Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * skystar2.c - driver for the Technisat SkyStar2 PCI DVB card |
| 3 | * based on the FlexCopII by B2C2,Inc. |
| 4 | * |
| 5 | * Copyright (C) 2003 Vadim Catana, skystar@moldova.cc |
| 6 | * |
| 7 | * FIX: DISEQC Tone Burst in flexcop_diseqc_ioctl() |
| 8 | * FIX: FULL soft DiSEqC for skystar2 (FlexCopII rev 130) VP310 equipped |
| 9 | * Vincenzo Di Massa, hawk.it at tiscalinet.it |
| 10 | * |
| 11 | * Converted to Linux coding style |
| 12 | * Misc reorganization, polishing, restyling |
| 13 | * Roberto Ragusa, skystar2-c5b8 at robertoragusa dot it |
| 14 | * |
| 15 | * Added hardware filtering support, |
| 16 | * Niklas Peinecke, peinecke at gdv.uni-hannover.de |
| 17 | * |
| 18 | * |
| 19 | * This program is free software; you can redistribute it and/or |
| 20 | * modify it under the terms of the GNU Lesser General Public License |
| 21 | * as published by the Free Software Foundation; either version 2.1 |
| 22 | * of the License, or (at your option) any later version. |
| 23 | * |
| 24 | * This program is distributed in the hope that it will be useful, |
| 25 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 27 | * GNU General Public License for more details. |
| 28 | * |
| 29 | * You should have received a copy of the GNU Lesser General Public License |
| 30 | * along with this program; if not, write to the Free Software |
| 31 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/module.h> |
| 35 | #include <linux/moduleparam.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/pci.h> |
| 38 | #include <linux/init.h> |
| 39 | #include <linux/version.h> |
| 40 | |
| 41 | #include <asm/io.h> |
| 42 | |
| 43 | #include "dvb_frontend.h" |
| 44 | |
| 45 | #include <linux/dvb/frontend.h> |
| 46 | #include <linux/dvb/dmx.h> |
| 47 | #include "dvb_demux.h" |
| 48 | #include "dmxdev.h" |
| 49 | #include "dvb_filter.h" |
| 50 | #include "dvbdev.h" |
| 51 | #include "demux.h" |
| 52 | #include "dvb_net.h" |
| 53 | #include "stv0299.h" |
| 54 | #include "mt352.h" |
| 55 | #include "mt312.h" |
| 56 | #include "nxt2002.h" |
| 57 | |
| 58 | static int debug; |
| 59 | static int enable_hw_filters = 2; |
| 60 | |
| 61 | module_param(debug, int, 0644); |
| 62 | MODULE_PARM_DESC(debug, "Set debugging level (0 = default, 1 = most messages, 2 = all messages)."); |
| 63 | module_param(enable_hw_filters, int, 0444); |
| 64 | MODULE_PARM_DESC(enable_hw_filters, "enable hardware filters: supported values: 0 (none), 1, 2"); |
| 65 | |
| 66 | #define dprintk(x...) do { if (debug>=1) printk(x); } while (0) |
| 67 | #define ddprintk(x...) do { if (debug>=2) printk(x); } while (0) |
| 68 | |
| 69 | #define SIZE_OF_BUF_DMA1 0x3ac00 |
| 70 | #define SIZE_OF_BUF_DMA2 0x758 |
| 71 | |
| 72 | #define MAX_N_HW_FILTERS (6+32) |
| 73 | #define N_PID_SLOTS 256 |
| 74 | |
| 75 | struct dmaq { |
| 76 | u32 bus_addr; |
| 77 | u32 head; |
| 78 | u32 tail; |
| 79 | u32 buffer_size; |
| 80 | u8 *buffer; |
| 81 | }; |
| 82 | |
| 83 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) |
| 84 | #define __iomem |
| 85 | #endif |
| 86 | |
| 87 | struct adapter { |
| 88 | struct pci_dev *pdev; |
| 89 | |
| 90 | u8 card_revision; |
| 91 | u32 b2c2_revision; |
| 92 | u32 pid_filter_max; |
| 93 | u32 mac_filter_max; |
| 94 | u32 irq; |
| 95 | void __iomem *io_mem; |
| 96 | unsigned long io_port; |
| 97 | u8 mac_addr[8]; |
| 98 | u32 dw_sram_type; |
| 99 | |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 100 | struct dvb_adapter dvb_adapter; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 101 | struct dvb_demux demux; |
| 102 | struct dmxdev dmxdev; |
| 103 | struct dmx_frontend hw_frontend; |
| 104 | struct dmx_frontend mem_frontend; |
| 105 | struct i2c_adapter i2c_adap; |
| 106 | struct dvb_net dvbnet; |
| 107 | |
| 108 | struct semaphore i2c_sem; |
| 109 | |
| 110 | struct dmaq dmaq1; |
| 111 | struct dmaq dmaq2; |
| 112 | |
| 113 | u32 dma_ctrl; |
| 114 | u32 dma_status; |
| 115 | |
| 116 | int capturing; |
| 117 | |
| 118 | spinlock_t lock; |
| 119 | |
| 120 | int useable_hw_filters; |
| 121 | u16 hw_pids[MAX_N_HW_FILTERS]; |
| 122 | u16 pid_list[N_PID_SLOTS]; |
| 123 | int pid_rc[N_PID_SLOTS]; // ref counters for the pids |
| 124 | int pid_count; |
| 125 | int whole_bandwidth_count; |
| 126 | u32 mac_filter; |
| 127 | |
| 128 | struct dvb_frontend* fe; |
| 129 | int (*fe_sleep)(struct dvb_frontend* fe); |
| 130 | }; |
| 131 | |
| 132 | #define write_reg_dw(adapter,reg,value) writel(value, adapter->io_mem + reg) |
| 133 | #define read_reg_dw(adapter,reg) readl(adapter->io_mem + reg) |
| 134 | |
| 135 | static void write_reg_bitfield(struct adapter *adapter, u32 reg, u32 zeromask, u32 orvalue) |
| 136 | { |
| 137 | u32 tmp; |
| 138 | |
| 139 | tmp = read_reg_dw(adapter, reg); |
| 140 | tmp = (tmp & ~zeromask) | orvalue; |
| 141 | write_reg_dw(adapter, reg, tmp); |
| 142 | } |
| 143 | |
| 144 | /* i2c functions */ |
| 145 | static int i2c_main_write_for_flex2(struct adapter *adapter, u32 command, u8 *buf, int retries) |
| 146 | { |
| 147 | int i; |
| 148 | u32 value; |
| 149 | |
| 150 | write_reg_dw(adapter, 0x100, 0); |
| 151 | write_reg_dw(adapter, 0x100, command); |
| 152 | |
| 153 | for (i = 0; i < retries; i++) { |
| 154 | value = read_reg_dw(adapter, 0x100); |
| 155 | |
| 156 | if ((value & 0x40000000) == 0) { |
| 157 | if ((value & 0x81000000) == 0x80000000) { |
| 158 | if (buf != 0) |
| 159 | *buf = (value >> 0x10) & 0xff; |
| 160 | |
| 161 | return 1; |
| 162 | } |
| 163 | } else { |
| 164 | write_reg_dw(adapter, 0x100, 0); |
| 165 | write_reg_dw(adapter, 0x100, command); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | /* device = 0x10000000 for tuner, 0x20000000 for eeprom */ |
| 173 | static void i2c_main_setup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command) |
| 174 | { |
| 175 | *command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr; |
| 176 | |
| 177 | if (op != 0) |
| 178 | *command = *command | 0x03000000; |
| 179 | else |
| 180 | *command = *command | 0x01000000; |
| 181 | } |
| 182 | |
| 183 | static int flex_i2c_read4(struct adapter *adapter, u32 device, u32 chip_addr, u16 addr, u8 *buf, u8 len) |
| 184 | { |
| 185 | u32 command; |
| 186 | u32 value; |
| 187 | |
| 188 | int result, i; |
| 189 | |
| 190 | i2c_main_setup(device, chip_addr, 1, addr, 0, len, &command); |
| 191 | |
| 192 | result = i2c_main_write_for_flex2(adapter, command, buf, 100000); |
| 193 | |
| 194 | if ((result & 0xff) != 0) { |
| 195 | if (len > 1) { |
| 196 | value = read_reg_dw(adapter, 0x104); |
| 197 | |
| 198 | for (i = 1; i < len; i++) { |
| 199 | buf[i] = value & 0xff; |
| 200 | value = value >> 8; |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | return result; |
| 206 | } |
| 207 | |
| 208 | static int flex_i2c_write4(struct adapter *adapter, u32 device, u32 chip_addr, u32 addr, u8 *buf, u8 len) |
| 209 | { |
| 210 | u32 command; |
| 211 | u32 value; |
| 212 | int i; |
| 213 | |
| 214 | if (len > 1) { |
| 215 | value = 0; |
| 216 | |
| 217 | for (i = len; i > 1; i--) { |
| 218 | value = value << 8; |
| 219 | value = value | buf[i - 1]; |
| 220 | } |
| 221 | |
| 222 | write_reg_dw(adapter, 0x104, value); |
| 223 | } |
| 224 | |
| 225 | i2c_main_setup(device, chip_addr, 0, addr, buf[0], len, &command); |
| 226 | |
| 227 | return i2c_main_write_for_flex2(adapter, command, NULL, 100000); |
| 228 | } |
| 229 | |
| 230 | static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret) |
| 231 | { |
| 232 | if (device == 0x20000000) |
| 233 | *ret = bus | ((addr >> 8) & 3); |
| 234 | else |
| 235 | *ret = bus; |
| 236 | } |
| 237 | |
| 238 | static u32 flex_i2c_read(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) |
| 239 | { |
| 240 | u32 chipaddr; |
| 241 | u32 bytes_to_transfer; |
| 242 | u8 *start; |
| 243 | |
| 244 | ddprintk("%s:\n", __FUNCTION__); |
| 245 | |
| 246 | start = buf; |
| 247 | |
| 248 | while (len != 0) { |
| 249 | bytes_to_transfer = len; |
| 250 | |
| 251 | if (bytes_to_transfer > 4) |
| 252 | bytes_to_transfer = 4; |
| 253 | |
| 254 | fixchipaddr(device, bus, addr, &chipaddr); |
| 255 | |
| 256 | if (flex_i2c_read4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) |
| 257 | return buf - start; |
| 258 | |
| 259 | buf = buf + bytes_to_transfer; |
| 260 | addr = addr + bytes_to_transfer; |
| 261 | len = len - bytes_to_transfer; |
| 262 | }; |
| 263 | |
| 264 | return buf - start; |
| 265 | } |
| 266 | |
| 267 | static u32 flex_i2c_write(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) |
| 268 | { |
| 269 | u32 chipaddr; |
| 270 | u32 bytes_to_transfer; |
| 271 | u8 *start; |
| 272 | |
| 273 | ddprintk("%s:\n", __FUNCTION__); |
| 274 | |
| 275 | start = buf; |
| 276 | |
| 277 | while (len != 0) { |
| 278 | bytes_to_transfer = len; |
| 279 | |
| 280 | if (bytes_to_transfer > 4) |
| 281 | bytes_to_transfer = 4; |
| 282 | |
| 283 | fixchipaddr(device, bus, addr, &chipaddr); |
| 284 | |
| 285 | if (flex_i2c_write4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) |
| 286 | return buf - start; |
| 287 | |
| 288 | buf = buf + bytes_to_transfer; |
| 289 | addr = addr + bytes_to_transfer; |
| 290 | len = len - bytes_to_transfer; |
| 291 | } |
| 292 | |
| 293 | return buf - start; |
| 294 | } |
| 295 | |
| 296 | static int master_xfer(struct i2c_adapter* adapter, struct i2c_msg *msgs, int num) |
| 297 | { |
| 298 | struct adapter *tmp = i2c_get_adapdata(adapter); |
| 299 | int i, ret = 0; |
| 300 | |
| 301 | if (down_interruptible(&tmp->i2c_sem)) |
| 302 | return -ERESTARTSYS; |
| 303 | |
| 304 | ddprintk("%s: %d messages to transfer\n", __FUNCTION__, num); |
| 305 | |
| 306 | for (i = 0; i < num; i++) { |
| 307 | ddprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, |
| 308 | msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); |
| 309 | } |
| 310 | |
| 311 | // read command |
| 312 | if ((num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL)) { |
| 313 | |
| 314 | ret = flex_i2c_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); |
| 315 | |
| 316 | up(&tmp->i2c_sem); |
| 317 | |
| 318 | if (ret != msgs[1].len) { |
| 319 | dprintk("%s: read error !\n", __FUNCTION__); |
| 320 | |
| 321 | for (i = 0; i < 2; i++) { |
| 322 | dprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, |
| 323 | msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); |
| 324 | } |
| 325 | |
| 326 | return -EREMOTEIO; |
| 327 | } |
| 328 | |
| 329 | return num; |
| 330 | } |
| 331 | // write command |
| 332 | for (i = 0; i < num; i++) { |
| 333 | |
| 334 | if ((msgs[i].flags != 0) || (msgs[i].buf == NULL) || (msgs[i].len < 2)) |
| 335 | return -EINVAL; |
| 336 | |
| 337 | ret = flex_i2c_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1); |
| 338 | |
| 339 | up(&tmp->i2c_sem); |
| 340 | |
| 341 | if (ret != msgs[0].len - 1) { |
| 342 | dprintk("%s: write error %i !\n", __FUNCTION__, ret); |
