blob: 5aca7e8005a80f9b5a188d04269347ac90c411b1 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * mf.c
3 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
Stephen Rothwelld0e8e292005-05-25 16:29:26 +10004 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 *
6 * This modules exists as an interface between a Linux secondary partition
7 * running on an iSeries and the primary partition's Virtual Service
8 * Processor (VSP) object. The VSP has final authority over powering on/off
9 * all partitions in the iSeries. It also provides miscellaneous low-level
10 * machine facility type operations.
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 */
27
28#include <linux/types.h>
29#include <linux/errno.h>
30#include <linux/kernel.h>
31#include <linux/init.h>
32#include <linux/completion.h>
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/bcd.h>
36
37#include <asm/time.h>
38#include <asm/uaccess.h>
Stephen Rothwelld0e8e292005-05-25 16:29:26 +100039#include <asm/paca.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include <asm/iSeries/vio.h>
41#include <asm/iSeries/mf.h>
42#include <asm/iSeries/HvLpConfig.h>
43#include <asm/iSeries/ItSpCommArea.h>
Stephen Rothwelld0e8e292005-05-25 16:29:26 +100044#include <asm/iSeries/ItLpQueue.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045
46/*
47 * This is the structure layout for the Machine Facilites LPAR event
48 * flows.
49 */
50struct vsp_cmd_data {
51 u64 token;
52 u16 cmd;
53 HvLpIndex lp_index;
54 u8 result_code;
55 u32 reserved;
56 union {
57 u64 state; /* GetStateOut */
58 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
59 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
60 u64 page[4]; /* GetSrcHistoryIn */
61 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
62 SetAutoIplWhenPrimaryIplsIn,
63 WhiteButtonPowerOffIn,
64 Function08FastPowerOffIn,
65 IsSpcnRackPowerIncompleteOut */
66 struct {
67 u64 token;
68 u64 address_type;
69 u64 side;
70 u32 length;
71 u32 offset;
72 } kern; /* SetKernelImageIn, GetKernelImageIn,
73 SetKernelCmdLineIn, GetKernelCmdLineIn */
74 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
75 u8 reserved[80];
76 } sub_data;
77};
78
79struct vsp_rsp_data {
80 struct completion com;
81 struct vsp_cmd_data *response;
82};
83
84struct alloc_data {
85 u16 size;
86 u16 type;
87 u32 count;
88 u16 reserved1;
89 u8 reserved2;
90 HvLpIndex target_lp;
91};
92
93struct ce_msg_data;
94
95typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
96
97struct ce_msg_comp_data {
98 ce_msg_comp_hdlr handler;
99 void *token;
100};
101
102struct ce_msg_data {
103 u8 ce_msg[12];
104 char reserved[4];
105 struct ce_msg_comp_data *completion;
106};
107
108struct io_mf_lp_event {
109 struct HvLpEvent hp_lp_event;
110 u16 subtype_result_code;
111 u16 reserved1;
112 u32 reserved2;
113 union {
114 struct alloc_data alloc;
115 struct ce_msg_data ce_msg;
116 struct vsp_cmd_data vsp_cmd;
117 } data;
118};
119
120#define subtype_data(a, b, c, d) \
121 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
122
123/*
124 * All outgoing event traffic is kept on a FIFO queue. The first
125 * pointer points to the one that is outstanding, and all new
126 * requests get stuck on the end. Also, we keep a certain number of
127 * preallocated pending events so that we can operate very early in
128 * the boot up sequence (before kmalloc is ready).
129 */
130struct pending_event {
131 struct pending_event *next;
132 struct io_mf_lp_event event;
133 MFCompleteHandler hdlr;
134 char dma_data[72];
135 unsigned dma_data_length;
136 unsigned remote_address;
137};
138static spinlock_t pending_event_spinlock;
139static struct pending_event *pending_event_head;
140static struct pending_event *pending_event_tail;
141static struct pending_event *pending_event_avail;
142static struct pending_event pending_event_prealloc[16];
143
144/*
145 * Put a pending event onto the available queue, so it can get reused.
146 * Attention! You must have the pending_event_spinlock before calling!
147 */
148static void free_pending_event(struct pending_event *ev)
149{
150 if (ev != NULL) {
151 ev->next = pending_event_avail;
152 pending_event_avail = ev;
153 }
154}
155
156/*
157 * Enqueue the outbound event onto the stack. If the queue was
158 * empty to begin with, we must also issue it via the Hypervisor
159 * interface. There is a section of code below that will touch
160 * the first stack pointer without the protection of the pending_event_spinlock.
161 * This is OK, because we know that nobody else will be modifying
162 * the first pointer when we do this.
