| Ingo Molnar | 425e096 | 2007-07-09 18:51:58 +0200 | [diff] [blame] | 1 |  | 
|  | 2 | #ifdef CONFIG_SCHEDSTATS | 
|  | 3 | /* | 
|  | 4 | * bump this up when changing the output format or the meaning of an existing | 
|  | 5 | * format, so that tools can adapt (or abort) | 
|  | 6 | */ | 
|  | 7 | #define SCHEDSTAT_VERSION 14 | 
|  | 8 |  | 
|  | 9 | static int show_schedstat(struct seq_file *seq, void *v) | 
|  | 10 | { | 
|  | 11 | int cpu; | 
|  | 12 |  | 
|  | 13 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | 
|  | 14 | seq_printf(seq, "timestamp %lu\n", jiffies); | 
|  | 15 | for_each_online_cpu(cpu) { | 
|  | 16 | struct rq *rq = cpu_rq(cpu); | 
|  | 17 | #ifdef CONFIG_SMP | 
|  | 18 | struct sched_domain *sd; | 
|  | 19 | int dcnt = 0; | 
|  | 20 | #endif | 
|  | 21 |  | 
|  | 22 | /* runqueue-specific stats */ | 
|  | 23 | seq_printf(seq, | 
| Balbir Singh | 172ba84 | 2007-07-09 18:52:00 +0200 | [diff] [blame] | 24 | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %llu %llu %lu", | 
| Ingo Molnar | 425e096 | 2007-07-09 18:51:58 +0200 | [diff] [blame] | 25 | cpu, rq->yld_both_empty, | 
|  | 26 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | 
|  | 27 | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | 
|  | 28 | rq->ttwu_cnt, rq->ttwu_local, | 
|  | 29 | rq->rq_sched_info.cpu_time, | 
|  | 30 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | 
|  | 31 |  | 
|  | 32 | seq_printf(seq, "\n"); | 
|  | 33 |  | 
|  | 34 | #ifdef CONFIG_SMP | 
|  | 35 | /* domain-specific stats */ | 
|  | 36 | preempt_disable(); | 
|  | 37 | for_each_domain(cpu, sd) { | 
|  | 38 | enum cpu_idle_type itype; | 
|  | 39 | char mask_str[NR_CPUS]; | 
|  | 40 |  | 
|  | 41 | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | 
|  | 42 | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | 
|  | 43 | for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; | 
|  | 44 | itype++) { | 
|  | 45 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu " | 
|  | 46 | "%lu", | 
|  | 47 | sd->lb_cnt[itype], | 
|  | 48 | sd->lb_balanced[itype], | 
|  | 49 | sd->lb_failed[itype], | 
|  | 50 | sd->lb_imbalance[itype], | 
|  | 51 | sd->lb_gained[itype], | 
|  | 52 | sd->lb_hot_gained[itype], | 
|  | 53 | sd->lb_nobusyq[itype], | 
|  | 54 | sd->lb_nobusyg[itype]); | 
|  | 55 | } | 
|  | 56 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu" | 
|  | 57 | " %lu %lu %lu\n", | 
|  | 58 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 
|  | 59 | sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, | 
|  | 60 | sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, | 
|  | 61 | sd->ttwu_wake_remote, sd->ttwu_move_affine, | 
|  | 62 | sd->ttwu_move_balance); | 
|  | 63 | } | 
|  | 64 | preempt_enable(); | 
|  | 65 | #endif | 
|  | 66 | } | 
|  | 67 | return 0; | 
|  | 68 | } | 
|  | 69 |  | 
|  | 70 | static int schedstat_open(struct inode *inode, struct file *file) | 
|  | 71 | { | 
|  | 72 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | 
|  | 73 | char *buf = kmalloc(size, GFP_KERNEL); | 
|  | 74 | struct seq_file *m; | 
|  | 75 | int res; | 
|  | 76 |  | 
|  | 77 | if (!buf) | 
|  | 78 | return -ENOMEM; | 
|  | 79 | res = single_open(file, show_schedstat, NULL); | 
|  | 80 | if (!res) { | 
|  | 81 | m = file->private_data; | 
|  | 82 | m->buf = buf; | 
|  | 83 | m->size = size; | 
|  | 84 | } else | 
|  | 85 | kfree(buf); | 
