean_cbs:
1699 e100_clean_cbs(nic);
1700err_rx_clean_list:
1701 e100_rx_clean_list(nic);
1702 return err;
1703}
1704
1705static void e100_down(struct nic *nic)
1706{
1707 e100_hw_reset(nic);
1708 free_irq(nic->pdev->irq, nic->netdev);
1709 del_timer_sync(&nic->watchdog);
1710 netif_carrier_off(nic->netdev);
1711 netif_stop_queue(nic->netdev);
1712 e100_clean_cbs(nic);
1713 e100_rx_clean_list(nic);
1714}
1715
1716static void e100_tx_timeout(struct net_device *netdev)
1717{
1718 struct nic *nic = netdev_priv(netdev);
1719
Malli Chilakala2acdb1e2005-04-28 19:16:58 -07001720 /* Reset outside of interrupt context, to avoid request_irq
1721 * in interrupt context */
1722 schedule_work(&nic->tx_timeout_task);
1723}
1724
1725static void e100_tx_timeout_task(struct net_device *netdev)
1726{
1727 struct nic *nic = netdev_priv(netdev);
1728
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
1730 readb(&nic->csr->scb.status));
1731 e100_down(netdev_priv(netdev));
1732 e100_up(netdev_priv(netdev));
1733}
1734
1735static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
1736{
1737 int err;
1738 struct sk_buff *skb;
1739
1740 /* Use driver resources to perform internal MAC or PHY
1741 * loopback test. A single packet is prepared and transmitted
1742 * in loopback mode, and the test passes if the received
1743 * packet compares byte-for-byte to the transmitted packet. */
1744
1745 if((err = e100_rx_alloc_list(nic)))
1746 return err;
1747 if((err = e100_alloc_cbs(nic)))
1748 goto err_clean_rx;
1749
1750 /* ICH PHY loopback is broken so do MAC loopback instead */
1751 if(nic->flags & ich && loopback_mode == lb_phy)
1752 loopback_mode = lb_mac;
1753
1754 nic->loopback = loopback_mode;
1755 if((err = e100_hw_init(nic)))
1756 goto err_loopback_none;
1757
1758 if(loopback_mode == lb_phy)
1759 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
1760 BMCR_LOOPBACK);
1761
1762 e100_start_receiver(nic);
1763
1764 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
1765 err = -ENOMEM;
1766 goto err_loopback_none;
1767 }
1768 skb_put(skb, ETH_DATA_LEN);
1769 memset(skb->data, 0xFF, ETH_DATA_LEN);
1770 e100_xmit_frame(skb, nic->netdev);
1771
1772 msleep(10);
1773
1774 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1775 skb->data, ETH_DATA_LEN))
1776 err = -EAGAIN;
1777
1778err_loopback_none:
1779 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
1780 nic->loopback = lb_none;
1781 e100_hw_init(nic);
1782 e100_clean_cbs(nic);
1783err_clean_rx:
1784 e100_rx_clean_list(nic);
1785 return err;
1786}
1787
1788#define MII_LED_CONTROL 0x1B
1789static void e100_blink_led(unsigned long data)
1790{
1791 struct nic *nic = (struct nic *)data;
1792 enum led_state {
1793 led_on = 0x01,
1794 led_off = 0x04,
1795 led_on_559 = 0x05,
1796 led_on_557 = 0x07,
1797 };
1798
1799 nic->leds = (nic->leds & led_on) ? led_off :
1800 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
1801 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
1802 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
1803}
1804
1805static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1806{
1807 struct nic *nic = netdev_priv(netdev);
1808 return mii_ethtool_gset(&nic->mii, cmd);
1809}
1810
1811static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1812{
1813 struct nic *nic = netdev_priv(netdev);
1814 int err;
1815
1816 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
1817 err = mii_ethtool_sset(&nic->mii, cmd);
1818 e100_exec_cb(nic, NULL, e100_configure);
1819
1820 return err;
1821}
1822
1823static void e100_get_drvinfo(struct net_device *netdev,
1824 struct ethtool_drvinfo *info)
1825{
1826 struct nic *nic = netdev_priv(netdev);
1827 strcpy(info->driver, DRV_NAME);
1828 strcpy(info->version, DRV_VERSION);
1829 strcpy(info->fw_version, "N/A");
1830 strcpy(info->bus_info, pci_name(nic->pdev));
1831}
1832
1833static int e100_get_regs_len(struct net_device *netdev)
1834{
1835 struct nic *nic = netdev_priv(netdev);
1836#define E100_PHY_REGS 0x1C
1837#define E100_REGS_LEN 1 + E100_PHY_REGS + \
1838 sizeof(nic->mem->dump_buf) / sizeof(u32)
