| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * JFFS2 -- Journalling Flash File System, Version 2. | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2001-2003 Red Hat, Inc. | 
 | 5 |  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> | 
 | 6 |  * | 
 | 7 |  * Created by David Woodhouse <dwmw2@infradead.org> | 
 | 8 |  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> | 
 | 9 |  * | 
 | 10 |  * For licensing information, see the file 'LICENCE' in this directory. | 
 | 11 |  * | 
| Artem B. Bityutskiy | 733802d | 2005-09-22 12:25:00 +0100 | [diff] [blame^] | 12 |  * $Id: wbuf.c,v 1.99 2005/09/21 16:11:04 dedekind Exp $ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 |  * | 
 | 14 |  */ | 
 | 15 |  | 
 | 16 | #include <linux/kernel.h> | 
 | 17 | #include <linux/slab.h> | 
 | 18 | #include <linux/mtd/mtd.h> | 
 | 19 | #include <linux/crc32.h> | 
 | 20 | #include <linux/mtd/nand.h> | 
| Tim Schmielau | 4e57b68 | 2005-10-30 15:03:48 -0800 | [diff] [blame] | 21 | #include <linux/jiffies.h> | 
 | 22 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 23 | #include "nodelist.h" | 
 | 24 |  | 
 | 25 | /* For testing write failures */ | 
 | 26 | #undef BREAKME | 
 | 27 | #undef BREAKMEHEADER | 
 | 28 |  | 
 | 29 | #ifdef BREAKME | 
 | 30 | static unsigned char *brokenbuf; | 
 | 31 | #endif | 
 | 32 |  | 
 | 33 | /* max. erase failures before we mark a block bad */ | 
 | 34 | #define MAX_ERASE_FAILURES 	2 | 
 | 35 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 36 | struct jffs2_inodirty { | 
 | 37 | 	uint32_t ino; | 
 | 38 | 	struct jffs2_inodirty *next; | 
 | 39 | }; | 
 | 40 |  | 
 | 41 | static struct jffs2_inodirty inodirty_nomem; | 
 | 42 |  | 
 | 43 | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) | 
 | 44 | { | 
 | 45 | 	struct jffs2_inodirty *this = c->wbuf_inodes; | 
 | 46 |  | 
 | 47 | 	/* If a malloc failed, consider _everything_ dirty */ | 
 | 48 | 	if (this == &inodirty_nomem) | 
 | 49 | 		return 1; | 
 | 50 |  | 
 | 51 | 	/* If ino == 0, _any_ non-GC writes mean 'yes' */ | 
 | 52 | 	if (this && !ino) | 
 | 53 | 		return 1; | 
 | 54 |  | 
 | 55 | 	/* Look to see if the inode in question is pending in the wbuf */ | 
 | 56 | 	while (this) { | 
 | 57 | 		if (this->ino == ino) | 
 | 58 | 			return 1; | 
 | 59 | 		this = this->next; | 
 | 60 | 	} | 
 | 61 | 	return 0; | 
 | 62 | } | 
 | 63 |  | 
 | 64 | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) | 
 | 65 | { | 
 | 66 | 	struct jffs2_inodirty *this; | 
 | 67 |  | 
 | 68 | 	this = c->wbuf_inodes; | 
 | 69 |  | 
 | 70 | 	if (this != &inodirty_nomem) { | 
 | 71 | 		while (this) { | 
 | 72 | 			struct jffs2_inodirty *next = this->next; | 
 | 73 | 			kfree(this); | 
 | 74 | 			this = next; | 
 | 75 | 		} | 
 | 76 | 	} | 
 | 77 | 	c->wbuf_inodes = NULL; | 
 | 78 | } | 
 | 79 |  | 
 | 80 | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) | 
 | 81 | { | 
 | 82 | 	struct jffs2_inodirty *new; | 
 | 83 |  | 
 | 84 | 	/* Mark the superblock dirty so that kupdated will flush... */ | 
| Artem B. Bityuckiy | 4d95270 | 2005-03-18 09:58:09 +0000 | [diff] [blame] | 85 | 	jffs2_erase_pending_trigger(c); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 86 |  | 
 | 87 | 	if (jffs2_wbuf_pending_for_ino(c, ino)) | 
 | 88 | 		return; | 
 | 89 |  | 
 | 90 | 	new = kmalloc(sizeof(*new), GFP_KERNEL); | 
 | 91 | 	if (!new) { | 
 | 92 | 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); | 
 | 93 | 		jffs2_clear_wbuf_ino_list(c); | 