| 343 | |
| 344 | dprintk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i, |
| 345 | msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); |
| 346 | |
| 347 | return -EREMOTEIO; |
| 348 | } |
| 349 | |
| 350 | return num; |
| 351 | } |
| 352 | |
| 353 | printk("%s: unknown command format !\n", __FUNCTION__); |
| 354 | |
| 355 | return -EINVAL; |
| 356 | } |
| 357 | |
| 358 | /* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board, |
| 359 | but it seems that FlexCopII can work with more than one chip) */ |
| 360 | static void sram_set_net_dest(struct adapter *adapter, u8 dest) |
| 361 | { |
| 362 | u32 tmp; |
| 363 | |
| 364 | udelay(1000); |
| 365 | |
| 366 | tmp = (read_reg_dw(adapter, 0x714) & 0xfffffffc) | (dest & 3); |
| 367 | |
| 368 | udelay(1000); |
| 369 | |
| 370 | write_reg_dw(adapter, 0x714, tmp); |
| 371 | write_reg_dw(adapter, 0x714, tmp); |
| 372 | |
| 373 | udelay(1000); |
| 374 | |
| 375 | /* return value is never used? */ |
| 376 | /* return tmp; */ |
| 377 | } |
| 378 | |
| 379 | static void sram_set_cai_dest(struct adapter *adapter, u8 dest) |
| 380 | { |
| 381 | u32 tmp; |
| 382 | |
| 383 | udelay(1000); |
| 384 | |
| 385 | tmp = (read_reg_dw(adapter, 0x714) & 0xfffffff3) | ((dest & 3) << 2); |
| 386 | |
| 387 | udelay(1000); |
| 388 | udelay(1000); |
| 389 | |
| 390 | write_reg_dw(adapter, 0x714, tmp); |
| 391 | write_reg_dw(adapter, 0x714, tmp); |
| 392 | |
| 393 | udelay(1000); |
| 394 | |
| 395 | /* return value is never used? */ |
| 396 | /* return tmp; */ |
| 397 | } |
| 398 | |
| 399 | static void sram_set_cao_dest(struct adapter *adapter, u8 dest) |
| 400 | { |
| 401 | u32 tmp; |
| 402 | |
| 403 | udelay(1000); |
| 404 | |
| 405 | tmp = (read_reg_dw(adapter, 0x714) & 0xffffffcf) | ((dest & 3) << 4); |
| 406 | |
| 407 | udelay(1000); |
| 408 | udelay(1000); |
| 409 | |
| 410 | write_reg_dw(adapter, 0x714, tmp); |
| 411 | write_reg_dw(adapter, 0x714, tmp); |
| 412 | |
| 413 | udelay(1000); |
| 414 | |
| 415 | /* return value is never used? */ |
| 416 | /* return tmp; */ |
| 417 | } |
| 418 | |
| 419 | static void sram_set_media_dest(struct adapter *adapter, u8 dest) |
| 420 | { |
| 421 | u32 tmp; |
| 422 | |
| 423 | udelay(1000); |
| 424 | |
| 425 | tmp = (read_reg_dw(adapter, 0x714) & 0xffffff3f) | ((dest & 3) << 6); |
| 426 | |
| 427 | udelay(1000); |
| 428 | udelay(1000); |
| 429 | |
| 430 | write_reg_dw(adapter, 0x714, tmp); |
| 431 | write_reg_dw(adapter, 0x714, tmp); |
| 432 | |
| 433 | udelay(1000); |
| 434 | |
| 435 | /* return value is never used? */ |
| 436 | /* return tmp; */ |
| 437 | } |
| 438 | |
| 439 | /* SRAM memory is accessed through a buffer register in the FlexCop |
| 440 | chip (0x700). This register has the following structure: |
| 441 | bits 0-14 : address |
| 442 | bit 15 : read/write flag |
| 443 | bits 16-23 : 8-bit word to write |
| 444 | bits 24-27 : = 4 |
| 445 | bits 28-29 : memory bank selector |
| 446 | bit 31 : busy flag |
| 447 | */ |
| 448 | static void flex_sram_write(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) |
| 449 | { |
| 450 | int i, retries; |
| 451 | u32 command; |
| 452 | |
| 453 | for (i = 0; i < len; i++) { |
| 454 | command = bank | addr | 0x04000000 | (*buf << 0x10); |
| 455 | |
| 456 | retries = 2; |
| 457 | |
| 458 | while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { |
| 459 | mdelay(1); |
| 460 | retries--; |
| 461 | }; |
| 462 | |
| 463 | if (retries == 0) |
| 464 | printk("%s: SRAM timeout\n", __FUNCTION__); |
| 465 | |
| 466 | write_reg_dw(adapter, 0x700, command); |
| 467 | |
| 468 | buf++; |
| 469 | addr++; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | static void flex_sram_read(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) |
| 474 | { |
| 475 | int i, retries; |
| 476 | u32 command, value; |
| 477 | |
| 478 | for (i = 0; i < len; i++) { |
| 479 | command = bank | addr | 0x04008000; |
| 480 | |
| 481 | retries = 10000; |
| 482 | |
| 483 | while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { |
| 484 | mdelay(1); |
| 485 | retries--; |
| 486 | }; |
| 487 | |
| 488 | if (retries == 0) |
| 489 | printk("%s: SRAM timeout\n", __FUNCTION__); |
| 490 | |
| 491 | write_reg_dw(adapter, 0x700, command); |
| 492 | |
| 493 | retries = 10000; |
| 494 | |
| 495 | while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { |
| 496 | mdelay(1); |
| 497 | retries--; |
| 498 | }; |
| 499 | |
| 500 | if (retries == 0) |
| 501 | printk("%s: SRAM timeout\n", __FUNCTION__); |
| 502 | |
| 503 | value = read_reg_dw(adapter, 0x700) >> 0x10; |
| 504 | |
| 505 | *buf = (value & 0xff); |
| 506 | |
| 507 | addr++; |
| 508 | buf++; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | static void sram_write_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) |
| 513 | { |
| 514 | u32 bank; |
| 515 | |
| 516 | bank = 0; |
| 517 | |
| 518 | if (adapter->dw_sram_type == 0x20000) { |
| 519 | bank = (addr & 0x18000) << 0x0d; |
| 520 | } |
| 521 | |
| 522 | if (adapter->dw_sram_type == 0x00000) { |
| 523 | if ((addr >> 0x0f) == 0) |
| 524 | bank = 0x20000000; |
| 525 | else |
| 526 | bank = 0x10000000; |
| 527 | } |
| 528 | |
| 529 | flex_sram_write(adapter, bank, addr & 0x7fff, buf, len); |
| 530 | } |
| 531 | |
| 532 | static void sram_read_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) |
| 533 | { |
| 534 | u32 bank; |
| 535 | |
| 536 | bank = 0; |
| 537 | |
| 538 | if (adapter->dw_sram_type == 0x20000) { |
| 539 | bank = (addr & 0x18000) << 0x0d; |
| 540 | } |
| 541 | |
| 542 | if (adapter->dw_sram_type == 0x00000) { |
| 543 | if ((addr >> 0x0f) == 0) |
| 544 | bank = 0x20000000; |
| 545 | else |
| 546 | bank = 0x10000000; |
| 547 | } |
| 548 | |
| 549 | flex_sram_read(adapter, bank, addr & 0x7fff, buf, len); |
| 550 | } |
| 551 | |
| 552 | static void sram_read(struct adapter *adapter, u32 addr, u8 *buf, u32 len) |
| 553 | { |
| 554 | u32 length; |
| 555 | |
| 556 | while (len != 0) { |
| 557 | length = len; |
| 558 | |
| 559 | // check if the address range belongs to the same |
| 560 | // 32K memory chip. If not, the data is read from |
| 561 | // one chip at a time. |
| 562 | if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { |
| 563 | length = (((addr >> 0x0f) + 1) << 0x0f) - addr; |
| 564 | } |
| 565 | |
| 566 | sram_read_chunk(adapter, addr, buf, length); |
| 567 | |
| 568 | addr = addr + length; |
| 569 | buf = buf + length; |
| 570 | len = len - length; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | static void sram_write(struct adapter *adapter, u32 addr, u8 *buf, u32 len) |
| 575 | { |
| 576 | u32 length; |
| 577 | |
| 578 | while (len != 0) { |
| 579 | length = len; |
| 580 | |
| 581 | // check if the address range belongs to the same |
| 582 | // 32K memory chip. If not, the data is written to |
| 583 | // one chip at a time. |
| 584 | if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { |
| 585 | length = (((addr >> 0x0f) + 1) << 0x0f) - addr; |
| 586 | } |
| 587 | |
| 588 | sram_write_chunk(adapter, addr, buf, length); |
| 589 | |
| 590 | addr = addr + length; |
| 591 | buf = buf + length; |
| 592 | len = len - length; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | static void sram_set_size(struct adapter *adapter, u32 mask) |
| 597 | { |
| 598 | write_reg_dw(adapter, 0x71c, (mask | (~0x30000 & read_reg_dw(adapter, 0x71c)))); |
| 599 | } |
| 600 | |
| 601 | static void sram_init(struct adapter *adapter) |
| 602 | { |
| 603 | u32 tmp; |
| 604 | |
| 605 | tmp = read_reg_dw(adapter, 0x71c); |
| 606 | |
| 607 | write_reg_dw(adapter, 0x71c, 1); |
| 608 | |
| 609 | if (read_reg_dw(adapter, 0x71c) != 0) { |
| 610 | write_reg_dw(adapter, 0x71c, tmp); |
| 611 | |
| 612 | adapter->dw_sram_type = tmp & 0x30000; |
| 613 | |
| 614 | ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); |
| 615 | |
| 616 | } else { |
| 617 | |
| 618 | adapter->dw_sram_type = 0x10000; |
| 619 | |
| 620 | ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); |
| 621 | } |
| 622 | |
| 623 | /* return value is never used? */ |
| 624 | /* return adapter->dw_sram_type; */ |
| 625 | } |
| 626 | |
| 627 | static int sram_test_location(struct adapter *adapter, u32 mask, u32 addr) |
| 628 | { |
| 629 | u8 tmp1, tmp2; |
| 630 | |
| 631 | dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr); |
| 632 | |
| 633 | sram_set_size(adapter, mask); |
| 634 | sram_init(adapter); |
| 635 | |
| 636 | tmp2 = 0xa5; |
| 637 | tmp1 = 0x4f; |
| 638 | |
| 639 | sram_write(adapter, addr, &tmp2, 1); |
| 640 | sram_write(adapter, addr + 4, &tmp1, 1); |
| 641 | |
| 642 | tmp2 = 0; |
| 643 | |
| 644 | mdelay(20); |
| 645 | |
| 646 | sram_read(adapter, addr, &tmp2, 1); |
| 647 | sram_read(adapter, addr, &tmp2, 1); |
| 648 | |
| 649 | dprintk("%s: wrote 0xa5, read 0x%2x\n", __FUNCTION__, tmp2); |
| 650 | |
| 651 | if (tmp2 != 0xa5) |
| 652 | return 0; |
| 653 | |
| 654 | tmp2 = 0x5a; |
| 655 | tmp1 = 0xf4; |
| 656 | |
| 657 | sram_write(adapter, addr, &tmp2, 1); |
| 658 | sram_write(adapter, addr + 4, &tmp1, 1); |
| 659 | |
| 660 | tmp2 = 0; |
| 661 | |
| 662 | mdelay(20); |
| 663 | |
| 664 | sram_read(adapter, addr, &tmp2, 1); |
| 665 | sram_read(adapter, addr, &tmp2, 1); |
| 666 | |
| 667 | dprintk("%s: wrote 0x5a, read 0x%2x\n", __FUNCTION__, tmp2); |
| 668 | |
| 669 | if (tmp2 != 0x5a) |
| 670 | return 0; |
| 671 | |
| 672 | return 1; |
| 673 | } |
| 674 | |
| 675 | static u32 sram_length(struct adapter *adapter) |
| 676 | { |
| 677 | if (adapter->dw_sram_type == 0x10000) |
| 678 | return 32768; // 32K |
| 679 | if (adapter->dw_sram_type == 0x00000) |
| 680 | return 65536; // 64K |
| 681 | if (adapter->dw_sram_type == 0x20000) |
| 682 | return 131072; // 128K |
| 683 | |
| 684 | return 32768; // 32K |
| 685 | } |
| 686 | |
| 687 | /* FlexcopII can work with 32K, 64K or 128K of external SRAM memory. |
| 688 | - for 128K there are 4x32K chips at bank 0,1,2,3. |
| 689 | - for 64K there are 2x32K chips at bank 1,2. |
| 690 | - for 32K there is one 32K chip at bank 0. |
| 691 | |
| 692 | FlexCop works only with one bank at a time. The bank is selected |
| 693 | by bits 28-29 of the 0x700 register. |
| 694 | |
| 695 | bank 0 covers addresses 0x00000-0x07fff |
| 696 | bank 1 covers addresses 0x08000-0x0ffff |
| 697 | bank 2 covers addresses 0x10000-0x17fff |
| 698 | bank 3 covers addresses 0x18000-0x1ffff |
| 699 | */ |
| 700 | static int sram_detect_for_flex2(struct adapter *adapter) |
| 701 | { |
| 702 | u32 tmp, tmp2, tmp3; |
| 703 | |
| 704 | dprintk("%s:\n", __FUNCTION__); |
| 705 | |
| 706 | tmp = read_reg_dw(adapter, 0x208); |
| 707 | write_reg_dw(adapter, 0x208, 0); |
| 708 | |
| 709 | tmp2 = read_reg_dw(adapter, 0x71c); |
| 710 | |
| 711 | dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2); |
| 712 | |
| 713 | write_reg_dw(adapter, 0x71c, 1); |
| 714 | |
| 715 | tmp3 = read_reg_dw(adapter, 0x71c); |
| 716 | |