1839 return E100_REGS_LEN * sizeof(u32);
1840}
1841
1842static void e100_get_regs(struct net_device *netdev,
1843 struct ethtool_regs *regs, void *p)
1844{
1845 struct nic *nic = netdev_priv(netdev);
1846 u32 *buff = p;
1847 int i;
1848
1849 regs->version = (1 << 24) | nic->rev_id;
1850 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
1851 readb(&nic->csr->scb.cmd_lo) << 16 |
1852 readw(&nic->csr->scb.status);
1853 for(i = E100_PHY_REGS; i >= 0; i--)
1854 buff[1 + E100_PHY_REGS - i] =
1855 mdio_read(netdev, nic->mii.phy_id, i);
1856 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
1857 e100_exec_cb(nic, NULL, e100_dump);
1858 msleep(10);
1859 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
1860 sizeof(nic->mem->dump_buf));
1861}
1862
1863static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1864{
1865 struct nic *nic = netdev_priv(netdev);
1866 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
1867 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
1868}
1869
1870static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1871{
1872 struct nic *nic = netdev_priv(netdev);
1873
1874 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
1875 return -EOPNOTSUPP;
1876
1877 if(wol->wolopts)
1878 nic->flags |= wol_magic;
1879 else
1880 nic->flags &= ~wol_magic;
1881
1882 pci_enable_wake(nic->pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
1883 e100_exec_cb(nic, NULL, e100_configure);
1884
1885 return 0;
1886}
1887
1888static u32 e100_get_msglevel(struct net_device *netdev)
1889{
1890 struct nic *nic = netdev_priv(netdev);
1891 return nic->msg_enable;
1892}
1893
1894static void e100_set_msglevel(struct net_device *netdev, u32 value)
1895{
1896 struct nic *nic = netdev_priv(netdev);
1897 nic->msg_enable = value;
1898}
1899
1900static int e100_nway_reset(struct net_device *netdev)
1901{
1902 struct nic *nic = netdev_priv(netdev);
1903 return mii_nway_restart(&nic->mii);
1904}
1905
1906static u32 e100_get_link(struct net_device *netdev)
1907{
1908 struct nic *nic = netdev_priv(netdev);
1909 return mii_link_ok(&nic->mii);
1910}
1911
1912static int e100_get_eeprom_len(struct net_device *netdev)
1913{
1914 struct nic *nic = netdev_priv(netdev);
1915 return nic->eeprom_wc << 1;
1916}
1917
1918#define E100_EEPROM_MAGIC 0x1234
1919static int e100_get_eeprom(struct net_device *netdev,
1920 struct ethtool_eeprom *eeprom, u8 *bytes)
1921{
1922 struct nic *nic = netdev_priv(netdev);
1923
1924 eeprom->magic = E100_EEPROM_MAGIC;
1925 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
1926
1927 return 0;
1928}
1929
1930static int e100_set_eeprom(struct net_device *netdev,
1931 struct ethtool_eeprom *eeprom, u8 *bytes)
1932{
1933 struct nic *nic = netdev_priv(netdev);
1934
1935 if(eeprom->magic != E100_EEPROM_MAGIC)
1936 return -EINVAL;
1937
1938 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
1939
1940 return e100_eeprom_save(nic, eeprom->offset >> 1,
1941 (eeprom->len >> 1) + 1);
1942}
1943
1944static void e100_get_ringparam(struct net_device *netdev,
1945 struct ethtool_ringparam *ring)
1946{
1947 struct nic *nic = netdev_priv(netdev);
1948 struct param_range *rfds = &nic->params.rfds;
1949 struct param_range *cbs = &nic->params.cbs;
1950
1951 ring->rx_max_pending = rfds->max;
1952 ring->tx_max_pending = cbs->max;
1953 ring->rx_mini_max_pending = 0;
1954 ring->rx_jumbo_max_pending = 0;
1955 ring->rx_pending = rfds->count;
1956 ring->tx_pending = cbs->count;
1957 ring->rx_mini_pending = 0;
1958 ring->rx_jumbo_pending = 0;
1959}
1960
1961static int e100_set_ringparam(struct net_device *netdev,
1962 struct ethtool_ringparam *ring)
1963{
1964 struct nic *nic = netdev_priv(netdev);
1965 struct param_range *rfds = &nic->params.rfds;
1966 struct param_range *cbs = &nic->params.cbs;
1967
1968 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1969 return -EINVAL;
1970
1971 if(netif_running(netdev))
1972 e100_down(nic);
1973 rfds->count = max(ring->rx_pending, rfds->min);
1974 rfds->count = min(rfds->count, rfds->max);
1975 cbs->count = max(ring->tx_pending, cbs->min);
1976 cbs->count = min(cbs->count, cbs->max);
