| Jiri Benc | f0706e82 | 2007-05-05 11:45:53 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Software WEP encryption implementation | 
 | 3 |  * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi> | 
 | 4 |  * Copyright 2003, Instant802 Networks, Inc. | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or modify | 
 | 7 |  * it under the terms of the GNU General Public License version 2 as | 
 | 8 |  * published by the Free Software Foundation. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #include <linux/netdevice.h> | 
 | 12 | #include <linux/types.h> | 
 | 13 | #include <linux/random.h> | 
 | 14 | #include <linux/compiler.h> | 
 | 15 | #include <linux/crc32.h> | 
 | 16 | #include <linux/crypto.h> | 
 | 17 | #include <linux/err.h> | 
 | 18 | #include <linux/mm.h> | 
 | 19 | #include <asm/scatterlist.h> | 
 | 20 |  | 
 | 21 | #include <net/mac80211.h> | 
 | 22 | #include "ieee80211_i.h" | 
 | 23 | #include "wep.h" | 
 | 24 |  | 
 | 25 |  | 
 | 26 | int ieee80211_wep_init(struct ieee80211_local *local) | 
 | 27 | { | 
 | 28 | 	/* start WEP IV from a random value */ | 
 | 29 | 	get_random_bytes(&local->wep_iv, WEP_IV_LEN); | 
 | 30 |  | 
 | 31 | 	local->wep_tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, | 
 | 32 | 						CRYPTO_ALG_ASYNC); | 
 | 33 | 	if (IS_ERR(local->wep_tx_tfm)) | 
 | 34 | 		return -ENOMEM; | 
 | 35 |  | 
 | 36 | 	local->wep_rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, | 
 | 37 | 						CRYPTO_ALG_ASYNC); | 
 | 38 | 	if (IS_ERR(local->wep_rx_tfm)) { | 
 | 39 | 		crypto_free_blkcipher(local->wep_tx_tfm); | 
 | 40 | 		return -ENOMEM; | 
 | 41 | 	} | 
 | 42 |  | 
 | 43 | 	return 0; | 
 | 44 | } | 
 | 45 |  | 
 | 46 | void ieee80211_wep_free(struct ieee80211_local *local) | 
 | 47 | { | 
 | 48 | 	crypto_free_blkcipher(local->wep_tx_tfm); | 
 | 49 | 	crypto_free_blkcipher(local->wep_rx_tfm); | 
 | 50 | } | 
 | 51 |  | 
 | 52 | static inline int ieee80211_wep_weak_iv(u32 iv, int keylen) | 
 | 53 | { | 
 | 54 | 	/* Fluhrer, Mantin, and Shamir have reported weaknesses in the | 
 | 55 | 	 * key scheduling algorithm of RC4. At least IVs (KeyByte + 3, | 
 | 56 | 	 * 0xff, N) can be used to speedup attacks, so avoid using them. */ | 
 | 57 | 	if ((iv & 0xff00) == 0xff00) { | 
 | 58 | 		u8 B = (iv >> 16) & 0xff; | 
 | 59 | 		if (B >= 3 && B < 3 + keylen) | 
 | 60 | 			return 1; | 
 | 61 | 	} | 
 | 62 | 	return 0; | 
 | 63 | } | 
 | 64 |  | 
 | 65 |  | 
 | 66 | void ieee80211_wep_get_iv(struct ieee80211_local *local, | 
 | 67 | 			  struct ieee80211_key *key, u8 *iv) | 
 | 68 | { | 
 | 69 | 	local->wep_iv++; | 
 | 70 | 	if (ieee80211_wep_weak_iv(local->wep_iv, key->keylen)) | 
 | 71 | 		local->wep_iv += 0x0100; | 
 | 72 |  | 
 | 73 | 	if (!iv) | 
 | 74 | 		return; | 
 | 75 |  | 
 | 76 | 	*iv++ = (local->wep_iv >> 16) & 0xff; | 
 | 77 | 	*iv++ = (local->wep_iv >> 8) & 0xff; | 
 | 78 | 	*iv++ = local->wep_iv & 0xff; | 
 | 79 | 	*iv++ = key->keyidx << 6; | 
 | 80 | } | 
 | 81 |  | 
 | 82 |  | 