| 717 | dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3); |
| 718 | |
| 719 | write_reg_dw(adapter, 0x71c, tmp2); |
| 720 | |
| 721 | // check for internal SRAM ??? |
| 722 | tmp3--; |
| 723 | if (tmp3 != 0) { |
| 724 | sram_set_size(adapter, 0x10000); |
| 725 | sram_init(adapter); |
| 726 | write_reg_dw(adapter, 0x208, tmp); |
| 727 | |
| 728 | dprintk("%s: sram size = 32K\n", __FUNCTION__); |
| 729 | |
| 730 | return 32; |
| 731 | } |
| 732 | |
| 733 | if (sram_test_location(adapter, 0x20000, 0x18000) != 0) { |
| 734 | sram_set_size(adapter, 0x20000); |
| 735 | sram_init(adapter); |
| 736 | write_reg_dw(adapter, 0x208, tmp); |
| 737 | |
| 738 | dprintk("%s: sram size = 128K\n", __FUNCTION__); |
| 739 | |
| 740 | return 128; |
| 741 | } |
| 742 | |
| 743 | if (sram_test_location(adapter, 0x00000, 0x10000) != 0) { |
| 744 | sram_set_size(adapter, 0x00000); |
| 745 | sram_init(adapter); |
| 746 | write_reg_dw(adapter, 0x208, tmp); |
| 747 | |
| 748 | dprintk("%s: sram size = 64K\n", __FUNCTION__); |
| 749 | |
| 750 | return 64; |
| 751 | } |
| 752 | |
| 753 | if (sram_test_location(adapter, 0x10000, 0x00000) != 0) { |
| 754 | sram_set_size(adapter, 0x10000); |
| 755 | sram_init(adapter); |
| 756 | write_reg_dw(adapter, 0x208, tmp); |
| 757 | |
| 758 | dprintk("%s: sram size = 32K\n", __FUNCTION__); |
| 759 | |
| 760 | return 32; |
| 761 | } |
| 762 | |
| 763 | sram_set_size(adapter, 0x10000); |
| 764 | sram_init(adapter); |
| 765 | write_reg_dw(adapter, 0x208, tmp); |
| 766 | |
| 767 | dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__); |
| 768 | |
| 769 | return 0; |
| 770 | } |
| 771 | |
| 772 | static void sll_detect_sram_size(struct adapter *adapter) |
| 773 | { |
| 774 | sram_detect_for_flex2(adapter); |
| 775 | } |
| 776 | |
| 777 | /* EEPROM (Skystar2 has one "24LC08B" chip on board) */ |
| 778 | /* |
| 779 | static int eeprom_write(struct adapter *adapter, u16 addr, u8 *buf, u16 len) |
| 780 | { |
| 781 | return flex_i2c_write(adapter, 0x20000000, 0x50, addr, buf, len); |
| 782 | } |
| 783 | */ |
| 784 | |
| 785 | static int eeprom_read(struct adapter *adapter, u16 addr, u8 *buf, u16 len) |
| 786 | { |
| 787 | return flex_i2c_read(adapter, 0x20000000, 0x50, addr, buf, len); |
| 788 | } |
| 789 | |
| 790 | static u8 calc_lrc(u8 *buf, int len) |
| 791 | { |
| 792 | int i; |
| 793 | u8 sum; |
| 794 | |
| 795 | sum = 0; |
| 796 | |
| 797 | for (i = 0; i < len; i++) |
| 798 | sum = sum ^ buf[i]; |
| 799 | |
| 800 | return sum; |
| 801 | } |
| 802 | |
| 803 | static int eeprom_lrc_read(struct adapter *adapter, u32 addr, u32 len, u8 *buf, int retries) |
| 804 | { |
| 805 | int i; |
| 806 | |
| 807 | for (i = 0; i < retries; i++) { |
| 808 | if (eeprom_read(adapter, addr, buf, len) == len) { |
| 809 | if (calc_lrc(buf, len - 1) == buf[len - 1]) |
| 810 | return 1; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | return 0; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | static int eeprom_lrc_write(struct adapter *adapter, u32 addr, u32 len, u8 *wbuf, u8 *rbuf, int retries) |
| 819 | { |
| 820 | int i; |
| 821 | |
| 822 | for (i = 0; i < retries; i++) { |
| 823 | if (eeprom_write(adapter, addr, wbuf, len) == len) { |
| 824 | if (eeprom_lrc_read(adapter, addr, len, rbuf, retries) == 1) |
| 825 | return 1; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | return 0; |
| 830 | } |
| 831 | */ |
| 832 | |
| 833 | |
| 834 | /* These functions could be used to unlock SkyStar2 cards. */ |
| 835 | |
| 836 | /* |
| 837 | static int eeprom_writeKey(struct adapter *adapter, u8 *key, u32 len) |
| 838 | { |
| 839 | u8 rbuf[20]; |
| 840 | u8 wbuf[20]; |
| 841 | |
| 842 | if (len != 16) |
| 843 | return 0; |
| 844 | |
| 845 | memcpy(wbuf, key, len); |
| 846 | |
| 847 | wbuf[16] = 0; |
| 848 | wbuf[17] = 0; |
| 849 | wbuf[18] = 0; |
| 850 | wbuf[19] = calc_lrc(wbuf, 19); |
| 851 | |
| 852 | return eeprom_lrc_write(adapter, 0x3e4, 20, wbuf, rbuf, 4); |
| 853 | } |
| 854 | |
| 855 | static int eeprom_readKey(struct adapter *adapter, u8 *key, u32 len) |
| 856 | { |
| 857 | u8 buf[20]; |
| 858 | |
| 859 | if (len != 16) |
| 860 | return 0; |
| 861 | |
| 862 | if (eeprom_lrc_read(adapter, 0x3e4, 20, buf, 4) == 0) |
| 863 | return 0; |
| 864 | |
| 865 | memcpy(key, buf, len); |
| 866 | |
| 867 | return 1; |
| 868 | } |
| 869 | */ |
| 870 | |
| 871 | static int eeprom_get_mac_addr(struct adapter *adapter, char type, u8 *mac) |
| 872 | { |
| 873 | u8 tmp[8]; |
| 874 | |
| 875 | if (eeprom_lrc_read(adapter, 0x3f8, 8, tmp, 4) != 0) { |
| 876 | if (type != 0) { |
| 877 | mac[0] = tmp[0]; |
| 878 | mac[1] = tmp[1]; |
| 879 | mac[2] = tmp[2]; |
| 880 | mac[3] = 0xfe; |
| 881 | mac[4] = 0xff; |
| 882 | mac[5] = tmp[3]; |
| 883 | mac[6] = tmp[4]; |
| 884 | mac[7] = tmp[5]; |
| 885 | |
| 886 | } else { |
| 887 | |
| 888 | mac[0] = tmp[0]; |
| 889 | mac[1] = tmp[1]; |
| 890 | mac[2] = tmp[2]; |
| 891 | mac[3] = tmp[3]; |
| 892 | mac[4] = tmp[4]; |
| 893 | mac[5] = tmp[5]; |
| 894 | } |
| 895 | |
| 896 | return 1; |
| 897 | |
| 898 | } else { |
| 899 | |
| 900 | if (type == 0) { |
| 901 | memset(mac, 0, 6); |
| 902 | |
| 903 | } else { |
| 904 | |
| 905 | memset(mac, 0, 8); |
| 906 | } |
| 907 | |
| 908 | return 0; |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | static char eeprom_set_mac_addr(struct adapter *adapter, char type, u8 *mac) |
| 914 | { |
| 915 | u8 tmp[8]; |
| 916 | |
| 917 | if (type != 0) { |
| 918 | tmp[0] = mac[0]; |
| 919 | tmp[1] = mac[1]; |
| 920 | tmp[2] = mac[2]; |
| 921 | tmp[3] = mac[5]; |
| 922 | tmp[4] = mac[6]; |
| 923 | tmp[5] = mac[7]; |
| 924 | |
| 925 | } else { |
| 926 | |
| 927 | tmp[0] = mac[0]; |
| 928 | tmp[1] = mac[1]; |
| 929 | tmp[2] = mac[2]; |
| 930 | tmp[3] = mac[3]; |
| 931 | tmp[4] = mac[4]; |
| 932 | tmp[5] = mac[5]; |
| 933 | } |
| 934 | |
| 935 | tmp[6] = 0; |
| 936 | tmp[7] = calc_lrc(tmp, 7); |
| 937 | |
| 938 | if (eeprom_write(adapter, 0x3f8, tmp, 8) == 8) |
| 939 | return 1; |
| 940 | |
| 941 | return 0; |
| 942 | } |
| 943 | */ |
| 944 | |
| 945 | /* PID filter */ |
| 946 | |
| 947 | /* every flexcop has 6 "lower" hw PID filters */ |
| 948 | /* these are enabled by setting bits 0-5 of 0x208 */ |
| 949 | /* for the 32 additional filters we have to select one */ |
| 950 | /* of them through 0x310 and modify through 0x314 */ |
| 951 | /* op: 0=disable, 1=enable */ |
| 952 | static void filter_enable_hw_filter(struct adapter *adapter, int id, u8 op) |
| 953 | { |
| 954 | dprintk("%s: id=%d op=%d\n", __FUNCTION__, id, op); |
| 955 | if (id <= 5) { |
| 956 | u32 mask = (0x00000001 << id); |
| 957 | write_reg_bitfield(adapter, 0x208, mask, op ? mask : 0); |
| 958 | } else { |
| 959 | /* select */ |
| 960 | write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); |
| 961 | /* modify */ |
| 962 | write_reg_bitfield(adapter, 0x314, 0x00006000, op ? 0x00004000 : 0); |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | /* this sets the PID that should pass the specified filter */ |
| 967 | static void pid_set_hw_pid(struct adapter *adapter, int id, u16 pid) |
| 968 | { |
| 969 | dprintk("%s: id=%d pid=%d\n", __FUNCTION__, id, pid); |
| 970 | if (id <= 5) { |
| 971 | u32 adr = 0x300 + ((id & 6) << 1); |
| 972 | int shift = (id & 1) ? 16 : 0; |
| 973 | dprintk("%s: id=%d addr=%x %c pid=%d\n", __FUNCTION__, id, adr, (id & 1) ? 'h' : 'l', pid); |
| 974 | write_reg_bitfield(adapter, adr, (0x7fff) << shift, (pid & 0x1fff) << shift); |
| 975 | } else { |
| 976 | /* select */ |
| 977 | write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); |
| 978 | /* modify */ |
| 979 | write_reg_bitfield(adapter, 0x314, 0x1fff, pid & 0x1fff); |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | |
| 984 | /* |
| 985 | static void filter_enable_null_filter(struct adapter *adapter, u32 op) |
| 986 | { |
| 987 | dprintk("%s: op=%x\n", __FUNCTION__, op); |
| 988 | |
| 989 | write_reg_bitfield(adapter, 0x208, 0x00000040, op?0x00000040:0); |
| 990 | } |
| 991 | */ |
| 992 | |
| 993 | static void filter_enable_mask_filter(struct adapter *adapter, u32 op) |
| 994 | { |
| 995 | dprintk("%s: op=%x\n", __FUNCTION__, op); |
| 996 | |
| 997 | write_reg_bitfield(adapter, 0x208, 0x00000080, op ? 0x00000080 : 0); |
| 998 | } |
| 999 | |
| 1000 | |
| 1001 | static void ctrl_enable_mac(struct adapter *adapter, u32 op) |
| 1002 | { |
| 1003 | write_reg_bitfield(adapter, 0x208, 0x00004000, op ? 0x00004000 : 0); |
| 1004 | } |
| 1005 | |
| 1006 | static int ca_set_mac_dst_addr_filter(struct adapter *adapter, u8 *mac) |
| 1007 | { |
| 1008 | u32 tmp1, tmp2; |
| 1009 | |
| 1010 | tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0]; |
| 1011 | tmp2 = (mac[5] << 0x08) | mac[4]; |
| 1012 | |
| 1013 | write_reg_dw(adapter, 0x418, tmp1); |
| 1014 | write_reg_dw(adapter, 0x41c, tmp2); |
| 1015 | |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | static void set_ignore_mac_filter(struct adapter *adapter, u8 op) |
| 1021 | { |
| 1022 | if (op != 0) { |
| 1023 | write_reg_bitfield(adapter, 0x208, 0x00004000, 0); |
| 1024 | adapter->mac_filter = 1; |
| 1025 | } else { |
| 1026 | if (adapter->mac_filter != 0) { |
| 1027 | adapter->mac_filter = 0; |
| 1028 | write_reg_bitfield(adapter, 0x208, 0x00004000, 0x00004000); |
| 1029 | } |
| 1030 | } |
| 1031 | } |
| 1032 | */ |
| 1033 | |
| 1034 | /* |
| 1035 | static void check_null_filter_enable(struct adapter *adapter) |
| 1036 | { |
| 1037 | filter_enable_null_filter(adapter, 1); |
| 1038 | filter_enable_mask_filter(adapter, 1); |
| 1039 | } |
| 1040 | */ |
| 1041 | |
| 1042 | static void pid_set_group_pid(struct adapter *adapter, u16 pid) |
| 1043 | { |
| 1044 | u32 value; |
| 1045 | |
| 1046 | dprintk("%s: pid=%x\n", __FUNCTION__, pid); |
| 1047 | value = (pid & 0x3fff) | (read_reg_dw(adapter, 0x30c) & 0xffff0000); |
| 1048 | write_reg_dw(adapter, 0x30c, value); |
| 1049 | } |
| 1050 | |
| 1051 | static void pid_set_group_mask(struct adapter *adapter, u16 pid) |
| 1052 | { |
| 1053 | u32 value; |
| 1054 | |
| 1055 | dprintk("%s: pid=%x\n", __FUNCTION__, pid); |
| 1056 | value = ((pid & 0x3fff) << 0x10) | (read_reg_dw(adapter, 0x30c) & 0xffff); |
| 1057 | write_reg_dw(adapter, 0x30c, value); |
| 1058 | } |
| 1059 | |
| 1060 | /* |
| 1061 | static int pid_get_group_pid(struct adapter *adapter) |
| 1062 | { |
| 1063 | return read_reg_dw(adapter, 0x30c) & 0x00001fff; |
| 1064 | } |
| 1065 | |
| 1066 | static int pid_get_group_mask(struct adapter *adapter) |
| 1067 | { |
| 1068 | return (read_reg_dw(adapter, 0x30c) >> 0x10)& 0x00001fff; |
| 1069 | } |
| 1070 | */ |
| 1071 | |
| 1072 | /* |
| 1073 | static void reset_hardware_pid_filter(struct adapter *adapter) |
| 1074 | { |
| 1075 | pid_set_stream1_pid(adapter, 0x1fff); |
| 1076 | |
| 1077 | pid_set_stream2_pid(adapter, 0x1fff); |
| 1078 | filter_enable_stream2_filter(adapter, 0); |
| 1079 | |
| 1080 | pid_set_pcr_pid(adapter, 0x1fff); |
| 1081 | filter_enable_pcr_filter(adapter, 0); |
