Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * ras.c |
| 3 | * Copyright (C) 2001 Dave Engebretsen IBM Corporation |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | */ |
| 19 | |
| 20 | /* Change Activity: |
| 21 | * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support. |
| 22 | * End Change Activity |
| 23 | */ |
| 24 | |
| 25 | #include <linux/errno.h> |
| 26 | #include <linux/threads.h> |
| 27 | #include <linux/kernel_stat.h> |
| 28 | #include <linux/signal.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/ioport.h> |
| 31 | #include <linux/interrupt.h> |
| 32 | #include <linux/timex.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/pci.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/irq.h> |
| 38 | #include <linux/random.h> |
| 39 | #include <linux/sysrq.h> |
| 40 | #include <linux/bitops.h> |
| 41 | |
| 42 | #include <asm/uaccess.h> |
| 43 | #include <asm/system.h> |
| 44 | #include <asm/io.h> |
| 45 | #include <asm/pgtable.h> |
| 46 | #include <asm/irq.h> |
| 47 | #include <asm/cache.h> |
| 48 | #include <asm/prom.h> |
| 49 | #include <asm/ptrace.h> |
| 50 | #include <asm/iSeries/LparData.h> |
| 51 | #include <asm/machdep.h> |
| 52 | #include <asm/rtas.h> |
| 53 | #include <asm/ppcdebug.h> |
| 54 | |
| 55 | static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; |
| 56 | static DEFINE_SPINLOCK(ras_log_buf_lock); |
| 57 | |
| 58 | char mce_data_buf[RTAS_ERROR_LOG_MAX] |
| 59 | ; |
| 60 | /* This is true if we are using the firmware NMI handler (typically LPAR) */ |
| 61 | extern int fwnmi_active; |
| 62 | |
| 63 | extern void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr); |
| 64 | |
| 65 | static int ras_get_sensor_state_token; |
| 66 | static int ras_check_exception_token; |
| 67 | |
| 68 | #define EPOW_SENSOR_TOKEN 9 |
| 69 | #define EPOW_SENSOR_INDEX 0 |
| 70 | #define RAS_VECTOR_OFFSET 0x500 |
| 71 | |
| 72 | static irqreturn_t ras_epow_interrupt(int irq, void *dev_id, |
| 73 | struct pt_regs * regs); |
| 74 | static irqreturn_t ras_error_interrupt(int irq, void *dev_id, |
| 75 | struct pt_regs * regs); |
| 76 | |
| 77 | /* #define DEBUG */ |
| 78 | |
| 79 | static void request_ras_irqs(struct device_node *np, char *propname, |
| 80 | irqreturn_t (*handler)(int, void *, struct pt_regs *), |
| 81 | const char *name) |
| 82 | { |
| 83 | unsigned int *ireg, len, i; |
| 84 | int virq, n_intr; |
| 85 | |
| 86 | ireg = (unsigned int *)get_property(np, propname, &len); |
| 87 | if (ireg == NULL) |
| 88 | return; |
| 89 | n_intr = prom_n_intr_cells(np); |
| 90 | len /= n_intr * sizeof(*ireg); |
| 91 | |
| 92 | for (i = 0; i < len; i++) { |
| 93 | virq = virt_irq_create_mapping(*ireg); |
| 94 | if (virq == NO_IRQ) { |
| 95 | printk(KERN_ERR "Unable to allocate interrupt " |
| 96 | "number for %s\n", np->full_name); |
| 97 | return; |
| 98 | } |
| 99 | if (request_irq(irq_offset_up(virq), handler, 0, name, NULL)) { |
| 100 | printk(KERN_ERR "Unable to request interrupt %d for " |
| 101 | "%s\n", irq_offset_up(virq), np->full_name); |
| 102 | return; |
| 103 | } |
| 104 | ireg += n_intr; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Initialize handlers for the set of interrupts caused by hardware errors |
| 110 | * and power system events. |
| 111 | */ |
| 112 | static int __init init_ras_IRQ(void) |
| 113 | { |
| 114 | struct device_node *np; |
| 115 | |
| 116 | ras_get_sensor_state_token = rtas_token("get-sensor-state"); |
| 117 | ras_check_exception_token = rtas_token("check-exception"); |
| 118 | |
| 119 | /* Internal Errors */ |
| 120 | np = of_find_node_by_path("/event-sources/internal-errors"); |
| 121 | if (np != NULL) { |
| 122 | request_ras_irqs(np, "open-pic-interrupt", ras_error_interrupt, |
| 123 | "RAS_ERROR"); |
| 124 | request_ras_irqs(np, "interrupts", ras_error_interrupt, |
| 125 | "RAS_ERROR"); |
| 126 | of_node_put(np); |
| 127 | } |
| 128 | |
| 129 | /* EPOW Events */ |
| 130 | np = of_find_node_by_path("/event-sources/epow-events"); |
| 131 | if (np != NULL) { |
| 132 | request_ras_irqs(np, "open-pic-interrupt", ras_epow_interrupt, |
| 133 | "RAS_EPOW"); |
| 134 | request_ras_irqs(np, "interrupts", ras_epow_interrupt, |
| 135 | "RAS_EPOW"); |
| 136 | of_node_put(np); |