 | 94 | 		c->wbuf_inodes = &inodirty_nomem; | 
 | 95 | 		return; | 
 | 96 | 	} | 
 | 97 | 	new->ino = ino; | 
 | 98 | 	new->next = c->wbuf_inodes; | 
 | 99 | 	c->wbuf_inodes = new; | 
 | 100 | 	return; | 
 | 101 | } | 
 | 102 |  | 
 | 103 | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) | 
 | 104 | { | 
 | 105 | 	struct list_head *this, *next; | 
 | 106 | 	static int n; | 
 | 107 |  | 
 | 108 | 	if (list_empty(&c->erasable_pending_wbuf_list)) | 
 | 109 | 		return; | 
 | 110 |  | 
 | 111 | 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { | 
 | 112 | 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
 | 113 |  | 
 | 114 | 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); | 
 | 115 | 		list_del(this); | 
 | 116 | 		if ((jiffies + (n++)) & 127) { | 
 | 117 | 			/* Most of the time, we just erase it immediately. Otherwise we | 
 | 118 | 			   spend ages scanning it on mount, etc. */ | 
 | 119 | 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
 | 120 | 			list_add_tail(&jeb->list, &c->erase_pending_list); | 
 | 121 | 			c->nr_erasing_blocks++; | 
 | 122 | 			jffs2_erase_pending_trigger(c); | 
 | 123 | 		} else { | 
 | 124 | 			/* Sometimes, however, we leave it elsewhere so it doesn't get | 
 | 125 | 			   immediately reused, and we spread the load a bit. */ | 
 | 126 | 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
 | 127 | 			list_add_tail(&jeb->list, &c->erasable_list); | 
 | 128 | 		} | 
 | 129 | 	} | 
 | 130 | } | 
 | 131 |  | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 132 | #define REFILE_NOTEMPTY 0 | 
 | 133 | #define REFILE_ANYWAY   1 | 
 | 134 |  | 
 | 135 | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 136 | { | 
 | 137 | 	D1(printk("About to refile bad block at %08x\n", jeb->offset)); | 
 | 138 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 139 | 	/* File the existing block on the bad_used_list.... */ | 
 | 140 | 	if (c->nextblock == jeb) | 
 | 141 | 		c->nextblock = NULL; | 
 | 142 | 	else /* Not sure this should ever happen... need more coffee */ | 
 | 143 | 		list_del(&jeb->list); | 
 | 144 | 	if (jeb->first_node) { | 
 | 145 | 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); | 
 | 146 | 		list_add(&jeb->list, &c->bad_used_list); | 
 | 147 | 	} else { | 
| Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame] | 148 | 		BUG_ON(allow_empty == REFILE_NOTEMPTY); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 149 | 		/* It has to have had some nodes or we couldn't be here */ | 
 | 150 | 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); | 
 | 151 | 		list_add(&jeb->list, &c->erase_pending_list); | 
 | 152 | 		c->nr_erasing_blocks++; | 
 | 153 | 		jffs2_erase_pending_trigger(c); | 
 | 154 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 155 |  | 
 | 156 | 	/* Adjust its size counts accordingly */ | 
 | 157 | 	c->wasted_size += jeb->free_size; | 
 | 158 | 	c->free_size -= jeb->free_size; | 
 | 159 | 	jeb->wasted_size += jeb->free_size; | 
 | 160 | 	jeb->free_size = 0; | 
 | 161 |  | 
| Artem B. Bityutskiy | e0c8e42 | 2005-07-24 16:14:17 +0100 | [diff] [blame] | 162 | 	jffs2_dbg_dump_block_lists_nolock(c); | 
 | 163 | 	jffs2_dbg_acct_sanity_check_nolock(c,jeb); | 
 | 164 | 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 165 | } | 
 | 166 |  | 
 | 167 | /* Recover from failure to write wbuf. Recover the nodes up to the | 
 | 168 |  * wbuf, not the one which we were starting to try to write. */ | 
 | 169 |  | 