1977 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
1978 rfds->count, cbs->count);
1979 if(netif_running(netdev))
1980 e100_up(nic);
1981
1982 return 0;
1983}
1984
1985static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
1986 "Link test (on/offline)",
1987 "Eeprom test (on/offline)",
1988 "Self test (offline)",
1989 "Mac loopback (offline)",
1990 "Phy loopback (offline)",
1991};
1992#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
1993
1994static int e100_diag_test_count(struct net_device *netdev)
1995{
1996 return E100_TEST_LEN;
1997}
1998
1999static void e100_diag_test(struct net_device *netdev,
2000 struct ethtool_test *test, u64 *data)
2001{
2002 struct ethtool_cmd cmd;
2003 struct nic *nic = netdev_priv(netdev);
2004 int i, err;
2005
2006 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2007 data[0] = !mii_link_ok(&nic->mii);
2008 data[1] = e100_eeprom_load(nic);
2009 if(test->flags & ETH_TEST_FL_OFFLINE) {
2010
2011 /* save speed, duplex & autoneg settings */
2012 err = mii_ethtool_gset(&nic->mii, &cmd);
2013
2014 if(netif_running(netdev))
2015 e100_down(nic);
2016 data[2] = e100_self_test(nic);
2017 data[3] = e100_loopback_test(nic, lb_mac);
2018 data[4] = e100_loopback_test(nic, lb_phy);
2019
2020 /* restore speed, duplex & autoneg settings */
2021 err = mii_ethtool_sset(&nic->mii, &cmd);
2022
2023 if(netif_running(netdev))
2024 e100_up(nic);
2025 }
2026 for(i = 0; i < E100_TEST_LEN; i++)
2027 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2028}
2029
2030static int e100_phys_id(struct net_device *netdev, u32 data)
2031{
2032 struct nic *nic = netdev_priv(netdev);
2033
2034 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2035 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2036 mod_timer(&nic->blink_timer, jiffies);
2037 msleep_interruptible(data * 1000);
2038 del_timer_sync(&nic->blink_timer);
2039 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2040
2041 return 0;
2042}
2043
2044static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2045 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2046 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2047 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2048 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2049 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2050 "tx_heartbeat_errors", "tx_window_errors",
2051 /* device-specific stats */
2052 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2053 "tx_flow_control_pause", "rx_flow_control_pause",
2054 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2055};
2056#define E100_NET_STATS_LEN 21
2057#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2058
2059static int e100_get_stats_count(struct net_device *netdev)
2060{
2061 return E100_STATS_LEN;
2062}
2063
2064static void e100_get_ethtool_stats(struct net_device *netdev,
2065 struct ethtool_stats *stats, u64 *data)
2066{
2067 struct nic *nic = netdev_priv(netdev);
2068 int i;
2069
2070 for(i = 0; i < E100_NET_STATS_LEN; i++)
2071 data[i] = ((unsigned long *)&nic->net_stats)[i];
2072
2073 data[i++] = nic->tx_deferred;
2074 data[i++] = nic->tx_single_collisions;
2075 data[i++] = nic->tx_multiple_collisions;
2076 data[i++] = nic->tx_fc_pause;
2077 data[i++] = nic->rx_fc_pause;
2078 data[i++] = nic->rx_fc_unsupported;
2079 data[i++] = nic->tx_tco_frames;
2080 data[i++] = nic->rx_tco_frames;
2081}
2082
2083static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2084{
2085 switch(stringset) {
2086 case ETH_SS_TEST:
2087 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2088 break;
2089 case ETH_SS_STATS:
2090 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2091 break;
2092 }
2093}
2094
2095static struct ethtool_ops e100_ethtool_ops = {
2096 .get_settings = e100_get_settings,
2097 .set_settings = e100_set_settings,
2098 .get_drvinfo = e100_get_drvinfo,
2099 .get_regs_len = e100_get_regs_len,
2100 .get_regs = e100_get_regs,
2101 .get_wol = e100_get_wol,
2102 .set_wol = e100_set_wol,
2103 .get_msglevel = e100_get_msglevel,
2104 .set_msglevel = e100_set_msglevel,