163 */
164static int signal_event(struct pending_event *ev)
165{
166 int rc = 0;
167 unsigned long flags;
168 int go = 1;
169 struct pending_event *ev1;
170 HvLpEvent_Rc hv_rc;
171
172 /* enqueue the event */
173 if (ev != NULL) {
174 ev->next = NULL;
175 spin_lock_irqsave(&pending_event_spinlock, flags);
176 if (pending_event_head == NULL)
177 pending_event_head = ev;
178 else {
179 go = 0;
180 pending_event_tail->next = ev;
181 }
182 pending_event_tail = ev;
183 spin_unlock_irqrestore(&pending_event_spinlock, flags);
184 }
185
186 /* send the event */
187 while (go) {
188 go = 0;
189
190 /* any DMA data to send beforehand? */
191 if (pending_event_head->dma_data_length > 0)
192 HvCallEvent_dmaToSp(pending_event_head->dma_data,
193 pending_event_head->remote_address,
194 pending_event_head->dma_data_length,
195 HvLpDma_Direction_LocalToRemote);
196
197 hv_rc = HvCallEvent_signalLpEvent(
198 &pending_event_head->event.hp_lp_event);
199 if (hv_rc != HvLpEvent_Rc_Good) {
200 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
201 "failed with %d\n", (int)hv_rc);
202
203 spin_lock_irqsave(&pending_event_spinlock, flags);
204 ev1 = pending_event_head;
205 pending_event_head = pending_event_head->next;
206 if (pending_event_head != NULL)
207 go = 1;
208 spin_unlock_irqrestore(&pending_event_spinlock, flags);
209
210 if (ev1 == ev)
211 rc = -EIO;
212 else if (ev1->hdlr != NULL)
213 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
214
215 spin_lock_irqsave(&pending_event_spinlock, flags);
216 free_pending_event(ev1);
217 spin_unlock_irqrestore(&pending_event_spinlock, flags);
218 }
219 }
220
221 return rc;
222}
223
224/*
225 * Allocate a new pending_event structure, and initialize it.
226 */
227static struct pending_event *new_pending_event(void)
228{
229 struct pending_event *ev = NULL;
230 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
231 unsigned long flags;
232 struct HvLpEvent *hev;
233
234 spin_lock_irqsave(&pending_event_spinlock, flags);
235 if (pending_event_avail != NULL) {
236 ev = pending_event_avail;
237 pending_event_avail = pending_event_avail->next;
238 }
239 spin_unlock_irqrestore(&pending_event_spinlock, flags);
240 if (ev == NULL) {
241 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
242 if (ev == NULL) {
243 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
244 sizeof(struct pending_event));
245 return NULL;
246 }
247 }
248 memset(ev, 0, sizeof(struct pending_event));
249 hev = &ev->event.hp_lp_event;
250 hev->xFlags.xValid = 1;
251 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
252 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
253 hev->xFlags.xFunction = HvLpEvent_Function_Int;
254 hev->xType = HvLpEvent_Type_MachineFac;
255 hev->xSourceLp = HvLpConfig_getLpIndex();
256 hev->xTargetLp = primary_lp;
257 hev->xSizeMinus1 = sizeof(ev->event) - 1;
258 hev->xRc = HvLpEvent_Rc_Good;
259 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
260 HvLpEvent_Type_MachineFac);
261 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
262 HvLpEvent_Type_MachineFac);
263
264 return ev;
265}
266
267static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
268{
269 struct pending_event *ev = new_pending_event();
270 int rc;
271 struct vsp_rsp_data response;
272
273 if (ev == NULL)
274 return -ENOMEM;
275
276 init_completion(&response.com);
277 response.response = vsp_cmd;
278 ev->event.hp_lp_event.xSubtype = 6;
279 ev->event.hp_lp_event.x.xSubtypeData =
280 subtype_data('M', 'F', 'V', 'I');
281 ev->event.data.vsp_cmd.token = (u64)&response;
282 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
283 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
284 ev->event.data.vsp_cmd.result_code = 0xFF;
285 ev->event.data.vsp_cmd.reserved = 0;
286 memcpy(&(ev->event.data.vsp_cmd.sub_data),
287 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
288 mb();
289
290 rc = signal_event(ev);
291 if (rc == 0)
292 wait_for_completion(&response.com);
293 return rc;
294}
295
296
297/*
298 * Send a 12-byte CE message to the primary partition VSP object
299 */
300static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
301{
302 struct pending_event *ev = new_pending_event();
303
304 if (ev == NULL)
305 return -ENOMEM;
306
307 ev->event.hp_lp_event.xSubtype = 0;
308 ev->event.hp_lp_event.x.xSubtypeData =
309 subtype_data('M', 'F', 'C', 'E');
310 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
311 ev->event.data.ce_msg.completion = completion;
312 return signal_event(ev);
313}
314
315/*
316 * Send a 12-byte CE message (with no data) to the primary partition VSP object
317 */
318static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
319{
320 u8 ce_msg[12];
321
322 memset(ce_msg, 0, sizeof(ce_msg));
323 ce_msg[3] = ce_op;
324 return signal_ce_msg(ce_msg, completion);
325}
326
327/*
328 * Send a 12-byte CE message and DMA data to the primary partition VSP object
329 */
330static int dma_and_signal_ce_msg(char *ce_msg,
331 struct ce_msg_comp_data *completion, void *dma_data,
332 unsigned dma_data_length, unsigned remote_address)
333{
334 struct pending_event *ev = new_pending_event();
335
336 if (ev == NULL)
337 return -ENOMEM;
338
339 ev->event.hp_lp_event.xSubtype = 0;
340 ev->event.hp_lp_event.x.xSubtypeData =
341 subtype_data('M', 'F', 'C', 'E');
342 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
343 ev->event.data.ce_msg.completion = completion;
344 memcpy(ev->dma_data, dma_data, dma_data_length);
345 ev->dma_data_length = dma_data_length;
346 ev->remote_address = remote_address;
347 return signal_event(ev);
348}
349
350/*
351 * Initiate a nice (hopefully) shutdown of Linux. We simply are
352 * going to try and send the init process a SIGINT signal. If
353 * this fails (why?), we'll simply force it off in a not-so-nice
354 * manner.