 | 170 | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) | 
 | 171 | { | 
 | 172 | 	struct jffs2_eraseblock *jeb, *new_jeb; | 
 | 173 | 	struct jffs2_raw_node_ref **first_raw, **raw; | 
 | 174 | 	size_t retlen; | 
 | 175 | 	int ret; | 
 | 176 | 	unsigned char *buf; | 
 | 177 | 	uint32_t start, end, ofs, len; | 
 | 178 |  | 
 | 179 | 	spin_lock(&c->erase_completion_lock); | 
 | 180 |  | 
 | 181 | 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
 | 182 |  | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 183 | 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 184 |  | 
 | 185 | 	/* Find the first node to be recovered, by skipping over every | 
 | 186 | 	   node which ends before the wbuf starts, or which is obsolete. */ | 
 | 187 | 	first_raw = &jeb->first_node; | 
 | 188 | 	while (*first_raw &&  | 
 | 189 | 	       (ref_obsolete(*first_raw) || | 
 | 190 | 		(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { | 
 | 191 | 		D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", | 
 | 192 | 			  ref_offset(*first_raw), ref_flags(*first_raw), | 
 | 193 | 			  (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), | 
 | 194 | 			  c->wbuf_ofs)); | 
 | 195 | 		first_raw = &(*first_raw)->next_phys; | 
 | 196 | 	} | 
 | 197 |  | 
 | 198 | 	if (!*first_raw) { | 
 | 199 | 		/* All nodes were obsolete. Nothing to recover. */ | 
 | 200 | 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); | 
 | 201 | 		spin_unlock(&c->erase_completion_lock); | 
 | 202 | 		return; | 
 | 203 | 	} | 
 | 204 |  | 
 | 205 | 	start = ref_offset(*first_raw); | 
 | 206 | 	end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); | 
 | 207 |  | 
 | 208 | 	/* Find the last node to be recovered */ | 
 | 209 | 	raw = first_raw; | 
 | 210 | 	while ((*raw)) { | 
 | 211 | 		if (!ref_obsolete(*raw)) | 
 | 212 | 			end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); | 
 | 213 |  | 
 | 214 | 		raw = &(*raw)->next_phys; | 
 | 215 | 	} | 
 | 216 | 	spin_unlock(&c->erase_completion_lock); | 
 | 217 |  | 
 | 218 | 	D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); | 
 | 219 |  | 
 | 220 | 	buf = NULL; | 
 | 221 | 	if (start < c->wbuf_ofs) { | 
 | 222 | 		/* First affected node was already partially written. | 
 | 223 | 		 * Attempt to reread the old data into our buffer. */ | 
 | 224 |  | 
 | 225 | 		buf = kmalloc(end - start, GFP_KERNEL); | 
 | 226 | 		if (!buf) { | 
 | 227 | 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); | 
 | 228 |  | 
 | 229 | 			goto read_failed; | 
 | 230 | 		} | 
 | 231 |  | 
 | 232 | 		/* Do the read... */ | 
 | 233 | 		if (jffs2_cleanmarker_oob(c)) | 
 | 234 | 			ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); | 
 | 235 | 		else | 
 | 236 | 			ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); | 
 | 237 | 		 | 
 | 238 | 		if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { | 
 | 239 | 			/* ECC recovered */ | 
 | 240 | 			ret = 0; | 
 | 241 | 		} | 
 | 242 | 		if (ret || retlen != c->wbuf_ofs - start) { | 
 | 243 | 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); | 
 | 244 |  | 
 | 245 | 			kfree(buf); | 
 | 246 | 			buf = NULL; | 
 | 247 | 		read_failed: | 
 | 248 | 			first_raw = &(*first_raw)->next_phys; | 
 | 249 | 			/* If this was the only node to be recovered, give up */ | 
 | 250 | 			if (!(*first_raw)) | 
 | 251 | 				return; | 
 | 252 |  | 
 | 253 | 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */ | 
 | 254 | 			start = ref_offset(*first_raw); | 