2105 .nway_reset = e100_nway_reset,
2106 .get_link = e100_get_link,
2107 .get_eeprom_len = e100_get_eeprom_len,
2108 .get_eeprom = e100_get_eeprom,
2109 .set_eeprom = e100_set_eeprom,
2110 .get_ringparam = e100_get_ringparam,
2111 .set_ringparam = e100_set_ringparam,
2112 .self_test_count = e100_diag_test_count,
2113 .self_test = e100_diag_test,
2114 .get_strings = e100_get_strings,
2115 .phys_id = e100_phys_id,
2116 .get_stats_count = e100_get_stats_count,
2117 .get_ethtool_stats = e100_get_ethtool_stats,
2118};
2119
2120static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2121{
2122 struct nic *nic = netdev_priv(netdev);
2123
2124 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2125}
2126
2127static int e100_alloc(struct nic *nic)
2128{
2129 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2130 &nic->dma_addr);
2131 return nic->mem ? 0 : -ENOMEM;
2132}
2133
2134static void e100_free(struct nic *nic)
2135{
2136 if(nic->mem) {
2137 pci_free_consistent(nic->pdev, sizeof(struct mem),
2138 nic->mem, nic->dma_addr);
2139 nic->mem = NULL;
2140 }
2141}
2142
2143static int e100_open(struct net_device *netdev)
2144{
2145 struct nic *nic = netdev_priv(netdev);
2146 int err = 0;
2147
2148 netif_carrier_off(netdev);
2149 if((err = e100_up(nic)))
2150 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2151 return err;
2152}
2153
2154static int e100_close(struct net_device *netdev)
2155{
2156 e100_down(netdev_priv(netdev));
2157 return 0;
2158}
2159
2160static int __devinit e100_probe(struct pci_dev *pdev,
2161 const struct pci_device_id *ent)
2162{
2163 struct net_device *netdev;
2164 struct nic *nic;
2165 int err;
2166
2167 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2168 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2169 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2170 return -ENOMEM;
2171 }
2172
2173 netdev->open = e100_open;
2174 netdev->stop = e100_close;
2175 netdev->hard_start_xmit = e100_xmit_frame;
2176 netdev->get_stats = e100_get_stats;
2177 netdev->set_multicast_list = e100_set_multicast_list;
2178 netdev->set_mac_address = e100_set_mac_address;
2179 netdev->change_mtu = e100_change_mtu;
2180 netdev->do_ioctl = e100_do_ioctl;
2181 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2182 netdev->tx_timeout = e100_tx_timeout;
2183 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2184 netdev->poll = e100_poll;
2185 netdev->weight = E100_NAPI_WEIGHT;
2186#ifdef CONFIG_NET_POLL_CONTROLLER
2187 netdev->poll_controller = e100_netpoll;
2188#endif
2189 strcpy(netdev->name, pci_name(pdev));
2190
2191 nic = netdev_priv(netdev);
2192 nic->netdev = netdev;
2193 nic->pdev = pdev;
2194 nic->msg_enable = (1 << debug) - 1;
2195 pci_set_drvdata(pdev, netdev);
2196
2197 if((err = pci_enable_device(pdev))) {
2198 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2199 goto err_out_free_dev;
2200 }
2201
2202 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2203 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2204 "base address, aborting.\n");
2205 err = -ENODEV;
2206 goto err_out_disable_pdev;
2207 }
2208
2209 if((err = pci_request_regions(pdev, DRV_NAME))) {
2210 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2211 goto err_out_disable_pdev;
2212 }
2213
2214 if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) {
2215 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2216 goto err_out_free_res;
2217 }
2218
2219 SET_MODULE_OWNER(netdev);
2220 SET_NETDEV_DEV(netdev, &pdev->dev);
2221
2222 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2223 if(!nic->csr) {
2224 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2225 err = -ENOMEM;
2226 goto err_out_free_res;
2227 }
2228
2229 if(ent->driver_data)
2230 nic->flags |= ich;
2231 else
2232 nic->flags &= ~ich;
2233
2234 e100_get_defaults(nic);
2235
2236 spin_lock_init(&nic->cb_lock);
2237 spin_lock_init(&nic->cmd_lock);
2238
2239 /* Reset the device before pci_set_master() in case device is in some
2240 * funky state and has an interrupt pending - hint: we don't have the
2241 * interrupt handler registered yet. */