355 */
356static int shutdown(void)
357{
358 int rc = kill_proc(1, SIGINT, 1);
359
360 if (rc) {
361 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
362 "hard shutdown commencing\n", rc);
363 mf_power_off();
364 } else
365 printk(KERN_INFO "mf.c: init has been successfully notified "
366 "to proceed with shutdown\n");
367 return rc;
368}
369
370/*
371 * The primary partition VSP object is sending us a new
372 * event flow. Handle it...
373 */
374static void handle_int(struct io_mf_lp_event *event)
375{
376 struct ce_msg_data *ce_msg_data;
377 struct ce_msg_data *pce_msg_data;
378 unsigned long flags;
379 struct pending_event *pev;
380
381 /* ack the interrupt */
382 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
383 HvCallEvent_ackLpEvent(&event->hp_lp_event);
384
385 /* process interrupt */
386 switch (event->hp_lp_event.xSubtype) {
387 case 0: /* CE message */
388 ce_msg_data = &event->data.ce_msg;
389 switch (ce_msg_data->ce_msg[3]) {
390 case 0x5B: /* power control notification */
391 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
392 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
393 if (shutdown() == 0)
394 signal_ce_msg_simple(0xDB, NULL);
395 }
396 break;
397 case 0xC0: /* get time */
398 spin_lock_irqsave(&pending_event_spinlock, flags);
399 pev = pending_event_head;
400 if (pev != NULL)
401 pending_event_head = pending_event_head->next;
402 spin_unlock_irqrestore(&pending_event_spinlock, flags);
403 if (pev == NULL)
404 break;
405 pce_msg_data = &pev->event.data.ce_msg;
406 if (pce_msg_data->ce_msg[3] != 0x40)
407 break;
408 if (pce_msg_data->completion != NULL) {
409 ce_msg_comp_hdlr handler =
410 pce_msg_data->completion->handler;
411 void *token = pce_msg_data->completion->token;
412
413 if (handler != NULL)
414 (*handler)(token, ce_msg_data);
415 }
416 spin_lock_irqsave(&pending_event_spinlock, flags);
417 free_pending_event(pev);
418 spin_unlock_irqrestore(&pending_event_spinlock, flags);
419 /* send next waiting event */
420 if (pending_event_head != NULL)
421 signal_event(NULL);
422 break;
423 }
424 break;
425 case 1: /* IT sys shutdown */
426 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
427 shutdown();
428 break;
429 }
430}
431
432/*
433 * The primary partition VSP object is acknowledging the receipt
434 * of a flow we sent to them. If there are other flows queued
435 * up, we must send another one now...