 | 255 | 		} else { | 
 | 256 | 			/* Read succeeded. Copy the remaining data from the wbuf */ | 
 | 257 | 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); | 
 | 258 | 		} | 
 | 259 | 	} | 
 | 260 | 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. | 
 | 261 | 	   Either 'buf' contains the data, or we find it in the wbuf */ | 
 | 262 |  | 
 | 263 |  | 
 | 264 | 	/* ... and get an allocation of space from a shiny new block instead */ | 
| Ferenc Havasi | e631ddb | 2005-09-07 09:35:26 +0100 | [diff] [blame] | 265 | 	ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 266 | 	if (ret) { | 
 | 267 | 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); | 
| Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame] | 268 | 		kfree(buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 269 | 		return; | 
 | 270 | 	} | 
 | 271 | 	if (end-start >= c->wbuf_pagesize) { | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 272 | 		/* Need to do another write immediately, but it's possible | 
| Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame] | 273 | 		   that this is just because the wbuf itself is completely | 
 | 274 | 		   full, and there's nothing earlier read back from the  | 
 | 275 | 		   flash. Hence 'buf' isn't necessarily what we're writing  | 
 | 276 | 		   from. */ | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 277 | 		unsigned char *rewrite_buf = buf?:c->wbuf; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 278 | 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); | 
 | 279 |  | 
 | 280 | 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", | 
 | 281 | 			  towrite, ofs)); | 
 | 282 | 	   | 
 | 283 | #ifdef BREAKMEHEADER | 
 | 284 | 		static int breakme; | 
 | 285 | 		if (breakme++ == 20) { | 
 | 286 | 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); | 
 | 287 | 			breakme = 0; | 
 | 288 | 			c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
 | 289 | 					  brokenbuf, NULL, c->oobinfo); | 
 | 290 | 			ret = -EIO; | 
 | 291 | 		} else | 
 | 292 | #endif | 
 | 293 | 		if (jffs2_cleanmarker_oob(c)) | 
 | 294 | 			ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 295 | 						rewrite_buf, NULL, c->oobinfo); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 296 | 		else | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 297 | 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 298 |  | 
 | 299 | 		if (ret || retlen != towrite) { | 
 | 300 | 			/* Argh. We tried. Really we did. */ | 
 | 301 | 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); | 
| Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame] | 302 | 			kfree(buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 303 |  | 
 | 304 | 			if (retlen) { | 
 | 305 | 				struct jffs2_raw_node_ref *raw2; | 
 | 306 |  | 
 | 307 | 				raw2 = jffs2_alloc_raw_node_ref(); | 
 | 308 | 				if (!raw2) | 
 | 309 | 					return; | 
 | 310 |  | 
 | 311 | 				raw2->flash_offset = ofs | REF_OBSOLETE; | 
 | 312 | 				raw2->__totlen = ref_totlen(c, jeb, *first_raw); | 
 | 313 | 				raw2->next_phys = NULL; | 
 | 314 | 				raw2->next_in_ino = NULL; | 
 | 315 |  | 
 | 316 | 				jffs2_add_physical_node_ref(c, raw2); | 
 | 317 | 			} | 
 | 318 | 			return; | 
 | 319 | 		} | 
 | 320 | 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); | 
 | 321 |  | 
 | 322 | 		c->wbuf_len = (end - start) - towrite; | 