| 137 | } |
| 138 | |
| 139 | return 1; |
| 140 | } |
| 141 | __initcall(init_ras_IRQ); |
| 142 | |
| 143 | /* |
| 144 | * Handle power subsystem events (EPOW). |
| 145 | * |
| 146 | * Presently we just log the event has occurred. This should be fixed |
| 147 | * to examine the type of power failure and take appropriate action where |
| 148 | * the time horizon permits something useful to be done. |
| 149 | */ |
| 150 | static irqreturn_t |
| 151 | ras_epow_interrupt(int irq, void *dev_id, struct pt_regs * regs) |
| 152 | { |
| 153 | int status = 0xdeadbeef; |
| 154 | int state = 0; |
| 155 | int critical; |
| 156 | |
| 157 | status = rtas_call(ras_get_sensor_state_token, 2, 2, &state, |
| 158 | EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX); |
| 159 | |
| 160 | if (state > 3) |
| 161 | critical = 1; /* Time Critical */ |
| 162 | else |
| 163 | critical = 0; |
| 164 | |
| 165 | spin_lock(&ras_log_buf_lock); |
| 166 | |
| 167 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, |
| 168 | RAS_VECTOR_OFFSET, |
| 169 | virt_irq_to_real(irq_offset_down(irq)), |
| 170 | RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS, |
| 171 | critical, __pa(&ras_log_buf), |
| 172 | rtas_get_error_log_max()); |
| 173 | |
| 174 | udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n", |
| 175 | *((unsigned long *)&ras_log_buf), status, state); |
| 176 | printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n", |
| 177 | *((unsigned long *)&ras_log_buf), status, state); |
| 178 | |
| 179 | /* format and print the extended information */ |
| 180 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); |
| 181 | |
| 182 | spin_unlock(&ras_log_buf_lock); |
| 183 | return IRQ_HANDLED; |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Handle hardware error interrupts. |
| 188 | * |
| 189 | * RTAS check-exception is called to collect data on the exception. If |
| 190 | * the error is deemed recoverable, we log a warning and return. |
| 191 | * For nonrecoverable errors, an error is logged and we stop all processing |
| 192 | * as quickly as possible in order to prevent propagation of the failure. |
| 193 | */ |
| 194 | static irqreturn_t |
| 195 | ras_error_interrupt(int irq, void *dev_id, struct pt_regs * regs) |
| 196 | { |
| 197 | struct rtas_error_log *rtas_elog; |
| 198 | int status = 0xdeadbeef; |
| 199 | int fatal; |
| 200 | |
| 201 | spin_lock(&ras_log_buf_lock); |
| 202 | |
| 203 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, |
| 204 | RAS_VECTOR_OFFSET, |
| 205 | virt_irq_to_real(irq_offset_down(irq)), |
| 206 | RTAS_INTERNAL_ERROR, 1 /*Time Critical */, |
| 207 | __pa(&ras_log_buf), |
| 208 | rtas_get_error_log_max()); |
| 209 | |
| 210 | rtas_elog = (struct rtas_error_log *)ras_log_buf; |
| 211 | |
| 212 | if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC)) |
| 213 | fatal = 1; |
| 214 | else |
| 215 | fatal = 0; |
| 216 | |
| 217 | /* format and print the extended information */ |
| 218 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); |
| 219 | |
| 220 | if (fatal) { |
| 221 | udbg_printf("Fatal HW Error <0x%lx 0x%x>\n", |
| 222 | *((unsigned long *)&ras_log_buf), status); |
| 223 | printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n", |
| 224 | *((unsigned long *)&ras_log_buf), status); |
| 225 | |
| 226 | #ifndef DEBUG |
| 227 | /* Don't actually power off when debugging so we can test |
| 228 | * without actually failing while injecting errors. |
| 229 | * Error data will not be logged to syslog. |
| 230 | */ |
| 231 | ppc_md.power_off(); |
| 232 | #endif |
| 233 | } else { |
| 234 | udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n", |
| 235 | *((unsigned long *)&ras_log_buf), status); |
| 236 | printk(KERN_WARNING |
| 237 | "Warning: Recoverable hardware error <0x%lx 0x%x>\n", |
| 238 | *((unsigned long *)&ras_log_buf), status); |
| 239 | } |
| 240 | |
| 241 | spin_unlock(&ras_log_buf_lock); |
| 242 | return IRQ_HANDLED; |
| 243 | } |
| 244 | |
| 245 | /* Get the error information for errors coming through the |
| 246 | * FWNMI vectors. The pt_regs' r3 will be updated to reflect |
| 247 | * the actual r3 if possible, and a ptr to the error log entry |
| 248 | * will be returned if found. |