 | 83 | u8 * ieee80211_wep_add_iv(struct ieee80211_local *local, | 
 | 84 | 			  struct sk_buff *skb, | 
 | 85 | 			  struct ieee80211_key *key) | 
 | 86 | { | 
 | 87 | 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
 | 88 | 	u16 fc; | 
 | 89 | 	int hdrlen; | 
 | 90 | 	u8 *newhdr; | 
 | 91 |  | 
 | 92 | 	fc = le16_to_cpu(hdr->frame_control); | 
 | 93 | 	fc |= IEEE80211_FCTL_PROTECTED; | 
 | 94 | 	hdr->frame_control = cpu_to_le16(fc); | 
 | 95 |  | 
 | 96 | 	if ((skb_headroom(skb) < WEP_IV_LEN || | 
 | 97 | 	     skb_tailroom(skb) < WEP_ICV_LEN)) { | 
 | 98 | 		I802_DEBUG_INC(local->tx_expand_skb_head); | 
 | 99 | 		if (unlikely(pskb_expand_head(skb, WEP_IV_LEN, WEP_ICV_LEN, | 
 | 100 | 					      GFP_ATOMIC))) | 
 | 101 | 			return NULL; | 
 | 102 | 	} | 
 | 103 |  | 
 | 104 | 	hdrlen = ieee80211_get_hdrlen(fc); | 
 | 105 | 	newhdr = skb_push(skb, WEP_IV_LEN); | 
 | 106 | 	memmove(newhdr, newhdr + WEP_IV_LEN, hdrlen); | 
 | 107 | 	ieee80211_wep_get_iv(local, key, newhdr + hdrlen); | 
 | 108 | 	return newhdr + hdrlen; | 
 | 109 | } | 
 | 110 |  | 
 | 111 |  | 
 | 112 | void ieee80211_wep_remove_iv(struct ieee80211_local *local, | 
 | 113 | 			     struct sk_buff *skb, | 
 | 114 | 			     struct ieee80211_key *key) | 
 | 115 | { | 
 | 116 | 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
 | 117 | 	u16 fc; | 
 | 118 | 	int hdrlen; | 
 | 119 |  | 
 | 120 | 	fc = le16_to_cpu(hdr->frame_control); | 
 | 121 | 	hdrlen = ieee80211_get_hdrlen(fc); | 
 | 122 | 	memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen); | 
 | 123 | 	skb_pull(skb, WEP_IV_LEN); | 
 | 124 | } | 
 | 125 |  | 
 | 126 |  | 
 | 127 | /* Perform WEP encryption using given key. data buffer must have tailroom | 
 | 128 |  * for 4-byte ICV. data_len must not include this ICV. Note: this function | 
 | 129 |  * does _not_ add IV. data = RC4(data | CRC32(data)) */ | 
 | 130 | void ieee80211_wep_encrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key, | 
 | 131 | 				size_t klen, u8 *data, size_t data_len) | 
 | 132 | { | 
 | 133 | 	struct blkcipher_desc desc = { .tfm = tfm }; | 
 | 134 | 	struct scatterlist sg; | 
 | 135 | 	__le32 *icv; | 
 | 136 |  | 
 | 137 | 	icv = (__le32 *)(data + data_len); | 
 | 138 | 	*icv = cpu_to_le32(~crc32_le(~0, data, data_len)); | 
 | 139 |  | 
 | 140 | 	crypto_blkcipher_setkey(tfm, rc4key, klen); | 
 | 141 | 	sg.page = virt_to_page(data); | 
 | 142 | 	sg.offset = offset_in_page(data); | 
 | 143 | 	sg.length = data_len + WEP_ICV_LEN; | 
 | 144 | 	crypto_blkcipher_encrypt(&desc, &sg, &sg, sg.length); | 
 | 145 | } | 
 | 146 |  | 
 | 147 |  | 
 | 148 | /* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the | 
 | 149 |  * beginning of the buffer 4 bytes of extra space (ICV) in the end of the | 
 | 150 |  * buffer will be added. Both IV and ICV will be transmitted, so the | 
 | 151 |  * payload length increases with 8 bytes. | 
 | 152 |  * | 
 | 153 |  * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data)) | 
 | 154 |  */ | 