 | 323 | 		c->wbuf_ofs = ofs + towrite; | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 324 | 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 325 | 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */ | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 326 | 		if (buf) | 
 | 327 | 			kfree(buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 328 | 	} else { | 
 | 329 | 		/* OK, now we're left with the dregs in whichever buffer we're using */ | 
 | 330 | 		if (buf) { | 
 | 331 | 			memcpy(c->wbuf, buf, end-start); | 
 | 332 | 			kfree(buf); | 
 | 333 | 		} else { | 
 | 334 | 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); | 
 | 335 | 		} | 
 | 336 | 		c->wbuf_ofs = ofs; | 
 | 337 | 		c->wbuf_len = end - start; | 
 | 338 | 	} | 
 | 339 |  | 
 | 340 | 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ | 
 | 341 | 	new_jeb = &c->blocks[ofs / c->sector_size]; | 
 | 342 |  | 
 | 343 | 	spin_lock(&c->erase_completion_lock); | 
 | 344 | 	if (new_jeb->first_node) { | 
 | 345 | 		/* Odd, but possible with ST flash later maybe */ | 
 | 346 | 		new_jeb->last_node->next_phys = *first_raw; | 
 | 347 | 	} else { | 
 | 348 | 		new_jeb->first_node = *first_raw; | 
 | 349 | 	} | 
 | 350 |  | 
 | 351 | 	raw = first_raw; | 
 | 352 | 	while (*raw) { | 
 | 353 | 		uint32_t rawlen = ref_totlen(c, jeb, *raw); | 
 | 354 |  | 
 | 355 | 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", | 
 | 356 | 			  rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); | 
 | 357 |  | 
 | 358 | 		if (ref_obsolete(*raw)) { | 
 | 359 | 			/* Shouldn't really happen much */ | 
 | 360 | 			new_jeb->dirty_size += rawlen; | 
 | 361 | 			new_jeb->free_size -= rawlen; | 
 | 362 | 			c->dirty_size += rawlen; | 
 | 363 | 		} else { | 
 | 364 | 			new_jeb->used_size += rawlen; | 
 | 365 | 			new_jeb->free_size -= rawlen; | 
 | 366 | 			jeb->dirty_size += rawlen; | 
 | 367 | 			jeb->used_size  -= rawlen; | 
 | 368 | 			c->dirty_size += rawlen; | 
 | 369 | 		} | 
 | 370 | 		c->free_size -= rawlen; | 
 | 371 | 		(*raw)->flash_offset = ofs | ref_flags(*raw); | 
 | 372 | 		ofs += rawlen; | 
 | 373 | 		new_jeb->last_node = *raw; | 
 | 374 |  | 
 | 375 | 		raw = &(*raw)->next_phys; | 
 | 376 | 	} | 
 | 377 |  | 
 | 378 | 	/* Fix up the original jeb now it's on the bad_list */ | 
 | 379 | 	*first_raw = NULL; | 
 | 380 | 	if (first_raw == &jeb->first_node) { | 
 | 381 | 		jeb->last_node = NULL; | 
 | 382 | 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); | 
 | 383 | 		list_del(&jeb->list); | 
 | 384 | 		list_add(&jeb->list, &c->erase_pending_list); | 
 | 385 | 		c->nr_erasing_blocks++; | 
 | 386 | 		jffs2_erase_pending_trigger(c); | 
 | 387 | 	} | 
 | 388 | 	else | 
 | 389 | 		jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); | 
 | 390 |  | 
| Artem B. Bityutskiy | e0c8e42 | 2005-07-24 16:14:17 +0100 | [diff] [blame] | 391 | 	jffs2_dbg_acct_sanity_check_nolock(c, jeb); | 
 | 392 |         jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 393 |  | 
| Artem B. Bityutskiy | e0c8e42 | 2005-07-24 16:14:17 +0100 | [diff] [blame] | 394 | 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); | 
 | 395 |         jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 396 |  | 
 | 397 | 	spin_unlock(&c->erase_completion_lock); | 
 | 398 |  | 
 | 399 | 	D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); | 
 | 400 | } | 
 | 401 |  | 
 | 402 | /* Meaning of pad argument: | 
 | 403 |    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. | 
 | 404 |    1: Pad, do not adjust nextblock free_size | 