2242 e100_hw_reset(nic);
2243
2244 pci_set_master(pdev);
2245
2246 init_timer(&nic->watchdog);
2247 nic->watchdog.function = e100_watchdog;
2248 nic->watchdog.data = (unsigned long)nic;
2249 init_timer(&nic->blink_timer);
2250 nic->blink_timer.function = e100_blink_led;
2251 nic->blink_timer.data = (unsigned long)nic;
2252
Malli Chilakala2acdb1e2005-04-28 19:16:58 -07002253 INIT_WORK(&nic->tx_timeout_task,
2254 (void (*)(void *))e100_tx_timeout_task, netdev);
2255
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256 if((err = e100_alloc(nic))) {
2257 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2258 goto err_out_iounmap;
2259 }
2260
2261 e100_phy_init(nic);
2262
2263 if((err = e100_eeprom_load(nic)))
2264 goto err_out_free;
2265
2266 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2267 if(!is_valid_ether_addr(netdev->dev_addr)) {
2268 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2269 "EEPROM, aborting.\n");
2270 err = -EAGAIN;
2271 goto err_out_free;
2272 }
2273
2274 /* Wol magic packet can be enabled from eeprom */
2275 if((nic->mac >= mac_82558_D101_A4) &&
2276 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2277 nic->flags |= wol_magic;
2278
2279 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2280
2281 strcpy(netdev->name, "eth%d");
2282 if((err = register_netdev(netdev))) {
2283 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2284 goto err_out_free;
2285 }
2286
2287 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
2288 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2289 pci_resource_start(pdev, 0), pdev->irq,
2290 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2291 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2292
2293 return 0;
2294
2295err_out_free:
2296 e100_free(nic);
2297err_out_iounmap:
2298 iounmap(nic->csr);
2299err_out_free_res:
2300 pci_release_regions(pdev);
2301err_out_disable_pdev:
2302 pci_disable_device(pdev);
2303err_out_free_dev:
2304 pci_set_drvdata(pdev, NULL);
2305 free_netdev(netdev);
2306 return err;
2307}
2308
2309static void __devexit e100_remove(struct pci_dev *pdev)
2310{
2311 struct net_device *netdev = pci_get_drvdata(pdev);
2312
2313 if(netdev) {
2314 struct nic *nic = netdev_priv(netdev);
2315 unregister_netdev(netdev);
2316 e100_free(nic);
2317 iounmap(nic->csr);
2318 free_netdev(netdev);
2319 pci_release_regions(pdev);
2320 pci_disable_device(pdev);
2321 pci_set_drvdata(pdev, NULL);
2322 }
2323}
2324
2325#ifdef CONFIG_PM
2326static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2327{
2328 struct net_device *netdev = pci_get_drvdata(pdev);
2329 struct nic *nic = netdev_priv(netdev);
2330
2331 if(netif_running(netdev))
2332 e100_down(nic);
2333 e100_hw_reset(nic);
2334 netif_device_detach(netdev);
2335
2336 pci_save_state(pdev);
2337 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic)));
2338 pci_disable_device(pdev);
2339 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2340
2341 return 0;
2342}
2343
2344static int e100_resume(struct pci_dev *pdev)
2345{
2346 struct net_device *netdev = pci_get_drvdata(pdev);
2347 struct nic *nic = netdev_priv(netdev);
2348
2349 pci_set_power_state(pdev, PCI_D0);
2350 pci_restore_state(pdev);
2351 e100_hw_init(nic);
2352
2353 netif_device_attach(netdev);
2354 if(netif_running(netdev))
2355 e100_up(nic);
2356
2357 return 0;
2358}
2359#endif
2360
2361static struct pci_driver e100_driver = {
2362 .name = DRV_NAME,
2363 .id_table = e100_id_table,
2364 .probe = e100_probe,
2365 .remove = __devexit_p(e100_remove),
2366#ifdef CONFIG_PM
2367 .suspend = e100_suspend,
2368 .resume = e100_resume,
2369#endif
2370};
2371
2372static int __init e100_init_module(void)
2373{
2374 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2375 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2376 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2377 }
2378 return pci_module_init(&e100_driver);
2379}
2380
2381static void __exit e100_cleanup_module(void)
2382{
2383 pci_unregister_driver(&e100_driver);
2384}
2385
2386module_init(e100_init_module);
2387module_exit(e100_cleanup_module);