436 */
437static void handle_ack(struct io_mf_lp_event *event)
438{
439 unsigned long flags;
440 struct pending_event *two = NULL;
441 unsigned long free_it = 0;
442 struct ce_msg_data *ce_msg_data;
443 struct ce_msg_data *pce_msg_data;
444 struct vsp_rsp_data *rsp;
445
446 /* handle current event */
447 if (pending_event_head == NULL) {
448 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
449 return;
450 }
451
452 switch (event->hp_lp_event.xSubtype) {
453 case 0: /* CE msg */
454 ce_msg_data = &event->data.ce_msg;
455 if (ce_msg_data->ce_msg[3] != 0x40) {
456 free_it = 1;
457 break;
458 }
459 if (ce_msg_data->ce_msg[2] == 0)
460 break;
461 free_it = 1;
462 pce_msg_data = &pending_event_head->event.data.ce_msg;
463 if (pce_msg_data->completion != NULL) {
464 ce_msg_comp_hdlr handler =
465 pce_msg_data->completion->handler;
466 void *token = pce_msg_data->completion->token;
467
468 if (handler != NULL)
469 (*handler)(token, ce_msg_data);
470 }
471 break;
472 case 4: /* allocate */
473 case 5: /* deallocate */
474 if (pending_event_head->hdlr != NULL)
475 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
476 free_it = 1;
477 break;
478 case 6:
479 free_it = 1;
480 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
481 if (rsp == NULL) {
482 printk(KERN_ERR "mf.c: no rsp\n");
483 break;
484 }
485 if (rsp->response != NULL)
486 memcpy(rsp->response, &event->data.vsp_cmd,
487 sizeof(event->data.vsp_cmd));
488 complete(&rsp->com);
489 break;
490 }
491
492 /* remove from queue */
493 spin_lock_irqsave(&pending_event_spinlock, flags);
494 if ((pending_event_head != NULL) && (free_it == 1)) {
495 struct pending_event *oldHead = pending_event_head;
496
497 pending_event_head = pending_event_head->next;
498 two = pending_event_head;
499 free_pending_event(oldHead);
500 }
501 spin_unlock_irqrestore(&pending_event_spinlock, flags);
502
503 /* send next waiting event */
504 if (two != NULL)
505 signal_event(NULL);
506}
507
508/*
509 * This is the generic event handler we are registering with
510 * the Hypervisor. Ensure the flows are for us, and then
511 * parse it enough to know if it is an interrupt or an
512 * acknowledge.
513 */
514static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
515{
516 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
517 switch(event->xFlags.xFunction) {
518 case HvLpEvent_Function_Ack:
519 handle_ack((struct io_mf_lp_event *)event);
520 break;
521 case HvLpEvent_Function_Int:
522 handle_int((struct io_mf_lp_event *)event);
523 break;
524 default:
525 printk(KERN_ERR "mf.c: non ack/int event received\n");
526 break;
527 }
528 } else
529 printk(KERN_ERR "mf.c: alien event received\n");
530}
531
532/*
533 * Global kernel interface to allocate and seed events into the
534 * Hypervisor.
535 */
536void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
537 unsigned size, unsigned count, MFCompleteHandler hdlr,
538 void *user_token)
539{
540 struct pending_event *ev = new_pending_event();
541 int rc;
542
543 if (ev == NULL) {
544 rc = -ENOMEM;
545 } else {
546 ev->event.hp_lp_event.xSubtype = 4;
547 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
548 ev->event.hp_lp_event.x.xSubtypeData =
549 subtype_data('M', 'F', 'M', 'A');
550 ev->event.data.alloc.target_lp = target_lp;
551 ev->event.data.alloc.type = type;
552 ev->event.data.alloc.size = size;
553 ev->event.data.alloc.count = count;
554 ev->hdlr = hdlr;
555 rc = signal_event(ev);
556 }
557 if ((rc != 0) && (hdlr != NULL))
558 (*hdlr)(user_token, rc);
559}
560EXPORT_SYMBOL(mf_allocate_lp_events);
561
562/*
563 * Global kernel interface to unseed and deallocate events already in
564 * Hypervisor.
565 */
566void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
567 unsigned count, MFCompleteHandler hdlr, void *user_token)
568{
569 struct pending_event *ev = new_pending_event();
570 int rc;
571
572 if (ev == NULL)
573 rc = -ENOMEM;
574 else {
575 ev->event.hp_lp_event.xSubtype = 5;
576 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
577 ev->event.hp_lp_event.x.xSubtypeData =
578 subtype_data('M', 'F', 'M', 'D');
579 ev->event.data.alloc.target_lp = target_lp;
580 ev->event.data.alloc.type = type;
581 ev->event.data.alloc.count = count;
582 ev->hdlr = hdlr;
583 rc = signal_event(ev);
584 }
585 if ((rc != 0) && (hdlr != NULL))
586 (*hdlr)(user_token, rc);
587}
588EXPORT_SYMBOL(mf_deallocate_lp_events);
589
590/*
591 * Global kernel interface to tell the VSP object in the primary
592 * partition to power this partition off.
593 */
594void mf_power_off(void)
595{
596 printk(KERN_INFO "mf.c: Down it goes...\n");
597 signal_ce_msg_simple(0x4d, NULL);
598 for (;;)
599 ;
600}
601
602/*
603 * Global kernel interface to tell the VSP object in the primary
604 * partition to reboot this partition.
605 */
606void mf_reboot(void)
607{
608 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
609 signal_ce_msg_simple(0x4e, NULL);
610 for (;;)
611 ;
612}
613
614/*
615 * Display a single word SRC onto the VSP control panel.