 | 405 |    2: Pad, adjust nextblock free_size | 
 | 406 | */ | 
 | 407 | #define NOPAD		0 | 
 | 408 | #define PAD_NOACCOUNT	1 | 
 | 409 | #define PAD_ACCOUNTING	2 | 
 | 410 |  | 
 | 411 | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | 
 | 412 | { | 
 | 413 | 	int ret; | 
 | 414 | 	size_t retlen; | 
 | 415 |  | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 416 | 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 417 | 	   del_timer() the timer we never initialised. */ | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 418 | 	if (!jffs2_is_writebuffered(c)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 419 | 		return 0; | 
 | 420 |  | 
 | 421 | 	if (!down_trylock(&c->alloc_sem)) { | 
 | 422 | 		up(&c->alloc_sem); | 
 | 423 | 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); | 
 | 424 | 		BUG(); | 
 | 425 | 	} | 
 | 426 |  | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 427 | 	if (!c->wbuf_len)	/* already checked c->wbuf above */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 428 | 		return 0; | 
 | 429 |  | 
 | 430 | 	/* claim remaining space on the page | 
 | 431 | 	   this happens, if we have a change to a new block, | 
 | 432 | 	   or if fsync forces us to flush the writebuffer. | 
 | 433 | 	   if we have a switch to next page, we will not have | 
 | 434 | 	   enough remaining space for this.  | 
 | 435 | 	*/ | 
| Andrew Victor | 8f15fd5 | 2005-02-09 09:17:45 +0000 | [diff] [blame] | 436 | 	if (pad && !jffs2_dataflash(c)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 437 | 		c->wbuf_len = PAD(c->wbuf_len); | 
 | 438 |  | 
 | 439 | 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR | 
 | 440 | 		   with 8 byte page size */ | 
 | 441 | 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); | 
 | 442 | 		 | 
 | 443 | 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { | 
 | 444 | 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); | 
 | 445 | 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
 | 446 | 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); | 
 | 447 | 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); | 
 | 448 | 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); | 
 | 449 | 		} | 
 | 450 | 	} | 
 | 451 | 	/* else jffs2_flash_writev has actually filled in the rest of the | 
 | 452 | 	   buffer for us, and will deal with the node refs etc. later. */ | 
 | 453 | 	 | 
 | 454 | #ifdef BREAKME | 
 | 455 | 	static int breakme; | 
 | 456 | 	if (breakme++ == 20) { | 
 | 457 | 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); | 
 | 458 | 		breakme = 0; | 
 | 459 | 		c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, | 
 | 460 | 					&retlen, brokenbuf, NULL, c->oobinfo); | 
 | 461 | 		ret = -EIO; | 
 | 462 | 	} else  | 
 | 463 | #endif | 
 | 464 | 	 | 
 | 465 | 	if (jffs2_cleanmarker_oob(c)) | 
 | 466 | 		ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); | 
 | 467 | 	else | 
 | 468 | 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); | 
 | 469 |  | 
 | 470 | 	if (ret || retlen != c->wbuf_pagesize) { | 
 | 471 | 		if (ret) | 
 | 472 | 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); | 
 | 473 | 		else { | 
 | 474 | 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", | 
 | 475 | 				retlen, c->wbuf_pagesize); | 
 | 476 | 			ret = -EIO; | 
 | 477 | 		} | 
 | 478 |  | 
 | 479 | 		jffs2_wbuf_recover(c); | 
 | 480 |  | 
 | 481 | 		return ret; | 
 | 482 | 	} | 
 | 483 |  | 
 | 484 | 	spin_lock(&c->erase_completion_lock); | 