| 1082 | |
| 1083 | pid_set_pmt_pid(adapter, 0x1fff); |
| 1084 | filter_enable_pmt_filter(adapter, 0); |
| 1085 | |
| 1086 | pid_set_ecm_pid(adapter, 0x1fff); |
| 1087 | filter_enable_ecm_filter(adapter, 0); |
| 1088 | |
| 1089 | pid_set_emm_pid(adapter, 0x1fff); |
| 1090 | filter_enable_emm_filter(adapter, 0); |
| 1091 | } |
| 1092 | */ |
| 1093 | |
| 1094 | static void init_pids(struct adapter *adapter) |
| 1095 | { |
| 1096 | int i; |
| 1097 | |
| 1098 | adapter->pid_count = 0; |
| 1099 | adapter->whole_bandwidth_count = 0; |
| 1100 | for (i = 0; i < adapter->useable_hw_filters; i++) { |
| 1101 | dprintk("%s: setting filter %d to 0x1fff\n", __FUNCTION__, i); |
| 1102 | adapter->hw_pids[i] = 0x1fff; |
| 1103 | pid_set_hw_pid(adapter, i, 0x1fff); |
| 1104 | } |
| 1105 | |
| 1106 | pid_set_group_pid(adapter, 0); |
| 1107 | pid_set_group_mask(adapter, 0x1fe0); |
| 1108 | } |
| 1109 | |
| 1110 | static void open_whole_bandwidth(struct adapter *adapter) |
| 1111 | { |
| 1112 | dprintk("%s:\n", __FUNCTION__); |
| 1113 | pid_set_group_pid(adapter, 0); |
| 1114 | pid_set_group_mask(adapter, 0); |
| 1115 | /* |
| 1116 | filter_enable_mask_filter(adapter, 1); |
| 1117 | */ |
| 1118 | } |
| 1119 | |
| 1120 | static void close_whole_bandwidth(struct adapter *adapter) |
| 1121 | { |
| 1122 | dprintk("%s:\n", __FUNCTION__); |
| 1123 | pid_set_group_pid(adapter, 0); |
| 1124 | pid_set_group_mask(adapter, 0x1fe0); |
| 1125 | /* |
| 1126 | filter_enable_mask_filter(adapter, 1); |
| 1127 | */ |
| 1128 | } |
| 1129 | |
| 1130 | static void whole_bandwidth_inc(struct adapter *adapter) |
| 1131 | { |
| 1132 | if (adapter->whole_bandwidth_count++ == 0) |
| 1133 | open_whole_bandwidth(adapter); |
| 1134 | } |
| 1135 | |
| 1136 | static void whole_bandwidth_dec(struct adapter *adapter) |
| 1137 | { |
| 1138 | if (--adapter->whole_bandwidth_count <= 0) |
| 1139 | close_whole_bandwidth(adapter); |
| 1140 | } |
| 1141 | |
| 1142 | /* The specified PID has to be let through the |
| 1143 | hw filters. |
| 1144 | We try to allocate an hardware filter and open whole |
| 1145 | bandwidth when allocation is impossible. |
| 1146 | All pids<=0x1f pass through the group filter. |
| 1147 | Returns 1 on success, -1 on error */ |
| 1148 | static int add_hw_pid(struct adapter *adapter, u16 pid) |
| 1149 | { |
| 1150 | int i; |
| 1151 | |
| 1152 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| 1153 | |
| 1154 | if (pid <= 0x1f) |
| 1155 | return 1; |
| 1156 | |
| 1157 | /* we can't use a filter for 0x2000, so no search */ |
| 1158 | if (pid != 0x2000) { |
| 1159 | /* find an unused hardware filter */ |
| 1160 | for (i = 0; i < adapter->useable_hw_filters; i++) { |
| 1161 | dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); |
| 1162 | if (adapter->hw_pids[i] == 0x1fff) { |
| 1163 | dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); |
| 1164 | adapter->hw_pids[i] = pid; |
| 1165 | pid_set_hw_pid(adapter, i, pid); |
| 1166 | filter_enable_hw_filter(adapter, i, 1); |
| 1167 | return 1; |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | /* if we have not used a filter, this pid depends on whole bandwidth */ |
| 1172 | dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); |
| 1173 | whole_bandwidth_inc(adapter); |
| 1174 | return 1; |
| 1175 | } |
| 1176 | |
| 1177 | /* returns -1 if the pid was not present in the filters */ |
| 1178 | static int remove_hw_pid(struct adapter *adapter, u16 pid) |
| 1179 | { |
| 1180 | int i; |
| 1181 | |
| 1182 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| 1183 | |
| 1184 | if (pid <= 0x1f) |
| 1185 | return 1; |
| 1186 | |
| 1187 | /* we can't use a filter for 0x2000, so no search */ |
| 1188 | if (pid != 0x2000) { |
| 1189 | for (i = 0; i < adapter->useable_hw_filters; i++) { |
| 1190 | dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); |
| 1191 | if (adapter->hw_pids[i] == pid) { // find the pid slot |
| 1192 | dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); |
| 1193 | adapter->hw_pids[i] = 0x1fff; |
| 1194 | pid_set_hw_pid(adapter, i, 0x1fff); |
| 1195 | filter_enable_hw_filter(adapter, i, 0); |
| 1196 | return 1; |
| 1197 | } |
| 1198 | } |
| 1199 | } |
| 1200 | /* if we have not used a filter, this pid depended on whole bandwith */ |
| 1201 | dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); |
| 1202 | whole_bandwidth_dec(adapter); |
| 1203 | return 1; |
| 1204 | } |
| 1205 | |
| 1206 | /* Adds a PID to the filters. |
| 1207 | Adding a pid more than once is possible, we keep reference counts. |
| 1208 | Whole stream available through pid==0x2000. |
| 1209 | Returns 1 on success, -1 on error */ |
| 1210 | static int add_pid(struct adapter *adapter, u16 pid) |
| 1211 | { |
| 1212 | int i; |
| 1213 | |
| 1214 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| 1215 | |
| 1216 | if (pid > 0x1ffe && pid != 0x2000) |
| 1217 | return -1; |
| 1218 | |
| 1219 | // check if the pid is already present |
| 1220 | for (i = 0; i < adapter->pid_count; i++) |
| 1221 | if (adapter->pid_list[i] == pid) { |
| 1222 | adapter->pid_rc[i]++; // increment ref counter |
| 1223 | return 1; |
| 1224 | } |
| 1225 | |
| 1226 | if (adapter->pid_count == N_PID_SLOTS) |
| 1227 | return -1; // no more pids can be added |
| 1228 | adapter->pid_list[adapter->pid_count] = pid; // register pid |
| 1229 | adapter->pid_rc[adapter->pid_count] = 1; |
| 1230 | adapter->pid_count++; |
| 1231 | // hardware setting |
| 1232 | add_hw_pid(adapter, pid); |
| 1233 | |
| 1234 | return 1; |
| 1235 | } |
| 1236 | |
| 1237 | /* Removes a PID from the filters. */ |
| 1238 | static int remove_pid(struct adapter *adapter, u16 pid) |
| 1239 | { |
| 1240 | int i; |
| 1241 | |
| 1242 | dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| 1243 | |
| 1244 | if (pid > 0x1ffe && pid != 0x2000) |
| 1245 | return -1; |
| 1246 | |
| 1247 | // check if the pid is present (it must be!) |
| 1248 | for (i = 0; i < adapter->pid_count; i++) { |
| 1249 | if (adapter->pid_list[i] == pid) { |
| 1250 | adapter->pid_rc[i]--; |
| 1251 | if (adapter->pid_rc[i] <= 0) { |
| 1252 | // remove from the list |
| 1253 | adapter->pid_count--; |
| 1254 | adapter->pid_list[i]=adapter->pid_list[adapter->pid_count]; |
| 1255 | adapter->pid_rc[i] = adapter->pid_rc[adapter->pid_count]; |
| 1256 | // hardware setting |
| 1257 | remove_hw_pid(adapter, pid); |
| 1258 | } |
| 1259 | return 1; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | return -1; |
| 1264 | } |
| 1265 | |
| 1266 | |
| 1267 | /* dma & irq */ |
| 1268 | static void ctrl_enable_smc(struct adapter *adapter, u32 op) |
| 1269 | { |
| 1270 | write_reg_bitfield(adapter, 0x208, 0x00000800, op ? 0x00000800 : 0); |
| 1271 | } |
| 1272 | |
| 1273 | static void dma_enable_disable_irq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3) |
| 1274 | { |
| 1275 | adapter->dma_ctrl = adapter->dma_ctrl & 0x000f0000; |
| 1276 | |
| 1277 | if (flag1 == 0) { |
| 1278 | if (flag2 == 0) |
| 1279 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000; |
| 1280 | else |
| 1281 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000; |
| 1282 | |
| 1283 | if (flag3 == 0) |
| 1284 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000; |
| 1285 | else |
| 1286 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000; |
| 1287 | |
| 1288 | } else { |
| 1289 | |
| 1290 | if (flag2 == 0) |
| 1291 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000; |
| 1292 | else |
| 1293 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000; |
| 1294 | |
| 1295 | if (flag3 == 0) |
| 1296 | adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000; |
| 1297 | else |
| 1298 | adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | static void irq_dma_enable_disable_irq(struct adapter *adapter, u32 op) |
| 1303 | { |
| 1304 | u32 value; |
| 1305 | |
| 1306 | value = read_reg_dw(adapter, 0x208) & 0xfff0ffff; |
| 1307 | |
| 1308 | if (op != 0) |
| 1309 | value = value | (adapter->dma_ctrl & 0x000f0000); |
| 1310 | |
| 1311 | write_reg_dw(adapter, 0x208, value); |
| 1312 | } |
| 1313 | |
| 1314 | /* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to |
| 1315 | system memory. |
| 1316 | |
| 1317 | The DMA1 buffer is divided in 2 subbuffers of equal size. |
| 1318 | FlexCopII will transfer TS data to one subbuffer, signal an interrupt |
| 1319 | when the subbuffer is full and continue fillig the second subbuffer. |
| 1320 | |
| 1321 | For DMA1: |
| 1322 | subbuffer size in 32-bit words is stored in the first 24 bits of |
| 1323 | register 0x004. The last 8 bits of register 0x004 contain the number |
| 1324 | of subbuffers. |
| 1325 | |
| 1326 | the first 30 bits of register 0x000 contain the address of the first |
| 1327 | subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, |
| 1328 | when dma1 is enabled. |
| 1329 | |
| 1330 | the first 30 bits of register 0x00c contain the address of the second |
| 1331 | subbuffer. the last 2 bits contain 1. |
| 1332 | |
| 1333 | register 0x008 will contain the address of the subbuffer that was filled |
| 1334 | with TS data, when FlexCopII will generate an interrupt. |
| 1335 | |
| 1336 | For DMA2: |
| 1337 | subbuffer size in 32-bit words is stored in the first 24 bits of |
| 1338 | register 0x014. The last 8 bits of register 0x014 contain the number |
| 1339 | of subbuffers. |
| 1340 | |
| 1341 | the first 30 bits of register 0x010 contain the address of the first |
| 1342 | subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, |
| 1343 | when dma1 is enabled. |
| 1344 | |
| 1345 | the first 30 bits of register 0x01c contain the address of the second |
| 1346 | subbuffer. the last 2 bits contain 1. |
| 1347 | |
| 1348 | register 0x018 contains the address of the subbuffer that was filled |
| 1349 | with TS data, when FlexCopII generates an interrupt. |
| 1350 | */ |
| 1351 | static int dma_init_dma(struct adapter *adapter, u32 dma_channel) |
| 1352 | { |
| 1353 | u32 subbuffers, subbufsize, subbuf0, subbuf1; |
| 1354 | |
| 1355 | if (dma_channel == 0) { |
| 1356 | dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__); |
| 1357 | |
| 1358 | subbuffers = 2; |
| 1359 | |
| 1360 | subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers; |
| 1361 | |
| 1362 | subbuf0 = adapter->dmaq1.bus_addr & 0xfffffffc; |
| 1363 | |
| 1364 | subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xfffffffc) | 1; |
| 1365 | |
| 1366 | dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); |
| 1367 | udelay(1000); |
| 1368 | write_reg_dw(adapter, 0x000, subbuf0); |
| 1369 | |
| 1370 | dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); |
| 1371 | udelay(1000); |
| 1372 | write_reg_dw(adapter, 0x004, subbufsize); |
| 1373 | |
| 1374 | dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1); |
| 1375 | udelay(1000); |
| 1376 | write_reg_dw(adapter, 0x00c, subbuf1); |
| 1377 | |