 | 155 | int ieee80211_wep_encrypt(struct ieee80211_local *local, struct sk_buff *skb, | 
 | 156 | 			  struct ieee80211_key *key) | 
 | 157 | { | 
 | 158 | 	u32 klen; | 
 | 159 | 	u8 *rc4key, *iv; | 
 | 160 | 	size_t len; | 
 | 161 |  | 
 | 162 | 	if (!key || key->alg != ALG_WEP) | 
 | 163 | 		return -1; | 
 | 164 |  | 
 | 165 | 	klen = 3 + key->keylen; | 
 | 166 | 	rc4key = kmalloc(klen, GFP_ATOMIC); | 
 | 167 | 	if (!rc4key) | 
 | 168 | 		return -1; | 
 | 169 |  | 
 | 170 | 	iv = ieee80211_wep_add_iv(local, skb, key); | 
 | 171 | 	if (!iv) { | 
 | 172 | 		kfree(rc4key); | 
 | 173 | 		return -1; | 
 | 174 | 	} | 
 | 175 |  | 
 | 176 | 	len = skb->len - (iv + WEP_IV_LEN - skb->data); | 
 | 177 |  | 
 | 178 | 	/* Prepend 24-bit IV to RC4 key */ | 
 | 179 | 	memcpy(rc4key, iv, 3); | 
 | 180 |  | 
 | 181 | 	/* Copy rest of the WEP key (the secret part) */ | 
 | 182 | 	memcpy(rc4key + 3, key->key, key->keylen); | 
 | 183 |  | 
 | 184 | 	/* Add room for ICV */ | 
 | 185 | 	skb_put(skb, WEP_ICV_LEN); | 
 | 186 |  | 
 | 187 | 	ieee80211_wep_encrypt_data(local->wep_tx_tfm, rc4key, klen, | 
 | 188 | 				   iv + WEP_IV_LEN, len); | 
 | 189 |  | 
 | 190 | 	kfree(rc4key); | 
 | 191 |  | 
 | 192 | 	return 0; | 
 | 193 | } | 
 | 194 |  | 
 | 195 |  | 
 | 196 | /* Perform WEP decryption using given key. data buffer includes encrypted | 
 | 197 |  * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV. | 
 | 198 |  * Return 0 on success and -1 on ICV mismatch. */ | 
 | 199 | int ieee80211_wep_decrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key, | 
 | 200 | 			       size_t klen, u8 *data, size_t data_len) | 
 | 201 | { | 
 | 202 | 	struct blkcipher_desc desc = { .tfm = tfm }; | 
 | 203 | 	struct scatterlist sg; | 
 | 204 | 	__le32 crc; | 
 | 205 |  | 
 | 206 | 	crypto_blkcipher_setkey(tfm, rc4key, klen); | 
 | 207 | 	sg.page = virt_to_page(data); | 
 | 208 | 	sg.offset = offset_in_page(data); | 
 | 209 | 	sg.length = data_len + WEP_ICV_LEN; | 
 | 210 | 	crypto_blkcipher_decrypt(&desc, &sg, &sg, sg.length); | 
 | 211 |  | 
 | 212 | 	crc = cpu_to_le32(~crc32_le(~0, data, data_len)); | 
 | 213 | 	if (memcmp(&crc, data + data_len, WEP_ICV_LEN) != 0) | 
 | 214 | 		/* ICV mismatch */ | 
 | 215 | 		return -1; | 
 | 216 |  | 
 | 217 | 	return 0; | 
 | 218 | } | 
 | 219 |  | 
 | 220 |  | 
 | 221 | /* Perform WEP decryption on given skb. Buffer includes whole WEP part of | 
 | 222 |  * the frame: IV (4 bytes), encrypted payload (including SNAP header), | 
 | 223 |  * ICV (4 bytes). skb->len includes both IV and ICV. | 
 | 224 |  * | 
 | 225 |  * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on | 
 | 226 |  * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload | 
 | 227 |  * is moved to the beginning of the skb and skb length will be reduced. | 
 | 228 |  */ | 
 | 229 | int ieee80211_wep_decrypt(struct ieee80211_local *local, struct sk_buff *skb, | 
 | 230 | 			  struct ieee80211_key *key) | 
 | 231 | { | 
 | 232 | 	u32 klen; | 
 | 233 | 	u8 *rc4key; | 
 | 234 | 	u8 keyidx; | 