616 */
617void mf_display_src(u32 word)
618{
619 u8 ce[12];
620
621 memset(ce, 0, sizeof(ce));
622 ce[3] = 0x4a;
623 ce[7] = 0x01;
624 ce[8] = word >> 24;
625 ce[9] = word >> 16;
626 ce[10] = word >> 8;
627 ce[11] = word;
628 signal_ce_msg(ce, NULL);
629}
630
631/*
632 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
633 */
634void mf_display_progress(u16 value)
635{
636 u8 ce[12];
637 u8 src[72];
638
639 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
640 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
641 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
642 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
643 "\x00\x00\x00\x00PROGxxxx ",
644 72);
645 src[6] = value >> 8;
646 src[7] = value & 255;
647 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
648 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
649 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
650 src[47] = "0123456789ABCDEF"[value & 15];
651 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
652}
653
654/*
655 * Clear the VSP control panel. Used to "erase" an SRC that was
656 * previously displayed.
657 */
658void mf_clear_src(void)
659{
660 signal_ce_msg_simple(0x4b, NULL);
661}
662
663/*
664 * Initialization code here.
665 */
666void mf_init(void)
667{
668 int i;
669
670 /* initialize */
671 spin_lock_init(&pending_event_spinlock);
672 for (i = 0;
673 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
674 ++i)
675 free_pending_event(&pending_event_prealloc[i]);
676 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
677
678 /* virtual continue ack */
679 signal_ce_msg_simple(0x57, NULL);
680
681 /* initialization complete */
682 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
683 "initialized\n");
684}
685
686struct rtc_time_data {
687 struct completion com;
688 struct ce_msg_data ce_msg;
689 int rc;
690};
691
692static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
693{
694 struct rtc_time_data *rtc = token;
695
696 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
697 rtc->rc = 0;
698 complete(&rtc->com);
699}
700
Stephen Rothwelld0e8e292005-05-25 16:29:26 +1000701static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700703 tm->tm_wday = 0;
704 tm->tm_yday = 0;
705 tm->tm_isdst = 0;
Stephen Rothwelld0e8e292005-05-25 16:29:26 +1000706 if (rc) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707 tm->tm_sec = 0;
708 tm->tm_min = 0;
709 tm->tm_hour = 0;
710 tm->tm_mday = 15;
711 tm->tm_mon = 5;
712 tm->tm_year = 52;
Stephen Rothwelld0e8e292005-05-25 16:29:26 +1000713 return rc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714 }
715
Stephen Rothwelld0e8e292005-05-25 16:29:26 +1000716 if ((ce_msg[2] == 0xa9) ||
717 (ce_msg[2] == 0xaf)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 /* TOD clock is not set */
719 tm->tm_sec = 1;
720 tm->tm_min = 1;
721 tm->tm_hour = 1;
722 tm->tm_mday = 10;
723 tm->tm_mon = 8;
724 tm->tm_year = 71;
725 mf_set_rtc(tm);
726 }
727 {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728 u8 year = ce_msg[5];
729 u8 sec = ce_msg[6];
730 u8 min = ce_msg[7];
731 u8 hour = ce_msg[8];
732 u8 day = ce_msg[10];
733 u8 mon = ce_msg[11];
734
735 BCD_TO_BIN(sec);
736 BCD_TO_BIN(min);
737 BCD_TO_BIN(hour);
738 BCD_TO_BIN(day);
739 BCD_TO_BIN(mon);
740 BCD_TO_BIN(year);
741
742 if (year <= 69)
743 year += 100;
744
745 tm->tm_sec = sec;
746 tm->tm_min = min;
747 tm->tm_hour = hour;
748 tm->tm_mday = day;
749 tm->tm_mon = mon;
750 tm->tm_year = year;
751 }
752
753 return 0;
754}
755
Stephen Rothwelld0e8e292005-05-25 16:29:26 +1000756int mf_get_rtc(struct rtc_time *tm)
757{
758 struct ce_msg_comp_data ce_complete;
759 struct rtc_time_data rtc_data;
760 int rc;
761
762 memset(&ce_complete, 0, sizeof(ce_complete));
763 memset(&rtc_data, 0, sizeof(rtc_data));
764 init_completion(&rtc_data.com);
765 ce_complete.handler = &get_rtc_time_complete;
766 ce_complete.token = &rtc_data;
767 rc = signal_ce_msg_simple(0x40, &ce_complete);
768 if (rc)
769 return rc;
770 wait_for_completion(&rtc_data.com);
771 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
772}
773
774struct boot_rtc_time_data {
775 int busy;
776 struct ce_msg_data ce_msg;
777 int rc;
778};
779