|  | 86 | return res; | 
|  | 87 | } | 
|  | 88 |  | 
|  | 89 | const struct file_operations proc_schedstat_operations = { | 
|  | 90 | .open    = schedstat_open, | 
|  | 91 | .read    = seq_read, | 
|  | 92 | .llseek  = seq_lseek, | 
|  | 93 | .release = single_release, | 
|  | 94 | }; | 
|  | 95 |  | 
|  | 96 | /* | 
|  | 97 | * Expects runqueue lock to be held for atomicity of update | 
|  | 98 | */ | 
|  | 99 | static inline void | 
|  | 100 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) | 
|  | 101 | { | 
|  | 102 | if (rq) { | 
|  | 103 | rq->rq_sched_info.run_delay += delta; | 
|  | 104 | rq->rq_sched_info.pcnt++; | 
|  | 105 | } | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /* | 
|  | 109 | * Expects runqueue lock to be held for atomicity of update | 
|  | 110 | */ | 
|  | 111 | static inline void | 
|  | 112 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) | 
|  | 113 | { | 
|  | 114 | if (rq) | 
|  | 115 | rq->rq_sched_info.cpu_time += delta; | 
|  | 116 | } | 
|  | 117 | # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0) | 
|  | 118 | # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0) | 
|  | 119 | #else /* !CONFIG_SCHEDSTATS */ | 
|  | 120 | static inline void | 
|  | 121 | rq_sched_info_arrive(struct rq *rq, unsigned long long delta) | 
|  | 122 | {} | 
|  | 123 | static inline void | 
|  | 124 | rq_sched_info_depart(struct rq *rq, unsigned long long delta) | 
|  | 125 | {} | 
|  | 126 | # define schedstat_inc(rq, field)	do { } while (0) | 
|  | 127 | # define schedstat_add(rq, field, amt)	do { } while (0) | 
|  | 128 | #endif | 
|  | 129 |  | 
|  | 130 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
|  | 131 | /* | 
|  | 132 | * Called when a process is dequeued from the active array and given | 
|  | 133 | * the cpu.  We should note that with the exception of interactive | 
|  | 134 | * tasks, the expired queue will become the active queue after the active | 
|  | 135 | * queue is empty, without explicitly dequeuing and requeuing tasks in the | 
|  | 136 | * expired queue.  (Interactive tasks may be requeued directly to the | 
|  | 137 | * active queue, thus delaying tasks in the expired queue from running; | 
|  | 138 | * see scheduler_tick()). | 
|  | 139 | * | 
|  | 140 | * This function is only called from sched_info_arrive(), rather than | 
|  | 141 | * dequeue_task(). Even though a task may be queued and dequeued multiple | 
|  | 142 | * times as it is shuffled about, we're really interested in knowing how | 
|  | 143 | * long it was from the *first* time it was queued to the time that it | 
|  | 144 | * finally hit a cpu. | 
|  | 145 | */ | 
|  | 146 | static inline void sched_info_dequeued(struct task_struct *t) | 
|  | 147 | { | 
|  | 148 | t->sched_info.last_queued = 0; | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | /* | 
|  | 152 | * Called when a task finally hits the cpu.  We can now calculate how | 
|  | 153 | * long it was waiting to run.  We also note when it began so that we | 
|  | 154 | * can keep stats on how long its timeslice is. | 
|  | 155 | */ | 
|  | 156 | static void sched_info_arrive(struct task_struct *t) | 
|  | 157 | { | 
|  | 158 | unsigned long long now = sched_clock(), delta = 0; | 
|  | 159 |  | 
|  | 160 | if (t->sched_info.last_queued) | 
|  | 161 | delta = now - t->sched_info.last_queued; | 
|  | 162 | sched_info_dequeued(t); | 