| 1378 | dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xfffffffc); |
| 1379 | write_reg_dw(adapter, 0x008, adapter->dmaq1.bus_addr & 0xfffffffc); |
| 1380 | udelay(1000); |
| 1381 | |
| 1382 | dma_enable_disable_irq(adapter, 0, 1, subbuffers ? 1 : 0); |
| 1383 | |
| 1384 | irq_dma_enable_disable_irq(adapter, 1); |
| 1385 | |
| 1386 | sram_set_media_dest(adapter, 1); |
| 1387 | sram_set_net_dest(adapter, 1); |
| 1388 | sram_set_cai_dest(adapter, 2); |
| 1389 | sram_set_cao_dest(adapter, 2); |
| 1390 | } |
| 1391 | |
| 1392 | if (dma_channel == 1) { |
| 1393 | dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__); |
| 1394 | |
| 1395 | subbuffers = 2; |
| 1396 | |
| 1397 | subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers; |
| 1398 | |
| 1399 | subbuf0 = adapter->dmaq2.bus_addr & 0xfffffffc; |
| 1400 | |
| 1401 | subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xfffffffc) | 1; |
| 1402 | |
| 1403 | dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); |
| 1404 | udelay(1000); |
| 1405 | write_reg_dw(adapter, 0x010, subbuf0); |
| 1406 | |
| 1407 | dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); |
| 1408 | udelay(1000); |
| 1409 | write_reg_dw(adapter, 0x014, subbufsize); |
| 1410 | |
| 1411 | dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1); |
| 1412 | udelay(1000); |
| 1413 | write_reg_dw(adapter, 0x01c, subbuf1); |
| 1414 | |
| 1415 | sram_set_cai_dest(adapter, 2); |
| 1416 | } |
| 1417 | |
| 1418 | return 0; |
| 1419 | } |
| 1420 | |
| 1421 | static void ctrl_enable_receive_data(struct adapter *adapter, u32 op) |
| 1422 | { |
| 1423 | if (op == 0) { |
| 1424 | write_reg_bitfield(adapter, 0x208, 0x00008000, 0); |
| 1425 | adapter->dma_status = adapter->dma_status & ~0x00000004; |
| 1426 | } else { |
| 1427 | write_reg_bitfield(adapter, 0x208, 0x00008000, 0x00008000); |
| 1428 | adapter->dma_status = adapter->dma_status | 0x00000004; |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | /* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled |
| 1433 | bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled |
| 1434 | */ |
| 1435 | static void dma_start_stop(struct adapter *adapter, u32 dma_mask, int start_stop) |
| 1436 | { |
| 1437 | u32 dma_enable, dma1_enable, dma2_enable; |
| 1438 | |
| 1439 | dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask); |
| 1440 | |
| 1441 | if (start_stop == 1) { |
| 1442 | dprintk("%s: starting dma\n", __FUNCTION__); |
| 1443 | |
| 1444 | dma1_enable = 0; |
| 1445 | dma2_enable = 0; |
| 1446 | |
| 1447 | if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) { |
| 1448 | adapter->dma_status = adapter->dma_status | 1; |
| 1449 | dma1_enable = 1; |
| 1450 | } |
| 1451 | |
| 1452 | if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) { |
| 1453 | adapter->dma_status = adapter->dma_status | 2; |
| 1454 | dma2_enable = 1; |
| 1455 | } |
| 1456 | // enable dma1 and dma2 |
| 1457 | if ((dma1_enable == 1) && (dma2_enable == 1)) { |
| 1458 | write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); |
| 1459 | write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); |
| 1460 | write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); |
| 1461 | |
| 1462 | ctrl_enable_receive_data(adapter, 1); |
| 1463 | |
| 1464 | return; |
| 1465 | } |
| 1466 | // enable dma1 |
| 1467 | if ((dma1_enable == 1) && (dma2_enable == 0)) { |
| 1468 | write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); |
| 1469 | write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); |
| 1470 | |
| 1471 | ctrl_enable_receive_data(adapter, 1); |
| 1472 | |
| 1473 | return; |
| 1474 | } |
| 1475 | // enable dma2 |
| 1476 | if ((dma1_enable == 0) && (dma2_enable == 1)) { |
| 1477 | write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); |
| 1478 | |
| 1479 | ctrl_enable_receive_data(adapter, 1); |
| 1480 | |
| 1481 | return; |
| 1482 | } |
| 1483 | // start dma |
| 1484 | if ((dma1_enable == 0) && (dma2_enable == 0)) { |
| 1485 | ctrl_enable_receive_data(adapter, 1); |
| 1486 | |
| 1487 | return; |
| 1488 | } |
| 1489 | |
| 1490 | } else { |
| 1491 | |
| 1492 | dprintk("%s: stopping dma\n", __FUNCTION__); |
| 1493 | |
| 1494 | dma_enable = adapter->dma_status & 0x00000003; |
| 1495 | |
| 1496 | if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) { |
| 1497 | dma_enable = dma_enable & 0xfffffffe; |
| 1498 | } |
| 1499 | |
| 1500 | if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) { |
| 1501 | dma_enable = dma_enable & 0xfffffffd; |
| 1502 | } |
| 1503 | //stop dma |
| 1504 | if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) { |
| 1505 | ctrl_enable_receive_data(adapter, 0); |
| 1506 | |
| 1507 | udelay(3000); |
| 1508 | } |
| 1509 | //disable dma1 |
| 1510 | if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) { |
| 1511 | write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr); |
| 1512 | write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); |
| 1513 | |
| 1514 | adapter->dma_status = adapter->dma_status & ~0x00000001; |
| 1515 | } |
| 1516 | //disable dma2 |
| 1517 | if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) { |
| 1518 | write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr); |
| 1519 | |
| 1520 | adapter->dma_status = adapter->dma_status & ~0x00000002; |
| 1521 | } |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | static void open_stream(struct adapter *adapter, u16 pid) |
| 1526 | { |
| 1527 | u32 dma_mask; |
| 1528 | |
| 1529 | ++adapter->capturing; |
| 1530 | |
| 1531 | filter_enable_mask_filter(adapter, 1); |
| 1532 | |
| 1533 | add_pid(adapter, pid); |
| 1534 | |
| 1535 | dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status); |
| 1536 | |
| 1537 | if ((adapter->dma_status & 7) != 7) { |
| 1538 | dma_mask = 0; |
| 1539 | |
| 1540 | if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) { |
| 1541 | dma_mask = dma_mask | 1; |
| 1542 | |
| 1543 | adapter->dmaq1.head = 0; |
| 1544 | adapter->dmaq1.tail = 0; |
| 1545 | |
| 1546 | memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size); |
| 1547 | } |
| 1548 | |
| 1549 | if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) { |
| 1550 | dma_mask = dma_mask | 2; |
| 1551 | |
| 1552 | adapter->dmaq2.head = 0; |
| 1553 | adapter->dmaq2.tail = 0; |
| 1554 | } |
| 1555 | |
| 1556 | if (dma_mask != 0) { |
| 1557 | irq_dma_enable_disable_irq(adapter, 1); |
| 1558 | |
| 1559 | dma_start_stop(adapter, dma_mask, 1); |
| 1560 | } |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | static void close_stream(struct adapter *adapter, u16 pid) |
| 1565 | { |
| 1566 | if (adapter->capturing > 0) |
| 1567 | --adapter->capturing; |
| 1568 | |
| 1569 | dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status); |
| 1570 | |
| 1571 | if (adapter->capturing == 0) { |
| 1572 | u32 dma_mask = 0; |
| 1573 | |
| 1574 | if ((adapter->dma_status & 1) != 0) |
| 1575 | dma_mask = dma_mask | 0x00000001; |
| 1576 | if ((adapter->dma_status & 2) != 0) |
| 1577 | dma_mask = dma_mask | 0x00000002; |
| 1578 | |
| 1579 | if (dma_mask != 0) { |
| 1580 | dma_start_stop(adapter, dma_mask, 0); |
| 1581 | } |
| 1582 | } |
| 1583 | remove_pid(adapter, pid); |
| 1584 | } |
| 1585 | |
| 1586 | static void interrupt_service_dma1(struct adapter *adapter) |
| 1587 | { |
| 1588 | struct dvb_demux *dvbdmx = &adapter->demux; |
| 1589 | |
| 1590 | int n_cur_dma_counter; |
| 1591 | u32 n_num_bytes_parsed; |
| 1592 | u32 n_num_new_bytes_transferred; |
| 1593 | u32 dw_default_packet_size = 188; |
| 1594 | u8 gb_tmp_buffer[188]; |
| 1595 | u8 *pb_dma_buf_cur_pos; |
| 1596 | |
| 1597 | n_cur_dma_counter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr; |
| 1598 | n_cur_dma_counter = (n_cur_dma_counter / dw_default_packet_size) * dw_default_packet_size; |
| 1599 | |
| 1600 | if ((n_cur_dma_counter < 0) || (n_cur_dma_counter > adapter->dmaq1.buffer_size)) { |
| 1601 | dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__); |
| 1602 | return; |
| 1603 | } |
| 1604 | |
| 1605 | adapter->dmaq1.head = n_cur_dma_counter; |
| 1606 | |
| 1607 | if (adapter->dmaq1.tail <= n_cur_dma_counter) { |
| 1608 | n_num_new_bytes_transferred = n_cur_dma_counter - adapter->dmaq1.tail; |
| 1609 | |
| 1610 | } else { |
| 1611 | |
| 1612 | n_num_new_bytes_transferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + n_cur_dma_counter; |
| 1613 | } |
| 1614 | |
| 1615 | ddprintk("%s: n_cur_dma_counter = %d\n", __FUNCTION__, n_cur_dma_counter); |
| 1616 | ddprintk("%s: dmaq1.tail = %d\n", __FUNCTION__, adapter->dmaq1.tail); |
| 1617 | ddprintk("%s: bytes_transferred = %d\n", __FUNCTION__, n_num_new_bytes_transferred); |
| 1618 | |
| 1619 | if (n_num_new_bytes_transferred < dw_default_packet_size) |
| 1620 | return; |
| 1621 | |
| 1622 | n_num_bytes_parsed = 0; |
| 1623 | |
| 1624 | while (n_num_bytes_parsed < n_num_new_bytes_transferred) { |
| 1625 | pb_dma_buf_cur_pos = adapter->dmaq1.buffer + adapter->dmaq1.tail; |
| 1626 | |
| 1627 | if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) { |
| 1628 | memcpy(gb_tmp_buffer, adapter->dmaq1.buffer + adapter->dmaq1.tail, |
| 1629 | adapter->dmaq1.buffer_size - adapter->dmaq1.tail); |
| 1630 | memcpy(gb_tmp_buffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer, |
| 1631 | (188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail))); |
| 1632 | |
| 1633 | pb_dma_buf_cur_pos = gb_tmp_buffer; |
| 1634 | } |
| 1635 | |
| 1636 | if (adapter->capturing != 0) { |
| 1637 | dvb_dmx_swfilter_packets(dvbdmx, pb_dma_buf_cur_pos, dw_default_packet_size / 188); |
| 1638 | } |
| 1639 | |
| 1640 | n_num_bytes_parsed = n_num_bytes_parsed + dw_default_packet_size; |
| 1641 | |
| 1642 | adapter->dmaq1.tail = adapter->dmaq1.tail + dw_default_packet_size; |
| 1643 | |
| 1644 | if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size) |
| 1645 | adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size; |
| 1646 | }; |
| 1647 | } |
| 1648 | |
| 1649 | static void interrupt_service_dma2(struct adapter *adapter) |
| 1650 | { |
| 1651 | printk("%s:\n", __FUNCTION__); |
| 1652 | } |
| 1653 | |
| 1654 | static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs) |
| 1655 | { |
| 1656 | struct adapter *tmp = dev_id; |
| 1657 | |
| 1658 | u32 value; |
| 1659 | |
| 1660 | ddprintk("%s:\n", __FUNCTION__); |
| 1661 | |
| 1662 | spin_lock_irq(&tmp->lock); |
| 1663 | |
| 1664 | if (0 == ((value = read_reg_dw(tmp, 0x20c)) & 0x0f)) { |
| 1665 | spin_unlock_irq(&tmp->lock); |
| 1666 | return IRQ_NONE; |
| 1667 | } |
| 1668 | |
| 1669 | while (value != 0) { |
| 1670 | if ((value & 0x03) != 0) |
| 1671 | interrupt_service_dma1(tmp); |
| 1672 | if ((value & 0x0c) != 0) |
| 1673 | interrupt_service_dma2(tmp); |
| 1674 | value = read_reg_dw(tmp, 0x20c) & 0x0f; |
| 1675 | } |
| 1676 | |
| 1677 | spin_unlock_irq(&tmp->lock); |
| 1678 | return IRQ_HANDLED; |
| 1679 | } |
| 1680 | |