| 249 | * |
| 250 | * The mce_data_buf does not have any locks or protection around it, |
| 251 | * if a second machine check comes in, or a system reset is done |
| 252 | * before we have logged the error, then we will get corruption in the |
| 253 | * error log. This is preferable over holding off on calling |
| 254 | * ibm,nmi-interlock which would result in us checkstopping if a |
| 255 | * second machine check did come in. |
| 256 | */ |
| 257 | static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) |
| 258 | { |
| 259 | unsigned long errdata = regs->gpr[3]; |
| 260 | struct rtas_error_log *errhdr = NULL; |
| 261 | unsigned long *savep; |
| 262 | |
| 263 | if ((errdata >= 0x7000 && errdata < 0x7fff0) || |
| 264 | (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) { |
| 265 | savep = __va(errdata); |
| 266 | regs->gpr[3] = savep[0]; /* restore original r3 */ |
| 267 | memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX); |
| 268 | memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX); |
| 269 | errhdr = (struct rtas_error_log *)mce_data_buf; |
| 270 | } else { |
| 271 | printk("FWNMI: corrupt r3\n"); |
| 272 | } |
| 273 | return errhdr; |
| 274 | } |
| 275 | |
| 276 | /* Call this when done with the data returned by FWNMI_get_errinfo. |
| 277 | * It will release the saved data area for other CPUs in the |
| 278 | * partition to receive FWNMI errors. |
| 279 | */ |
| 280 | static void fwnmi_release_errinfo(void) |
| 281 | { |
| 282 | int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); |
| 283 | if (ret != 0) |
| 284 | printk("FWNMI: nmi-interlock failed: %d\n", ret); |
| 285 | } |
| 286 | |
| 287 | void pSeries_system_reset_exception(struct pt_regs *regs) |
| 288 | { |
| 289 | if (fwnmi_active) { |
| 290 | struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); |
| 291 | if (errhdr) { |
| 292 | /* XXX Should look at FWNMI information */ |
| 293 | } |
| 294 | fwnmi_release_errinfo(); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * See if we can recover from a machine check exception. |
| 300 | * This is only called on power4 (or above) and only via |
| 301 | * the Firmware Non-Maskable Interrupts (fwnmi) handler |
| 302 | * which provides the error analysis for us. |
| 303 | * |
| 304 | * Return 1 if corrected (or delivered a signal). |
| 305 | * Return 0 if there is nothing we can do. |
| 306 | */ |
| 307 | static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err) |
| 308 | { |
| 309 | int nonfatal = 0; |
| 310 | |
| 311 | if (err->disposition == RTAS_DISP_FULLY_RECOVERED) { |
| 312 | /* Platform corrected itself */ |
| 313 | nonfatal = 1; |
| 314 | } else if ((regs->msr & MSR_RI) && |
| 315 | user_mode(regs) && |
| 316 | err->severity == RTAS_SEVERITY_ERROR_SYNC && |
| 317 | err->disposition == RTAS_DISP_NOT_RECOVERED && |
| 318 | err->target == RTAS_TARGET_MEMORY && |
| 319 | err->type == RTAS_TYPE_ECC_UNCORR && |
| 320 | !(current->pid == 0 || current->pid == 1)) { |
| 321 | /* Kill off a user process with an ECC error */ |
| 322 | printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n", |
| 323 | current->pid); |
| 324 | /* XXX something better for ECC error? */ |
| 325 | _exception(SIGBUS, regs, BUS_ADRERR, regs->nip); |
| 326 | nonfatal = 1; |
| 327 | } |
| 328 | |
| 329 | log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal); |
| 330 | |
| 331 | return nonfatal; |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * Handle a machine check. |
| 336 | * |
| 337 | * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) |
| 338 | * should be present. If so the handler which called us tells us if the |
| 339 | * error was recovered (never true if RI=0). |
| 340 | * |
| 341 | * On hardware prior to Power 4 these exceptions were asynchronous which |
| 342 | * means we can't tell exactly where it occurred and so we can't recover. |
| 343 | */ |
| 344 | int pSeries_machine_check_exception(struct pt_regs *regs) |
| 345 | { |
| 346 | struct rtas_error_log *errp; |
| 347 | |
| 348 | if (fwnmi_active) { |
| 349 | errp = fwnmi_get_errinfo(regs); |
| 350 | fwnmi_release_errinfo(); |
| 351 | if (errp && recover_mce(regs, errp)) |
| 352 | return 1; |
| 353 | } |
| 354 | |
| 355 | return 0; |
| 356 | } |