|  | 163 | t->sched_info.run_delay += delta; | 
|  | 164 | t->sched_info.last_arrival = now; | 
|  | 165 | t->sched_info.pcnt++; | 
|  | 166 |  | 
|  | 167 | rq_sched_info_arrive(task_rq(t), delta); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | /* | 
|  | 171 | * Called when a process is queued into either the active or expired | 
|  | 172 | * array.  The time is noted and later used to determine how long we | 
|  | 173 | * had to wait for us to reach the cpu.  Since the expired queue will | 
|  | 174 | * become the active queue after active queue is empty, without dequeuing | 
|  | 175 | * and requeuing any tasks, we are interested in queuing to either. It | 
|  | 176 | * is unusual but not impossible for tasks to be dequeued and immediately | 
|  | 177 | * requeued in the same or another array: this can happen in sched_yield(), | 
|  | 178 | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | 
|  | 179 | * to runqueue. | 
|  | 180 | * | 
|  | 181 | * This function is only called from enqueue_task(), but also only updates | 
|  | 182 | * the timestamp if it is already not set.  It's assumed that | 
|  | 183 | * sched_info_dequeued() will clear that stamp when appropriate. | 
|  | 184 | */ | 
|  | 185 | static inline void sched_info_queued(struct task_struct *t) | 
|  | 186 | { | 
|  | 187 | if (unlikely(sched_info_on())) | 
|  | 188 | if (!t->sched_info.last_queued) | 
|  | 189 | t->sched_info.last_queued = sched_clock(); | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | /* | 
|  | 193 | * Called when a process ceases being the active-running process, either | 
|  | 194 | * voluntarily or involuntarily.  Now we can calculate how long we ran. | 
|  | 195 | */ | 
|  | 196 | static inline void sched_info_depart(struct task_struct *t) | 
|  | 197 | { | 
|  | 198 | unsigned long long delta = sched_clock() - t->sched_info.last_arrival; | 
|  | 199 |  | 
|  | 200 | t->sched_info.cpu_time += delta; | 
|  | 201 | rq_sched_info_depart(task_rq(t), delta); | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | /* | 
|  | 205 | * Called when tasks are switched involuntarily due, typically, to expiring | 
|  | 206 | * their time slice.  (This may also be called when switching to or from | 
|  | 207 | * the idle task.)  We are only called when prev != next. | 
|  | 208 | */ | 
|  | 209 | static inline void | 
|  | 210 | __sched_info_switch(struct task_struct *prev, struct task_struct *next) | 
|  | 211 | { | 
|  | 212 | struct rq *rq = task_rq(prev); | 
|  | 213 |  | 
|  | 214 | /* | 
|  | 215 | * prev now departs the cpu.  It's not interesting to record | 
|  | 216 | * stats about how efficient we were at scheduling the idle | 
|  | 217 | * process, however. | 
|  | 218 | */ | 
|  | 219 | if (prev != rq->idle) | 
|  | 220 | sched_info_depart(prev); | 
|  | 221 |  | 
|  | 222 | if (next != rq->idle) | 
|  | 223 | sched_info_arrive(next); | 
|  | 224 | } | 
|  | 225 | static inline void | 
|  | 226 | sched_info_switch(struct task_struct *prev, struct task_struct *next) | 
|  | 227 | { | 
|  | 228 | if (unlikely(sched_info_on())) | 
|  | 229 | __sched_info_switch(prev, next); | 
|  | 230 | } | 
|  | 231 | #else | 
|  | 232 | #define sched_info_queued(t)		do { } while (0) | 
|  | 233 | #define sched_info_switch(t, next)	do { } while (0) | 
|  | 234 | #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ | 
|  | 235 |  |