| 1681 | static int init_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq, |
| 1682 | int size, int dmaq_offset) |
| 1683 | { |
| 1684 | struct pci_dev *pdev = adapter->pdev; |
| 1685 | dma_addr_t dma_addr; |
| 1686 | |
| 1687 | dmaq->head = 0; |
| 1688 | dmaq->tail = 0; |
| 1689 | |
| 1690 | dmaq->buffer = pci_alloc_consistent(pdev, size + 0x80, &dma_addr); |
| 1691 | if (!dmaq->buffer) |
| 1692 | return -ENOMEM; |
| 1693 | |
| 1694 | dmaq->bus_addr = dma_addr; |
| 1695 | dmaq->buffer_size = size; |
| 1696 | |
| 1697 | dma_init_dma(adapter, dmaq_offset); |
| 1698 | |
| 1699 | ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n", |
| 1700 | __FUNCTION__, dmaq->buffer, size); |
| 1701 | |
| 1702 | return 0; |
| 1703 | } |
| 1704 | |
| 1705 | static int init_dma_queue(struct adapter *adapter) |
| 1706 | { |
| 1707 | struct { |
| 1708 | struct dmaq *dmaq; |
| 1709 | u32 dma_status; |
| 1710 | int size; |
| 1711 | } dmaq_desc[] = { |
| 1712 | { &adapter->dmaq1, 0x10000000, SIZE_OF_BUF_DMA1 }, |
| 1713 | { &adapter->dmaq2, 0x20000000, SIZE_OF_BUF_DMA2 } |
| 1714 | }, *p = dmaq_desc; |
| 1715 | int i; |
| 1716 | |
| 1717 | for (i = 0; i < 2; i++, p++) { |
| 1718 | if (init_dma_queue_one(adapter, p->dmaq, p->size, i) < 0) |
| 1719 | adapter->dma_status &= ~p->dma_status; |
| 1720 | else |
| 1721 | adapter->dma_status |= p->dma_status; |
| 1722 | } |
| 1723 | return (adapter->dma_status & 0x30000000) ? 0 : -ENOMEM; |
| 1724 | } |
| 1725 | |
| 1726 | static void free_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq) |
| 1727 | { |
| 1728 | if (dmaq->buffer) { |
| 1729 | pci_free_consistent(adapter->pdev, dmaq->buffer_size + 0x80, |
| 1730 | dmaq->buffer, dmaq->bus_addr); |
| 1731 | memset(dmaq, 0, sizeof(*dmaq)); |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | static void free_dma_queue(struct adapter *adapter) |
| 1736 | { |
| 1737 | struct dmaq *dmaq[] = { |
| 1738 | &adapter->dmaq1, |
| 1739 | &adapter->dmaq2, |
| 1740 | NULL |
| 1741 | }, **p; |
| 1742 | |
| 1743 | for (p = dmaq; *p; p++) |
| 1744 | free_dma_queue_one(adapter, *p); |
| 1745 | } |
| 1746 | |
| 1747 | static void release_adapter(struct adapter *adapter) |
| 1748 | { |
| 1749 | struct pci_dev *pdev = adapter->pdev; |
| 1750 | |
| 1751 | iounmap(adapter->io_mem); |
| 1752 | pci_disable_device(pdev); |
| 1753 | pci_release_region(pdev, 0); |
| 1754 | pci_release_region(pdev, 1); |
| 1755 | } |
| 1756 | |
| 1757 | static void free_adapter_object(struct adapter *adapter) |
| 1758 | { |
| 1759 | dprintk("%s:\n", __FUNCTION__); |
| 1760 | |
| 1761 | close_stream(adapter, 0); |
| 1762 | free_irq(adapter->irq, adapter); |
| 1763 | free_dma_queue(adapter); |
| 1764 | release_adapter(adapter); |
| 1765 | kfree(adapter); |
| 1766 | } |
| 1767 | |
| 1768 | static struct pci_driver skystar2_pci_driver; |
| 1769 | |
| 1770 | static int claim_adapter(struct adapter *adapter) |
| 1771 | { |
| 1772 | struct pci_dev *pdev = adapter->pdev; |
| 1773 | u16 var; |
| 1774 | int ret; |
| 1775 | |
| 1776 | ret = pci_request_region(pdev, 1, skystar2_pci_driver.name); |
| 1777 | if (ret < 0) |
| 1778 | goto out; |
| 1779 | |
| 1780 | ret = pci_request_region(pdev, 0, skystar2_pci_driver.name); |
| 1781 | if (ret < 0) |
| 1782 | goto err_pci_release_1; |
| 1783 | |
| 1784 | pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision); |
| 1785 | |
| 1786 | dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision); |
| 1787 | |
| 1788 | ret = pci_enable_device(pdev); |
| 1789 | if (ret < 0) |
| 1790 | goto err_pci_release_0; |
| 1791 | |
| 1792 | pci_read_config_word(pdev, 4, &var); |
| 1793 | |
| 1794 | if ((var & 4) == 0) |
| 1795 | pci_set_master(pdev); |
| 1796 | |
| 1797 | adapter->io_port = pdev->resource[1].start; |
| 1798 | |
| 1799 | adapter->io_mem = ioremap(pdev->resource[0].start, 0x800); |
| 1800 | |
| 1801 | if (!adapter->io_mem) { |
| 1802 | dprintk("%s: can not map io memory\n", __FUNCTION__); |
| 1803 | ret = -EIO; |
| 1804 | goto err_pci_disable; |
| 1805 | } |
| 1806 | |
| 1807 | dprintk("%s: io memory maped at %p\n", __FUNCTION__, adapter->io_mem); |
| 1808 | |
| 1809 | ret = 1; |
| 1810 | out: |
| 1811 | return ret; |
| 1812 | |
| 1813 | err_pci_disable: |
| 1814 | pci_disable_device(pdev); |
| 1815 | err_pci_release_0: |
| 1816 | pci_release_region(pdev, 0); |
| 1817 | err_pci_release_1: |
| 1818 | pci_release_region(pdev, 1); |
| 1819 | goto out; |
| 1820 | } |
| 1821 | |
| 1822 | /* |
| 1823 | static int sll_reset_flexcop(struct adapter *adapter) |
| 1824 | { |
| 1825 | write_reg_dw(adapter, 0x208, 0); |
| 1826 | write_reg_dw(adapter, 0x210, 0xb2ff); |
| 1827 | |
| 1828 | return 0; |
| 1829 | } |
| 1830 | */ |
| 1831 | |
| 1832 | static void decide_how_many_hw_filters(struct adapter *adapter) |
| 1833 | { |
| 1834 | int hw_filters; |
| 1835 | int mod_option_hw_filters; |
| 1836 | |
| 1837 | // FlexCop IIb & III have 6+32 hw filters |
| 1838 | // FlexCop II has 6 hw filters, every other should have at least 6 |
| 1839 | switch (adapter->b2c2_revision) { |
| 1840 | case 0x82: /* II */ |
| 1841 | hw_filters = 6; |
| 1842 | break; |
| 1843 | case 0xc3: /* IIB */ |
| 1844 | hw_filters = 6 + 32; |
| 1845 | break; |
| 1846 | case 0xc0: /* III */ |
| 1847 | hw_filters = 6 + 32; |
| 1848 | break; |
| 1849 | default: |
| 1850 | hw_filters = 6; |
| 1851 | break; |
| 1852 | } |
| 1853 | printk("%s: the chip has %i hardware filters", __FILE__, hw_filters); |
| 1854 | |
| 1855 | mod_option_hw_filters = 0; |
| 1856 | if (enable_hw_filters >= 1) |
| 1857 | mod_option_hw_filters += 6; |
| 1858 | if (enable_hw_filters >= 2) |
| 1859 | mod_option_hw_filters += 32; |
| 1860 | |
| 1861 | if (mod_option_hw_filters >= hw_filters) { |
| 1862 | adapter->useable_hw_filters = hw_filters; |
| 1863 | } else { |
| 1864 | adapter->useable_hw_filters = mod_option_hw_filters; |
| 1865 | printk(", but only %d will be used because of module option", mod_option_hw_filters); |
| 1866 | } |
| 1867 | printk("\n"); |
| 1868 | dprintk("%s: useable_hardware_filters set to %i\n", __FILE__, adapter->useable_hw_filters); |
| 1869 | } |
| 1870 | |
| 1871 | static int driver_initialize(struct pci_dev *pdev) |
| 1872 | { |
| 1873 | struct adapter *adapter; |
| 1874 | u32 tmp; |
| 1875 | int ret = -ENOMEM; |
| 1876 | |
| 1877 | adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL); |
| 1878 | if (!adapter) { |
| 1879 | dprintk("%s: out of memory!\n", __FUNCTION__); |
| 1880 | goto out; |
| 1881 | } |
| 1882 | |
| 1883 | memset(adapter, 0, sizeof(struct adapter)); |
| 1884 | |
| 1885 | pci_set_drvdata(pdev,adapter); |
| 1886 | |
| 1887 | adapter->pdev = pdev; |
| 1888 | adapter->irq = pdev->irq; |
| 1889 | |
| 1890 | ret = claim_adapter(adapter); |
| 1891 | if (ret < 0) |
| 1892 | goto err_kfree; |
| 1893 | |
| 1894 | irq_dma_enable_disable_irq(adapter, 0); |
| 1895 | |
| 1896 | ret = request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter); |
| 1897 | if (ret < 0) { |
| 1898 | dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq); |
| 1899 | goto err_release_adapter; |
| 1900 | } |
| 1901 | |
| 1902 | read_reg_dw(adapter, 0x208); |
| 1903 | write_reg_dw(adapter, 0x208, 0); |
| 1904 | write_reg_dw(adapter, 0x210, 0xb2ff); |
| 1905 | write_reg_dw(adapter, 0x208, 0x40); |
| 1906 | |
| 1907 | ret = init_dma_queue(adapter); |
| 1908 | if (ret < 0) |
| 1909 | goto err_free_irq; |
| 1910 | |
| 1911 | adapter->b2c2_revision = (read_reg_dw(adapter, 0x204) >> 0x18); |
| 1912 | |
| 1913 | switch (adapter->b2c2_revision) { |
| 1914 | case 0x82: |
| 1915 | printk("%s: FlexCopII(rev.130) chip found\n", __FILE__); |
| 1916 | break; |
| 1917 | case 0xc3: |
| 1918 | printk("%s: FlexCopIIB(rev.195) chip found\n", __FILE__); |
| 1919 | break; |
| 1920 | case 0xc0: |
| 1921 | printk("%s: FlexCopIII(rev.192) chip found\n", __FILE__); |
| 1922 | break; |
| 1923 | default: |
| 1924 | printk("%s: The revision of the FlexCop chip on your card is %d\n", __FILE__, adapter->b2c2_revision); |
| 1925 | printk("%s: This driver works only with FlexCopII(rev.130), FlexCopIIB(rev.195) and FlexCopIII(rev.192).\n", __FILE__); |
| 1926 | ret = -ENODEV; |
| 1927 | goto err_free_dma_queue; |
| 1928 | } |
| 1929 | |
| 1930 | decide_how_many_hw_filters(adapter); |
| 1931 | |
| 1932 | init_pids(adapter); |
| 1933 | |
| 1934 | tmp = read_reg_dw(adapter, 0x204); |
| 1935 | |
| 1936 | write_reg_dw(adapter, 0x204, 0); |
| 1937 | mdelay(20); |
| 1938 | |
| 1939 | write_reg_dw(adapter, 0x204, tmp); |
| 1940 | mdelay(10); |
| 1941 | |
| 1942 | tmp = read_reg_dw(adapter, 0x308); |
| 1943 | write_reg_dw(adapter, 0x308, 0x4000 | tmp); |
| 1944 | |
| 1945 | adapter->dw_sram_type = 0x10000; |
| 1946 | |
| 1947 | sll_detect_sram_size(adapter); |
| 1948 | |
| 1949 | dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, sram_length(adapter), adapter->dw_sram_type); |
| 1950 | |
| 1951 | sram_set_media_dest(adapter, 1); |
| 1952 | sram_set_net_dest(adapter, 1); |
| 1953 | |
| 1954 | ctrl_enable_smc(adapter, 0); |
| 1955 | |
| 1956 | sram_set_cai_dest(adapter, 2); |
| 1957 | sram_set_cao_dest(adapter, 2); |
| 1958 | |
| 1959 | dma_enable_disable_irq(adapter, 1, 0, 0); |
| 1960 | |
| 1961 | if (eeprom_get_mac_addr(adapter, 0, adapter->mac_addr) != 0) { |
| 1962 | printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0], |
| 1963 | adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5], |
| 1964 | adapter->mac_addr[6], adapter->mac_addr[7] |
| 1965 | ); |
| 1966 | |
| 1967 | ca_set_mac_dst_addr_filter(adapter, adapter->mac_addr); |
| 1968 | ctrl_enable_mac(adapter, 1); |
| 1969 | } |
| 1970 | |
| 1971 | spin_lock_init(&adapter->lock); |
| 1972 | |
| 1973 | out: |
| 1974 | return ret; |
| 1975 | |
| 1976 | err_free_dma_queue: |
| 1977 | free_dma_queue(adapter); |
| 1978 | err_free_irq: |
| 1979 | free_irq(pdev->irq, adapter); |
| 1980 | err_release_adapter: |
| 1981 | release_adapter(adapter); |
| 1982 | err_kfree: |
| 1983 | pci_set_drvdata(pdev, NULL); |
| 1984 | kfree(adapter); |
| 1985 | goto out; |
| 1986 | } |
| 1987 | |
| 1988 | static void driver_halt(struct pci_dev *pdev) |
| 1989 | { |
| 1990 | struct adapter *adapter = pci_get_drvdata(pdev); |
| 1991 | |
| 1992 | irq_dma_enable_disable_irq(adapter, 0); |
| 1993 | |
| 1994 | ctrl_enable_receive_data(adapter, 0); |
| 1995 | |
| 1996 | free_adapter_object(adapter); |
| 1997 | |
| 1998 | pci_set_drvdata(pdev, NULL); |
| 1999 | } |
| 2000 | |
| 2001 | static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed) |
| 2002 | { |
| 2003 | struct dvb_demux *dvbdmx = dvbdmxfeed->demux; |
| 2004 | struct adapter *adapter = (struct adapter *) dvbdmx->priv; |
| 2005 | |
| 2006 | dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); |
| 2007 | |
| 2008 | open_stream(adapter, dvbdmxfeed->pid); |
| 2009 | |
| 2010 | return 0; |
| 2011 | } |
| 2012 | |
| 2013 | static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed) |
| 2014 | { |