 | 235 | 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
 | 236 | 	u16 fc; | 
 | 237 | 	int hdrlen; | 
 | 238 | 	size_t len; | 
 | 239 | 	int ret = 0; | 
 | 240 |  | 
 | 241 | 	fc = le16_to_cpu(hdr->frame_control); | 
 | 242 | 	if (!(fc & IEEE80211_FCTL_PROTECTED)) | 
 | 243 | 		return -1; | 
 | 244 |  | 
 | 245 | 	hdrlen = ieee80211_get_hdrlen(fc); | 
 | 246 |  | 
 | 247 | 	if (skb->len < 8 + hdrlen) | 
 | 248 | 		return -1; | 
 | 249 |  | 
 | 250 | 	len = skb->len - hdrlen - 8; | 
 | 251 |  | 
 | 252 | 	keyidx = skb->data[hdrlen + 3] >> 6; | 
 | 253 |  | 
 | 254 | 	if (!key || keyidx != key->keyidx || key->alg != ALG_WEP) | 
 | 255 | 		return -1; | 
 | 256 |  | 
 | 257 | 	klen = 3 + key->keylen; | 
 | 258 |  | 
 | 259 | 	rc4key = kmalloc(klen, GFP_ATOMIC); | 
 | 260 | 	if (!rc4key) | 
 | 261 | 		return -1; | 
 | 262 |  | 
 | 263 | 	/* Prepend 24-bit IV to RC4 key */ | 
 | 264 | 	memcpy(rc4key, skb->data + hdrlen, 3); | 
 | 265 |  | 
 | 266 | 	/* Copy rest of the WEP key (the secret part) */ | 
 | 267 | 	memcpy(rc4key + 3, key->key, key->keylen); | 
 | 268 |  | 
 | 269 | 	if (ieee80211_wep_decrypt_data(local->wep_rx_tfm, rc4key, klen, | 
 | 270 | 				       skb->data + hdrlen + WEP_IV_LEN, | 
 | 271 | 				       len)) { | 
 | 272 | 		printk(KERN_DEBUG "WEP decrypt failed (ICV)\n"); | 
 | 273 | 		ret = -1; | 
 | 274 | 	} | 
 | 275 |  | 
 | 276 | 	kfree(rc4key); | 
 | 277 |  | 
 | 278 | 	/* Trim ICV */ | 
 | 279 | 	skb_trim(skb, skb->len - WEP_ICV_LEN); | 
 | 280 |  | 
 | 281 | 	/* Remove IV */ | 
 | 282 | 	memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen); | 
 | 283 | 	skb_pull(skb, WEP_IV_LEN); | 
 | 284 |  | 
 | 285 | 	return ret; | 
 | 286 | } | 
 | 287 |  | 
 | 288 |  | 
 | 289 | int ieee80211_wep_get_keyidx(struct sk_buff *skb) | 
 | 290 | { | 
 | 291 | 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
 | 292 | 	u16 fc; | 
 | 293 | 	int hdrlen; | 
 | 294 |  | 
 | 295 | 	fc = le16_to_cpu(hdr->frame_control); | 
 | 296 | 	if (!(fc & IEEE80211_FCTL_PROTECTED)) | 
 | 297 | 		return -1; | 
 | 298 |  | 
 | 299 | 	hdrlen = ieee80211_get_hdrlen(fc); | 
 | 300 |  | 
 | 301 | 	if (skb->len < 8 + hdrlen) | 
 | 302 | 		return -1; | 
 | 303 |  | 
 | 304 | 	return skb->data[hdrlen + 3] >> 6; | 
 | 305 | } | 
 | 306 |  | 
 | 307 |  | 
 | 308 | u8 * ieee80211_wep_is_weak_iv(struct sk_buff *skb, struct ieee80211_key *key) | 
 | 309 | { | 
 | 310 | 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
 | 311 | 	u16 fc; | 
 | 312 | 	int hdrlen; | 
 | 313 | 	u8 *ivpos; | 
 | 314 | 	u32 iv; | 
 | 315 |  | 
 | 316 | 	fc = le16_to_cpu(hdr->frame_control); | 
 | 317 | 	if (!(fc & IEEE80211_FCTL_PROTECTED)) | 
 | 318 | 		return NULL; | 
 | 319 |  | 
 | 320 | 	hdrlen = ieee80211_get_hdrlen(fc); | 
 | 321 | 	ivpos = skb->data + hdrlen; | 
 | 322 | 	iv = (ivpos[0] << 16) | (ivpos[1] << 8) | ivpos[2]; | 
 | 323 |  | 
 | 324 | 	if (ieee80211_wep_weak_iv(iv, key->keylen)) | 
 | 325 | 		return ivpos; | 
 | 326 |  | 
 | 327 | 	return NULL; | 
 | 328 | } |