780static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
781{
782 struct boot_rtc_time_data *rtc = token;
783
784 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
785 rtc->rc = 0;
786 rtc->busy = 0;
787}
788
789int mf_get_boot_rtc(struct rtc_time *tm)
790{
791 struct ce_msg_comp_data ce_complete;
792 struct boot_rtc_time_data rtc_data;
793 int rc;
794
795 memset(&ce_complete, 0, sizeof(ce_complete));
796 memset(&rtc_data, 0, sizeof(rtc_data));
797 rtc_data.busy = 1;
798 ce_complete.handler = &get_boot_rtc_time_complete;
799 ce_complete.token = &rtc_data;
800 rc = signal_ce_msg_simple(0x40, &ce_complete);
801 if (rc)
802 return rc;
803 /* We need to poll here as we are not yet taking interrupts */
804 while (rtc_data.busy) {
805 extern unsigned long lpevent_count;
806 struct ItLpQueue *lpq = get_paca()->lpqueue_ptr;
807 if (lpq && ItLpQueue_isLpIntPending(lpq))
808 lpevent_count += ItLpQueue_process(lpq, NULL);
809 }
810 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
811}
812
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813int mf_set_rtc(struct rtc_time *tm)
814{
815 char ce_time[12];
816 u8 day, mon, hour, min, sec, y1, y2;
817 unsigned year;
818
819 year = 1900 + tm->tm_year;
820 y1 = year / 100;
821 y2 = year % 100;
822
823 sec = tm->tm_sec;
824 min = tm->tm_min;
825 hour = tm->tm_hour;
826 day = tm->tm_mday;
827 mon = tm->tm_mon + 1;
828
829 BIN_TO_BCD(sec);
830 BIN_TO_BCD(min);
831 BIN_TO_BCD(hour);
832 BIN_TO_BCD(mon);
833 BIN_TO_BCD(day);
834 BIN_TO_BCD(y1);
835 BIN_TO_BCD(y2);
836
837 memset(ce_time, 0, sizeof(ce_time));
838 ce_time[3] = 0x41;
839 ce_time[4] = y1;
840 ce_time[5] = y2;
841 ce_time[6] = sec;
842 ce_time[7] = min;
843 ce_time[8] = hour;
844 ce_time[10] = day;
845 ce_time[11] = mon;
846
847 return signal_ce_msg(ce_time, NULL);
848}
849
850#ifdef CONFIG_PROC_FS
851
852static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
853 int count, int *eof, void *data)
854{
855 int len;
856 char *p;
857 struct vsp_cmd_data vsp_cmd;
858 int rc;
859 dma_addr_t dma_addr;
860
861 /* The HV appears to return no more than 256 bytes of command line */
862 if (off >= 256)
863 return 0;
864 if ((off + count) > 256)
865 count = 256 - off;
866
867 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
868 DMA_FROM_DEVICE);
869 if (dma_mapping_error(dma_addr))
870 return -ENOMEM;
871 memset(page, 0, off + count);
872 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
873 vsp_cmd.cmd = 33;
874 vsp_cmd.sub_data.kern.token = dma_addr;
875 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
876 vsp_cmd.sub_data.kern.side = (u64)data;
877 vsp_cmd.sub_data.kern.length = off + count;
878 mb();
879 rc = signal_vsp_instruction(&vsp_cmd);
880 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
881 DMA_FROM_DEVICE);
882 if (rc)
883 return rc;
884 if (vsp_cmd.result_code != 0)
885 return -ENOMEM;
886 p = page;
887 len = 0;
888 while (len < (off + count)) {
889 if ((*p == '\0') || (*p == '\n')) {
890 if (*p == '\0')
891 *p = '\n';
892 p++;
893 len++;
894 *eof = 1;
895 break;
896 }
897 p++;
898 len++;
899 }
900
901 if (len < off) {
902 *eof = 1;
903 len = 0;
904 }
905 return len;
906}
907
908#if 0
909static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
910{
911 struct vsp_cmd_data vsp_cmd;
912 int rc;
913 int len = *size;
914 dma_addr_t dma_addr;
915
916 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
917 DMA_FROM_DEVICE);
918 memset(buffer, 0, len);
919 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
920 vsp_cmd.cmd = 32;
921 vsp_cmd.sub_data.kern.token = dma_addr;
922 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
923 vsp_cmd.sub_data.kern.side = side;
924 vsp_cmd.sub_data.kern.offset = offset;
925 vsp_cmd.sub_data.kern.length = len;
926 mb();
927 rc = signal_vsp_instruction(&vsp_cmd);
928 if (rc == 0) {
929 if (vsp_cmd.result_code == 0)
930 *size = vsp_cmd.sub_data.length_out;
931 else
932 rc = -ENOMEM;
933 }
934
935 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
936
937 return rc;
938}
939
940static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
941 int count, int *eof, void *data)
942{
943 int sizeToGet = count;
944
945 if (!capable(CAP_SYS_ADMIN))
946 return -EACCES;