| 2015 | struct dvb_demux *dvbdmx = dvbdmxfeed->demux; |
| 2016 | struct adapter *adapter = (struct adapter *) dvbdmx->priv; |
| 2017 | |
| 2018 | dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); |
| 2019 | |
| 2020 | close_stream(adapter, dvbdmxfeed->pid); |
| 2021 | |
| 2022 | return 0; |
| 2023 | } |
| 2024 | |
| 2025 | /* lnb control */ |
| 2026 | static void set_tuner_tone(struct adapter *adapter, u8 tone) |
| 2027 | { |
| 2028 | u16 wz_half_period_for_45_mhz[] = { 0x01ff, 0x0154, 0x00ff, 0x00cc }; |
| 2029 | u16 ax; |
| 2030 | |
| 2031 | dprintk("%s: %u\n", __FUNCTION__, tone); |
| 2032 | |
| 2033 | switch (tone) { |
| 2034 | case 1: |
| 2035 | ax = wz_half_period_for_45_mhz[0]; |
| 2036 | break; |
| 2037 | case 2: |
| 2038 | ax = wz_half_period_for_45_mhz[1]; |
| 2039 | break; |
| 2040 | case 3: |
| 2041 | ax = wz_half_period_for_45_mhz[2]; |
| 2042 | break; |
| 2043 | case 4: |
| 2044 | ax = wz_half_period_for_45_mhz[3]; |
| 2045 | break; |
| 2046 | |
| 2047 | default: |
| 2048 | ax = 0; |
| 2049 | } |
| 2050 | |
| 2051 | if (ax != 0) { |
| 2052 | write_reg_dw(adapter, 0x200, ((ax << 0x0f) + (ax & 0x7fff)) | 0x40000000); |
| 2053 | |
| 2054 | } else { |
| 2055 | |
| 2056 | write_reg_dw(adapter, 0x200, 0x40ff8000); |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | static void set_tuner_polarity(struct adapter *adapter, u8 polarity) |
| 2061 | { |
| 2062 | u32 var; |
| 2063 | |
| 2064 | dprintk("%s : polarity = %u \n", __FUNCTION__, polarity); |
| 2065 | |
| 2066 | var = read_reg_dw(adapter, 0x204); |
| 2067 | |
| 2068 | if (polarity == 0) { |
| 2069 | dprintk("%s: LNB power off\n", __FUNCTION__); |
| 2070 | var = var | 1; |
| 2071 | }; |
| 2072 | |
| 2073 | if (polarity == 1) { |
| 2074 | var = var & ~1; |
| 2075 | var = var & ~4; |
| 2076 | }; |
| 2077 | |
| 2078 | if (polarity == 2) { |
| 2079 | var = var & ~1; |
| 2080 | var = var | 4; |
| 2081 | } |
| 2082 | |
| 2083 | write_reg_dw(adapter, 0x204, var); |
| 2084 | } |
| 2085 | |
| 2086 | static void diseqc_send_bit(struct adapter *adapter, int data) |
| 2087 | { |
| 2088 | set_tuner_tone(adapter, 1); |
| 2089 | udelay(data ? 500 : 1000); |
| 2090 | set_tuner_tone(adapter, 0); |
| 2091 | udelay(data ? 1000 : 500); |
| 2092 | } |
| 2093 | |
| 2094 | |
| 2095 | static void diseqc_send_byte(struct adapter *adapter, int data) |
| 2096 | { |
| 2097 | int i, par = 1, d; |
| 2098 | |
| 2099 | for (i = 7; i >= 0; i--) { |
| 2100 | d = (data >> i) & 1; |
| 2101 | par ^= d; |
| 2102 | diseqc_send_bit(adapter, d); |
| 2103 | } |
| 2104 | |
| 2105 | diseqc_send_bit(adapter, par); |
| 2106 | } |
| 2107 | |
| 2108 | |
| 2109 | static int send_diseqc_msg(struct adapter *adapter, int len, u8 *msg, unsigned long burst) |
| 2110 | { |
| 2111 | int i; |
| 2112 | |
| 2113 | set_tuner_tone(adapter, 0); |
| 2114 | mdelay(16); |
| 2115 | |
| 2116 | for (i = 0; i < len; i++) |
| 2117 | diseqc_send_byte(adapter, msg[i]); |
| 2118 | |
| 2119 | mdelay(16); |
| 2120 | |
| 2121 | if (burst != -1) { |
| 2122 | if (burst) |
| 2123 | diseqc_send_byte(adapter, 0xff); |
| 2124 | else { |
| 2125 | set_tuner_tone(adapter, 1); |
| 2126 | udelay(12500); |
| 2127 | set_tuner_tone(adapter, 0); |
| 2128 | } |
| 2129 | msleep(20); |
| 2130 | } |
| 2131 | |
| 2132 | return 0; |
| 2133 | } |
| 2134 | |
| 2135 | static int flexcop_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) |
| 2136 | { |
| 2137 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2138 | |
| 2139 | switch(tone) { |
| 2140 | case SEC_TONE_ON: |
| 2141 | set_tuner_tone(adapter, 1); |
| 2142 | break; |
| 2143 | case SEC_TONE_OFF: |
| 2144 | set_tuner_tone(adapter, 0); |
| 2145 | break; |
| 2146 | default: |
| 2147 | return -EINVAL; |
| 2148 | }; |
| 2149 | |
| 2150 | return 0; |
| 2151 | } |
| 2152 | |
| 2153 | static int flexcop_diseqc_send_master_cmd(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd) |
| 2154 | { |
| 2155 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2156 | |
| 2157 | send_diseqc_msg(adapter, cmd->msg_len, cmd->msg, 0); |
| 2158 | |
| 2159 | return 0; |
| 2160 | } |
| 2161 | |
| 2162 | static int flexcop_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd) |
| 2163 | { |
| 2164 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2165 | |
| 2166 | send_diseqc_msg(adapter, 0, NULL, minicmd); |
| 2167 | |
| 2168 | return 0; |
| 2169 | } |
| 2170 | |
| 2171 | static int flexcop_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage) |
| 2172 | { |
| 2173 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2174 | |
| 2175 | dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__); |
| 2176 | |
| 2177 | switch (voltage) { |
| 2178 | case SEC_VOLTAGE_13: |
| 2179 | dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13); |
| 2180 | set_tuner_polarity(adapter, 1); |
| 2181 | return 0; |
| 2182 | |
| 2183 | case SEC_VOLTAGE_18: |
| 2184 | dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18); |
| 2185 | set_tuner_polarity(adapter, 2); |
| 2186 | return 0; |
| 2187 | |
| 2188 | default: |
| 2189 | return -EINVAL; |
| 2190 | } |
| 2191 | } |
| 2192 | |
| 2193 | static int flexcop_sleep(struct dvb_frontend* fe) |
| 2194 | { |
| 2195 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2196 | |
| 2197 | dprintk("%s: FE_SLEEP\n", __FUNCTION__); |
| 2198 | set_tuner_polarity(adapter, 0); |
| 2199 | |
| 2200 | if (adapter->fe_sleep) return adapter->fe_sleep(fe); |
| 2201 | return 0; |
| 2202 | } |
| 2203 | |
| 2204 | static u32 flexcop_i2c_func(struct i2c_adapter *adapter) |
| 2205 | { |
| 2206 | printk("flexcop_i2c_func\n"); |
| 2207 | |
| 2208 | return I2C_FUNC_I2C; |
| 2209 | } |
| 2210 | |
| 2211 | static struct i2c_algorithm flexcop_algo = { |
| 2212 | .name = "flexcop i2c algorithm", |
| 2213 | .id = I2C_ALGO_BIT, |
| 2214 | .master_xfer = master_xfer, |
| 2215 | .functionality = flexcop_i2c_func, |
| 2216 | }; |
| 2217 | |
| 2218 | |
| 2219 | |
| 2220 | |
| 2221 | static int samsung_tbmu24112_set_symbol_rate(struct dvb_frontend* fe, u32 srate, u32 ratio) |
| 2222 | { |
| 2223 | u8 aclk = 0; |
| 2224 | u8 bclk = 0; |
| 2225 | |
| 2226 | if (srate < 1500000) { aclk = 0xb7; bclk = 0x47; } |
| 2227 | else if (srate < 3000000) { aclk = 0xb7; bclk = 0x4b; } |
| 2228 | else if (srate < 7000000) { aclk = 0xb7; bclk = 0x4f; } |
| 2229 | else if (srate < 14000000) { aclk = 0xb7; bclk = 0x53; } |
| 2230 | else if (srate < 30000000) { aclk = 0xb6; bclk = 0x53; } |
| 2231 | else if (srate < 45000000) { aclk = 0xb4; bclk = 0x51; } |
| 2232 | |
| 2233 | stv0299_writereg (fe, 0x13, aclk); |
| 2234 | stv0299_writereg (fe, 0x14, bclk); |
| 2235 | stv0299_writereg (fe, 0x1f, (ratio >> 16) & 0xff); |
| 2236 | stv0299_writereg (fe, 0x20, (ratio >> 8) & 0xff); |
| 2237 | stv0299_writereg (fe, 0x21, (ratio ) & 0xf0); |
| 2238 | |
| 2239 | return 0; |
| 2240 | } |
| 2241 | |
| 2242 | static int samsung_tbmu24112_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params) |
| 2243 | { |
| 2244 | u8 buf[4]; |
| 2245 | u32 div; |
| 2246 | struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) }; |
| 2247 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2248 | |
| 2249 | div = params->frequency / 125; |
| 2250 | |
| 2251 | buf[0] = (div >> 8) & 0x7f; |
| 2252 | buf[1] = div & 0xff; |
| 2253 | buf[2] = 0x84; // 0xC4 |
| 2254 | buf[3] = 0x08; |
| 2255 | |
| 2256 | if (params->frequency < 1500000) buf[3] |= 0x10; |
| 2257 | |
| 2258 | if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO; |
| 2259 | return 0; |
| 2260 | } |
| 2261 | |
| 2262 | static u8 samsung_tbmu24112_inittab[] = { |
| 2263 | 0x01, 0x15, |
| 2264 | 0x02, 0x30, |
| 2265 | 0x03, 0x00, |
| 2266 | 0x04, 0x7D, |
| 2267 | 0x05, 0x35, |
| 2268 | 0x06, 0x02, |
| 2269 | 0x07, 0x00, |
| 2270 | 0x08, 0xC3, |
| 2271 | 0x0C, 0x00, |
| 2272 | 0x0D, 0x81, |
| 2273 | 0x0E, 0x23, |
| 2274 | 0x0F, 0x12, |
| 2275 | 0x10, 0x7E, |
| 2276 | 0x11, 0x84, |
| 2277 | 0x12, 0xB9, |
| 2278 | 0x13, 0x88, |
| 2279 | 0x14, 0x89, |
| 2280 | 0x15, 0xC9, |
| 2281 | 0x16, 0x00, |
| 2282 | 0x17, 0x5C, |
| 2283 | 0x18, 0x00, |
| 2284 | 0x19, 0x00, |
| 2285 | 0x1A, 0x00, |
| 2286 | 0x1C, 0x00, |
| 2287 | 0x1D, 0x00, |
| 2288 | 0x1E, 0x00, |
| 2289 | 0x1F, 0x3A, |
| 2290 | 0x20, 0x2E, |
| 2291 | 0x21, 0x80, |
| 2292 | 0x22, 0xFF, |
| 2293 | 0x23, 0xC1, |
| 2294 | 0x28, 0x00, |
| 2295 | 0x29, 0x1E, |
| 2296 | 0x2A, 0x14, |
| 2297 | 0x2B, 0x0F, |
| 2298 | 0x2C, 0x09, |
| 2299 | 0x2D, 0x05, |
| 2300 | 0x31, 0x1F, |
| 2301 | 0x32, 0x19, |
| 2302 | 0x33, 0xFE, |
| 2303 | 0x34, 0x93, |
| 2304 | 0xff, 0xff, |
| 2305 | }; |
| 2306 | |
| 2307 | static struct stv0299_config samsung_tbmu24112_config = { |
| 2308 | .demod_address = 0x68, |
| 2309 | .inittab = samsung_tbmu24112_inittab, |
| 2310 | .mclk = 88000000UL, |
| 2311 | .invert = 0, |
| 2312 | .enhanced_tuning = 0, |
| 2313 | .skip_reinit = 0, |
| 2314 | .lock_output = STV0229_LOCKOUTPUT_LK, |
| 2315 | .volt13_op0_op1 = STV0299_VOLT13_OP1, |
| 2316 | .min_delay_ms = 100, |
| 2317 | .set_symbol_rate = samsung_tbmu24112_set_symbol_rate, |
| 2318 | .pll_set = samsung_tbmu24112_pll_set, |
| 2319 | }; |
| 2320 | |
| 2321 | |
| 2322 | |
| 2323 | static int nxt2002_request_firmware(struct dvb_frontend* fe, const struct firmware **fw, char* name) |
| 2324 | { |
| 2325 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2326 | |
| 2327 | return request_firmware(fw, name, &adapter->pdev->dev); |
| 2328 | } |
| 2329 | |
| 2330 | |
| 2331 | static struct nxt2002_config samsung_tbmv_config = { |
| 2332 | .demod_address = 0x0A, |
| 2333 | .request_firmware = nxt2002_request_firmware, |
| 2334 | }; |
| 2335 | |
| 2336 | static int samsung_tdtc9251dh0_demod_init(struct dvb_frontend* fe) |
| 2337 | { |
| 2338 | static u8 mt352_clock_config [] = { 0x89, 0x18, 0x2d }; |
| 2339 | static u8 mt352_reset [] = { 0x50, 0x80 }; |
| 2340 | static u8 mt352_adc_ctl_1_cfg [] = { 0x8E, 0x40 }; |
| 2341 | static u8 mt352_agc_cfg [] = { 0x67, 0x28, 0xa1 }; |
| 2342 | static u8 mt352_capt_range_cfg[] = { 0x75, 0x32 }; |
| 2343 | |
| 2344 | mt352_write(fe, mt352_clock_config, sizeof(mt352_clock_config)); |
| 2345 | udelay(2000); |
| 2346 | mt352_write(fe, mt352_reset, sizeof(mt352_reset)); |
| 2347 | mt352_write(fe, mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg)); |
| 2348 | |
| 2349 | mt352_write(fe, mt352_agc_cfg, sizeof(mt352_agc_cfg)); |
| 2350 | mt352_write(fe, mt352_capt_range_cfg, sizeof(mt352_capt_range_cfg)); |
| 2351 | |
| 2352 | return 0; |
| 2353 | } |
| 2354 | |
| 2355 | static int samsung_tdtc9251dh0_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params, u8* pllbuf) |
| 2356 | { |
| 2357 | u32 div; |
| 2358 | unsigned char bs = 0; |
| 2359 | |
| 2360 | #define IF_FREQUENCYx6 217 /* 6 * 36.16666666667MHz */ |
| 2361 | div = (((params->frequency + 83333) * 3) / 500000) + IF_FREQUENCYx6; |
| 2362 | |
| 2363 | if (params->frequency >= 48000000 && params->frequency <= 154000000) bs = 0x09; |