 | 485 |  | 
 | 486 | 	/* Adjust free size of the block if we padded. */ | 
| Andrew Victor | 8f15fd5 | 2005-02-09 09:17:45 +0000 | [diff] [blame] | 487 | 	if (pad && !jffs2_dataflash(c)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 488 | 		struct jffs2_eraseblock *jeb; | 
 | 489 |  | 
 | 490 | 		jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
 | 491 |  | 
 | 492 | 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", | 
 | 493 | 			  (jeb==c->nextblock)?"next":"", jeb->offset)); | 
 | 494 |  | 
 | 495 | 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be  | 
 | 496 | 		   padded. If there is less free space in the block than that, | 
 | 497 | 		   something screwed up */ | 
 | 498 | 		if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { | 
 | 499 | 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", | 
 | 500 | 			       c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); | 
 | 501 | 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", | 
 | 502 | 			       jeb->offset, jeb->free_size); | 
 | 503 | 			BUG(); | 
 | 504 | 		} | 
 | 505 | 		jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
 | 506 | 		c->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
 | 507 | 		jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
 | 508 | 		c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
 | 509 | 	} | 
 | 510 |  | 
 | 511 | 	/* Stick any now-obsoleted blocks on the erase_pending_list */ | 
 | 512 | 	jffs2_refile_wbuf_blocks(c); | 
 | 513 | 	jffs2_clear_wbuf_ino_list(c); | 
 | 514 | 	spin_unlock(&c->erase_completion_lock); | 
 | 515 |  | 
 | 516 | 	memset(c->wbuf,0xff,c->wbuf_pagesize); | 
 | 517 | 	/* adjust write buffer offset, else we get a non contiguous write bug */ | 
 | 518 | 	c->wbuf_ofs += c->wbuf_pagesize; | 
 | 519 | 	c->wbuf_len = 0; | 
 | 520 | 	return 0; | 
 | 521 | } | 
 | 522 |  | 
 | 523 | /* Trigger garbage collection to flush the write-buffer.  | 
 | 524 |    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are | 
 | 525 |    outstanding. If ino arg non-zero, do it only if a write for the  | 
 | 526 |    given inode is outstanding. */ | 
 | 527 | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) | 
 | 528 | { | 
 | 529 | 	uint32_t old_wbuf_ofs; | 
 | 530 | 	uint32_t old_wbuf_len; | 
 | 531 | 	int ret = 0; | 
 | 532 |  | 
 | 533 | 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); | 
 | 534 |  | 
| David Woodhouse | 8aee6ac | 2005-02-02 22:12:08 +0000 | [diff] [blame] | 535 | 	if (!c->wbuf) | 
 | 536 | 		return 0; | 
 | 537 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 538 | 	down(&c->alloc_sem); | 
 | 539 | 	if (!jffs2_wbuf_pending_for_ino(c, ino)) { | 
 | 540 | 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); | 
 | 541 | 		up(&c->alloc_sem); | 
 | 542 | 		return 0; | 
 | 543 | 	} | 
 | 544 |  | 
 | 545 | 	old_wbuf_ofs = c->wbuf_ofs; | 
 | 546 | 	old_wbuf_len = c->wbuf_len; | 
 | 547 |  | 
 | 548 | 	if (c->unchecked_size) { | 
 | 549 | 		/* GC won't make any progress for a while */ | 
 | 550 | 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); | 
 | 551 | 		down_write(&c->wbuf_sem); | 
 | 552 | 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 553 | 		/* retry flushing wbuf in case jffs2_wbuf_recover | 
 | 554 | 		   left some data in the wbuf */ | 
 | 555 | 		if (ret) | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 556 | 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 557 | 		up_write(&c->wbuf_sem); | 