947
948 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
949 if (sizeToGet != 0) {
950 *start = page + off;
951 return sizeToGet;
952 }
953 *eof = 1;
954 return 0;
955 }
956 *eof = 1;
957 return 0;
958}
959#endif
960
961static int proc_mf_dump_side(char *page, char **start, off_t off,
962 int count, int *eof, void *data)
963{
964 int len;
965 char mf_current_side = ' ';
966 struct vsp_cmd_data vsp_cmd;
967
968 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
969 vsp_cmd.cmd = 2;
970 vsp_cmd.sub_data.ipl_type = 0;
971 mb();
972
973 if (signal_vsp_instruction(&vsp_cmd) == 0) {
974 if (vsp_cmd.result_code == 0) {
975 switch (vsp_cmd.sub_data.ipl_type) {
976 case 0: mf_current_side = 'A';
977 break;
978 case 1: mf_current_side = 'B';
979 break;
980 case 2: mf_current_side = 'C';
981 break;
982 default: mf_current_side = 'D';
983 break;
984 }
985 }
986 }
987
988 len = sprintf(page, "%c\n", mf_current_side);
989
990 if (len <= (off + count))
991 *eof = 1;
992 *start = page + off;
993 len -= off;
994 if (len > count)
995 len = count;
996 if (len < 0)
997 len = 0;
998 return len;
999}
1000
1001static int proc_mf_change_side(struct file *file, const char __user *buffer,
1002 unsigned long count, void *data)
1003{
1004 char side;
1005 u64 newSide;
1006 struct vsp_cmd_data vsp_cmd;
1007
1008 if (!capable(CAP_SYS_ADMIN))
1009 return -EACCES;
1010
1011 if (count == 0)
1012 return 0;
1013
1014 if (get_user(side, buffer))
1015 return -EFAULT;
1016
1017 switch (side) {
1018 case 'A': newSide = 0;
1019 break;
1020 case 'B': newSide = 1;
1021 break;
1022 case 'C': newSide = 2;
1023 break;
1024 case 'D': newSide = 3;
1025 break;
1026 default:
1027 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1028 return -EINVAL;
1029 }
1030
1031 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1032 vsp_cmd.sub_data.ipl_type = newSide;
1033 vsp_cmd.cmd = 10;
1034
1035 (void)signal_vsp_instruction(&vsp_cmd);
1036
1037 return count;
1038}
1039
1040#if 0
1041static void mf_getSrcHistory(char *buffer, int size)
1042{
1043 struct IplTypeReturnStuff return_stuff;
1044 struct pending_event *ev = new_pending_event();
1045 int rc = 0;
1046 char *pages[4];
1047
1048 pages[0] = kmalloc(4096, GFP_ATOMIC);
1049 pages[1] = kmalloc(4096, GFP_ATOMIC);
1050 pages[2] = kmalloc(4096, GFP_ATOMIC);
1051 pages[3] = kmalloc(4096, GFP_ATOMIC);
1052 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1053 || (pages[2] == NULL) || (pages[3] == NULL))
1054 return -ENOMEM;
1055
1056 return_stuff.xType = 0;
1057 return_stuff.xRc = 0;
1058 return_stuff.xDone = 0;
1059 ev->event.hp_lp_event.xSubtype = 6;
1060 ev->event.hp_lp_event.x.xSubtypeData =
1061 subtype_data('M', 'F', 'V', 'I');
1062 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1063 ev->event.data.vsp_cmd.cmd = 4;
1064 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1065 ev->event.data.vsp_cmd.result_code = 0xFF;
1066 ev->event.data.vsp_cmd.reserved = 0;
1067 ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]);
1068 ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]);
1069 ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]);
1070 ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]);
1071 mb();
1072 if (signal_event(ev) != 0)
1073 return;
1074
1075 while (return_stuff.xDone != 1)
1076 udelay(10);
1077 if (return_stuff.xRc == 0)
1078 memcpy(buffer, pages[0], size);
1079 kfree(pages[0]);
1080 kfree(pages[1]);
1081 kfree(pages[2]);
1082 kfree(pages[3]);
1083}
1084#endif
1085
1086static int proc_mf_dump_src(char *page, char **start, off_t off,
1087 int count, int *eof, void *data)
1088{
1089#if 0
1090 int len;
1091
1092 mf_getSrcHistory(page, count);
1093 len = count;
1094 len -= off;
1095 if (len < count) {
1096 *eof = 1;
1097 if (len <= 0)
1098 return 0;
1099 } else
1100 len = count;
1101 *start = page + off;
1102 return len;
1103#else
1104 return 0;
1105#endif
1106}
1107
1108static int proc_mf_change_src(struct file *file, const char __user *buffer,
1109 unsigned long count, void *data)
1110{
1111 char stkbuf[10];
1112
1113 if (!capable(CAP_SYS_ADMIN))
1114 return -EACCES;
1115
1116 if ((count < 4) && (count != 1)) {
1117 printk(KERN_ERR "mf_proc: invalid src\n");
1118 return -EINVAL;