| 2364 | if (params->frequency >= 161000000 && params->frequency <= 439000000) bs = 0x0a; |
| 2365 | if (params->frequency >= 447000000 && params->frequency <= 863000000) bs = 0x08; |
| 2366 | |
| 2367 | pllbuf[0] = 0xc2; // Note: non-linux standard PLL i2c address |
| 2368 | pllbuf[1] = div >> 8; |
| 2369 | pllbuf[2] = div & 0xff; |
| 2370 | pllbuf[3] = 0xcc; |
| 2371 | pllbuf[4] = bs; |
| 2372 | |
| 2373 | return 0; |
| 2374 | } |
| 2375 | |
| 2376 | static struct mt352_config samsung_tdtc9251dh0_config = { |
| 2377 | |
| 2378 | .demod_address = 0x0f, |
| 2379 | .demod_init = samsung_tdtc9251dh0_demod_init, |
| 2380 | .pll_set = samsung_tdtc9251dh0_pll_set, |
| 2381 | }; |
| 2382 | |
| 2383 | static int skystar23_samsung_tbdu18132_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params) |
| 2384 | { |
| 2385 | u8 buf[4]; |
| 2386 | u32 div; |
| 2387 | struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) }; |
| 2388 | struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| 2389 | |
| 2390 | div = (params->frequency + (125/2)) / 125; |
| 2391 | |
| 2392 | buf[0] = (div >> 8) & 0x7f; |
| 2393 | buf[1] = (div >> 0) & 0xff; |
| 2394 | buf[2] = 0x84 | ((div >> 10) & 0x60); |
| 2395 | buf[3] = 0x80; |
| 2396 | |
| 2397 | if (params->frequency < 1550000) |
| 2398 | buf[3] |= 0x02; |
| 2399 | |
| 2400 | if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO; |
| 2401 | return 0; |
| 2402 | } |
| 2403 | |
| 2404 | static struct mt312_config skystar23_samsung_tbdu18132_config = { |
| 2405 | |
| 2406 | .demod_address = 0x0e, |
| 2407 | .pll_set = skystar23_samsung_tbdu18132_pll_set, |
| 2408 | }; |
| 2409 | |
| 2410 | |
| 2411 | |
| 2412 | |
| 2413 | static void frontend_init(struct adapter *skystar2) |
| 2414 | { |
| 2415 | switch(skystar2->pdev->device) { |
| 2416 | case 0x2103: // Technisat Skystar2 OR Technisat Airstar2 (DVB-T or ATSC) |
| 2417 | |
| 2418 | // Attempt to load the Nextwave nxt2002 for ATSC support |
| 2419 | skystar2->fe = nxt2002_attach(&samsung_tbmv_config, &skystar2->i2c_adap); |
| 2420 | if (skystar2->fe != NULL) { |
| 2421 | skystar2->fe_sleep = skystar2->fe->ops->sleep; |
| 2422 | skystar2->fe->ops->sleep = flexcop_sleep; |
| 2423 | break; |
| 2424 | } |
| 2425 | |
| 2426 | // try the skystar2 v2.6 first (stv0299/Samsung tbmu24112(sl1935)) |
| 2427 | skystar2->fe = stv0299_attach(&samsung_tbmu24112_config, &skystar2->i2c_adap); |
| 2428 | if (skystar2->fe != NULL) { |
| 2429 | skystar2->fe->ops->set_voltage = flexcop_set_voltage; |
| 2430 | skystar2->fe_sleep = skystar2->fe->ops->sleep; |
| 2431 | skystar2->fe->ops->sleep = flexcop_sleep; |
| 2432 | break; |
| 2433 | } |
| 2434 | |
| 2435 | // try the airstar2 (mt352/Samsung tdtc9251dh0(??)) |
| 2436 | skystar2->fe = mt352_attach(&samsung_tdtc9251dh0_config, &skystar2->i2c_adap); |
| 2437 | if (skystar2->fe != NULL) { |
| 2438 | skystar2->fe->ops->info.frequency_min = 474000000; |
| 2439 | skystar2->fe->ops->info.frequency_max = 858000000; |
| 2440 | break; |
| 2441 | } |
| 2442 | |
| 2443 | // try the skystar2 v2.3 (vp310/Samsung tbdu18132(tsa5059)) |
| 2444 | skystar2->fe = vp310_attach(&skystar23_samsung_tbdu18132_config, &skystar2->i2c_adap); |
| 2445 | if (skystar2->fe != NULL) { |
| 2446 | skystar2->fe->ops->diseqc_send_master_cmd = flexcop_diseqc_send_master_cmd; |
| 2447 | skystar2->fe->ops->diseqc_send_burst = flexcop_diseqc_send_burst; |
| 2448 | skystar2->fe->ops->set_tone = flexcop_set_tone; |
| 2449 | skystar2->fe->ops->set_voltage = flexcop_set_voltage; |
| 2450 | skystar2->fe_sleep = skystar2->fe->ops->sleep; |
| 2451 | skystar2->fe->ops->sleep = flexcop_sleep; |
| 2452 | break; |
| 2453 | } |
| 2454 | break; |
| 2455 | } |
| 2456 | |
| 2457 | if (skystar2->fe == NULL) { |
| 2458 | printk("skystar2: A frontend driver was not found for device %04x/%04x subsystem %04x/%04x\n", |
| 2459 | skystar2->pdev->vendor, |
| 2460 | skystar2->pdev->device, |
| 2461 | skystar2->pdev->subsystem_vendor, |
| 2462 | skystar2->pdev->subsystem_device); |
| 2463 | } else { |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 2464 | if (dvb_register_frontend(&skystar2->dvb_adapter, skystar2->fe)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2465 | printk("skystar2: Frontend registration failed!\n"); |
| 2466 | if (skystar2->fe->ops->release) |
| 2467 | skystar2->fe->ops->release(skystar2->fe); |
| 2468 | skystar2->fe = NULL; |
| 2469 | } |
| 2470 | } |
| 2471 | } |
| 2472 | |
| 2473 | |
| 2474 | static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| 2475 | { |
| 2476 | struct adapter *adapter; |
| 2477 | struct dvb_adapter *dvb_adapter; |
| 2478 | struct dvb_demux *dvbdemux; |
| 2479 | struct dmx_demux *dmx; |
| 2480 | int ret = -ENODEV; |
| 2481 | |
| 2482 | if (!pdev) |
| 2483 | goto out; |
| 2484 | |
| 2485 | ret = driver_initialize(pdev); |
| 2486 | if (ret < 0) |
| 2487 | goto out; |
| 2488 | |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 2489 | adapter = pci_get_drvdata(pdev); |
| 2490 | dvb_adapter = &adapter->dvb_adapter; |
| 2491 | |
| 2492 | ret = dvb_register_adapter(dvb_adapter, skystar2_pci_driver.name, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2493 | THIS_MODULE); |
| 2494 | if (ret < 0) { |
| 2495 | printk("%s: Error registering DVB adapter\n", __FUNCTION__); |
| 2496 | goto err_halt; |
| 2497 | } |
| 2498 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2499 | dvb_adapter->priv = adapter; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2500 | |
| 2501 | |
| 2502 | init_MUTEX(&adapter->i2c_sem); |
| 2503 | |
| 2504 | |
| 2505 | memset(&adapter->i2c_adap, 0, sizeof(struct i2c_adapter)); |
| 2506 | strcpy(adapter->i2c_adap.name, "SkyStar2"); |
| 2507 | |
| 2508 | i2c_set_adapdata(&adapter->i2c_adap, adapter); |
| 2509 | |
| 2510 | #ifdef I2C_ADAP_CLASS_TV_DIGITAL |
| 2511 | adapter->i2c_adap.class = I2C_ADAP_CLASS_TV_DIGITAL; |
| 2512 | #else |
| 2513 | adapter->i2c_adap.class = I2C_CLASS_TV_DIGITAL; |
| 2514 | #endif |
| 2515 | adapter->i2c_adap.algo = &flexcop_algo; |
| 2516 | adapter->i2c_adap.algo_data = NULL; |
| 2517 | adapter->i2c_adap.id = I2C_ALGO_BIT; |
| 2518 | |
| 2519 | ret = i2c_add_adapter(&adapter->i2c_adap); |
| 2520 | if (ret < 0) |
| 2521 | goto err_dvb_unregister; |
| 2522 | |
| 2523 | dvbdemux = &adapter->demux; |
| 2524 | |
| 2525 | dvbdemux->priv = adapter; |
| 2526 | dvbdemux->filternum = N_PID_SLOTS; |
| 2527 | dvbdemux->feednum = N_PID_SLOTS; |
| 2528 | dvbdemux->start_feed = dvb_start_feed; |
| 2529 | dvbdemux->stop_feed = dvb_stop_feed; |
| 2530 | dvbdemux->write_to_decoder = NULL; |
| 2531 | dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); |
| 2532 | |
| 2533 | ret = dvb_dmx_init(&adapter->demux); |
| 2534 | if (ret < 0) |
| 2535 | goto err_i2c_del; |
| 2536 | |
| 2537 | dmx = &dvbdemux->dmx; |
| 2538 | |
| 2539 | adapter->hw_frontend.source = DMX_FRONTEND_0; |
| 2540 | adapter->dmxdev.filternum = N_PID_SLOTS; |
| 2541 | adapter->dmxdev.demux = dmx; |
| 2542 | adapter->dmxdev.capabilities = 0; |
| 2543 | |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 2544 | ret = dvb_dmxdev_init(&adapter->dmxdev, &adapter->dvb_adapter); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2545 | if (ret < 0) |
| 2546 | goto err_dmx_release; |
| 2547 | |
| 2548 | ret = dmx->add_frontend(dmx, &adapter->hw_frontend); |
| 2549 | if (ret < 0) |
| 2550 | goto err_dmxdev_release; |
| 2551 | |
| 2552 | adapter->mem_frontend.source = DMX_MEMORY_FE; |
| 2553 | |
| 2554 | ret = dmx->add_frontend(dmx, &adapter->mem_frontend); |
| 2555 | if (ret < 0) |
| 2556 | goto err_remove_hw_frontend; |
| 2557 | |
| 2558 | ret = dmx->connect_frontend(dmx, &adapter->hw_frontend); |
| 2559 | if (ret < 0) |
| 2560 | goto err_remove_mem_frontend; |
| 2561 | |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 2562 | dvb_net_init(&adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2563 | |
| 2564 | frontend_init(adapter); |
| 2565 | out: |
| 2566 | return ret; |
| 2567 | |
| 2568 | err_remove_mem_frontend: |
| 2569 | dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend); |
| 2570 | err_remove_hw_frontend: |
| 2571 | dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend); |
| 2572 | err_dmxdev_release: |
| 2573 | dvb_dmxdev_release(&adapter->dmxdev); |
| 2574 | err_dmx_release: |
| 2575 | dvb_dmx_release(&adapter->demux); |
| 2576 | err_i2c_del: |
| 2577 | i2c_del_adapter(&adapter->i2c_adap); |
| 2578 | err_dvb_unregister: |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 2579 | dvb_unregister_adapter(&adapter->dvb_adapter); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2580 | err_halt: |
| 2581 | driver_halt(pdev); |
| 2582 | goto out; |
| 2583 | } |
| 2584 | |
| 2585 | static void skystar2_remove(struct pci_dev *pdev) |
| 2586 | { |
| 2587 | struct adapter *adapter = pci_get_drvdata(pdev); |
| 2588 | struct dvb_demux *dvbdemux; |
| 2589 | struct dmx_demux *dmx; |
| 2590 | |
| 2591 | if (!adapter) |
| 2592 | return; |
| 2593 | |
| 2594 | dvb_net_release(&adapter->dvbnet); |
| 2595 | dvbdemux = &adapter->demux; |
| 2596 | dmx = &dvbdemux->dmx; |
| 2597 | |
| 2598 | dmx->close(dmx); |
| 2599 | dmx->remove_frontend(dmx, &adapter->hw_frontend); |
| 2600 | dmx->remove_frontend(dmx, &adapter->mem_frontend); |
| 2601 | |
| 2602 | dvb_dmxdev_release(&adapter->dmxdev); |
| 2603 | dvb_dmx_release(dvbdemux); |
| 2604 | |
| 2605 | if (adapter->fe != NULL) |
| 2606 | dvb_unregister_frontend(adapter->fe); |
| 2607 | |
Johannes Stezenbach | fdc53a6 | 2005-05-16 21:54:39 -0700 | [diff] [blame] | 2608 | dvb_unregister_adapter(&adapter->dvb_adapter); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2609 | |
| 2610 | i2c_del_adapter(&adapter->i2c_adap); |
| 2611 | |
| 2612 | driver_halt(pdev); |
| 2613 | } |
| 2614 | |
| 2615 | static struct pci_device_id skystar2_pci_tbl[] = { |
| 2616 | {0x000013d0, 0x00002103, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, |
| 2617 | /* {0x000013d0, 0x00002200, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, UNDEFINED HARDWARE - mail linuxtv.org list */ //FCIII |
| 2618 | {0,}, |
| 2619 | }; |
| 2620 | |
| 2621 | MODULE_DEVICE_TABLE(pci, skystar2_pci_tbl); |
| 2622 | |
| 2623 | static struct pci_driver skystar2_pci_driver = { |
| 2624 | .name = "SkyStar2", |
| 2625 | .id_table = skystar2_pci_tbl, |
| 2626 | .probe = skystar2_probe, |
| 2627 | .remove = skystar2_remove, |
| 2628 | }; |
| 2629 | |
| 2630 | static int skystar2_init(void) |
| 2631 | { |
| 2632 | return pci_register_driver(&skystar2_pci_driver); |
| 2633 | } |
| 2634 | |
| 2635 | static void skystar2_cleanup(void) |
| 2636 | { |
| 2637 | pci_unregister_driver(&skystar2_pci_driver); |
| 2638 | } |
| 2639 | |
| 2640 | module_init(skystar2_init); |
| 2641 | module_exit(skystar2_cleanup); |
| 2642 | |
| 2643 | MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver"); |
| 2644 | MODULE_LICENSE("GPL"); |