1119 }
1120
1121 if (count > (sizeof(stkbuf) - 1))
1122 count = sizeof(stkbuf) - 1;
1123 if (copy_from_user(stkbuf, buffer, count))
1124 return -EFAULT;
1125
1126 if ((count == 1) && (*stkbuf == '\0'))
1127 mf_clear_src();
1128 else
1129 mf_display_src(*(u32 *)stkbuf);
1130
1131 return count;
1132}
1133
1134static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1135 unsigned long count, void *data)
1136{
1137 struct vsp_cmd_data vsp_cmd;
1138 dma_addr_t dma_addr;
1139 char *page;
1140 int ret = -EACCES;
1141
1142 if (!capable(CAP_SYS_ADMIN))
1143 goto out;
1144
1145 dma_addr = 0;
1146 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1147 GFP_ATOMIC);
1148 ret = -ENOMEM;
1149 if (page == NULL)
1150 goto out;
1151
1152 ret = -EFAULT;
1153 if (copy_from_user(page, buffer, count))
1154 goto out_free;
1155
1156 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1157 vsp_cmd.cmd = 31;
1158 vsp_cmd.sub_data.kern.token = dma_addr;
1159 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1160 vsp_cmd.sub_data.kern.side = (u64)data;
1161 vsp_cmd.sub_data.kern.length = count;
1162 mb();
1163 (void)signal_vsp_instruction(&vsp_cmd);
1164 ret = count;
1165
1166out_free:
1167 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1168out:
1169 return ret;
1170}
1171
1172static ssize_t proc_mf_change_vmlinux(struct file *file,
1173 const char __user *buf,
1174 size_t count, loff_t *ppos)
1175{
1176 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1177 ssize_t rc;
1178 dma_addr_t dma_addr;
1179 char *page;
1180 struct vsp_cmd_data vsp_cmd;
1181
1182 rc = -EACCES;
1183 if (!capable(CAP_SYS_ADMIN))
1184 goto out;
1185
1186 dma_addr = 0;
1187 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1188 GFP_ATOMIC);
1189 rc = -ENOMEM;
1190 if (page == NULL) {
1191 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1192 goto out;
1193 }
1194 rc = -EFAULT;
1195 if (copy_from_user(page, buf, count))
1196 goto out_free;
1197
1198 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1199 vsp_cmd.cmd = 30;
1200 vsp_cmd.sub_data.kern.token = dma_addr;
1201 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1202 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1203 vsp_cmd.sub_data.kern.offset = *ppos;
1204 vsp_cmd.sub_data.kern.length = count;
1205 mb();
1206 rc = signal_vsp_instruction(&vsp_cmd);
1207 if (rc)
1208 goto out_free;
1209 rc = -ENOMEM;
1210 if (vsp_cmd.result_code != 0)
1211 goto out_free;
1212
1213 *ppos += count;
1214 rc = count;
1215out_free:
1216 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1217out:
1218 return rc;
1219}
1220
1221static struct file_operations proc_vmlinux_operations = {
1222 .write = proc_mf_change_vmlinux,
1223};
1224
1225static int __init mf_proc_init(void)
1226{
1227 struct proc_dir_entry *mf_proc_root;
1228 struct proc_dir_entry *ent;
1229 struct proc_dir_entry *mf;
1230 char name[2];
1231 int i;
1232
1233 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1234 if (!mf_proc_root)
1235 return 1;
1236
1237 name[1] = '\0';
1238 for (i = 0; i < 4; i++) {
1239 name[0] = 'A' + i;
1240 mf = proc_mkdir(name, mf_proc_root);
1241 if (!mf)
1242 return 1;
1243
1244 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1245 if (!ent)
1246 return 1;
1247 ent->nlink = 1;
1248 ent->data = (void *)(long)i;
1249 ent->read_proc = proc_mf_dump_cmdline;
1250 ent->write_proc = proc_mf_change_cmdline;
1251
1252 if (i == 3) /* no vmlinux entry for 'D' */
1253 continue;
1254
1255 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1256 if (!ent)
1257 return 1;
1258 ent->nlink = 1;
1259 ent->data = (void *)(long)i;
1260 ent->proc_fops = &proc_vmlinux_operations;
1261 }
1262
1263 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1264 if (!ent)
1265 return 1;
1266 ent->nlink = 1;
1267 ent->data = (void *)0;
1268 ent->read_proc = proc_mf_dump_side;
1269 ent->write_proc = proc_mf_change_side;
1270
1271 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1272 if (!ent)
1273 return 1;
1274 ent->nlink = 1;
1275 ent->data = (void *)0;
1276 ent->read_proc = proc_mf_dump_src;
1277 ent->write_proc = proc_mf_change_src;
1278
1279 return 0;
1280}
1281
1282__initcall(mf_proc_init);
1283
1284#endif /* CONFIG_PROC_FS */