 | 558 | 	} else while (old_wbuf_len && | 
 | 559 | 		      old_wbuf_ofs == c->wbuf_ofs) { | 
 | 560 |  | 
 | 561 | 		up(&c->alloc_sem); | 
 | 562 |  | 
 | 563 | 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); | 
 | 564 |  | 
 | 565 | 		ret = jffs2_garbage_collect_pass(c); | 
 | 566 | 		if (ret) { | 
 | 567 | 			/* GC failed. Flush it with padding instead */ | 
 | 568 | 			down(&c->alloc_sem); | 
 | 569 | 			down_write(&c->wbuf_sem); | 
 | 570 | 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 571 | 			/* retry flushing wbuf in case jffs2_wbuf_recover | 
 | 572 | 			   left some data in the wbuf */ | 
 | 573 | 			if (ret) | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 574 | 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 575 | 			up_write(&c->wbuf_sem); | 
 | 576 | 			break; | 
 | 577 | 		} | 
 | 578 | 		down(&c->alloc_sem); | 
 | 579 | 	} | 
 | 580 |  | 
 | 581 | 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); | 
 | 582 |  | 
 | 583 | 	up(&c->alloc_sem); | 
 | 584 | 	return ret; | 
 | 585 | } | 
 | 586 |  | 
 | 587 | /* Pad write-buffer to end and write it, wasting space. */ | 
 | 588 | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) | 
 | 589 | { | 
 | 590 | 	int ret; | 
 | 591 |  | 
| David Woodhouse | 8aee6ac | 2005-02-02 22:12:08 +0000 | [diff] [blame] | 592 | 	if (!c->wbuf) | 
 | 593 | 		return 0; | 
 | 594 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 595 | 	down_write(&c->wbuf_sem); | 
 | 596 | 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 597 | 	/* retry - maybe wbuf recover left some data in wbuf. */ | 
 | 598 | 	if (ret) | 
 | 599 | 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 600 | 	up_write(&c->wbuf_sem); | 
 | 601 |  | 
 | 602 | 	return ret; | 
 | 603 | } | 
 | 604 |  | 
| Andrew Victor | 2f82ce1 | 2005-02-09 09:24:26 +0000 | [diff] [blame] | 605 | #ifdef CONFIG_JFFS2_FS_WRITEBUFFER | 
| Andrew Victor | 8f15fd5 | 2005-02-09 09:17:45 +0000 | [diff] [blame] | 606 | #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) | 
 | 607 | #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) | 
 | 608 | #else | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 609 | #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) ) | 
 | 610 | #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) ) | 
| Andrew Victor | 8f15fd5 | 2005-02-09 09:17:45 +0000 | [diff] [blame] | 611 | #endif | 
 | 612 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 613 | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) | 
 | 614 | { | 
 | 615 | 	struct kvec outvecs[3]; | 
 | 616 | 	uint32_t totlen = 0; | 
 | 617 | 	uint32_t split_ofs = 0; | 
 | 618 | 	uint32_t old_totlen; | 
 | 619 | 	int ret, splitvec = -1; | 
 | 620 | 	int invec, outvec; | 
 | 621 | 	size_t wbuf_retlen; | 
 | 622 | 	unsigned char *wbuf_ptr; | 
 | 623 | 	size_t donelen = 0; | 
 | 624 | 	uint32_t outvec_to = to; | 
 | 625 |  | 
 | 626 | 	/* If not NAND flash, don't bother */ | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 627 | 	if (!jffs2_is_writebuffered(c)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 628 | 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen); | 
 | 629 | 	 | 
 | 630 | 	down_write(&c->wbuf_sem); | 
 | 631 |  | 
 | 632 | 	/* If wbuf_ofs is not initialized, set it to target address */ | 
 | 633 | 	if (c->wbuf_ofs == 0xFFFFFFFF) { | 
 | 634 | 		c->wbuf_ofs = PAGE_DIV(to); | 
 | 635 | 		c->wbuf_len = PAGE_MOD(to);			 | 
 | 636 | 		memset(c->wbuf,0xff,c->wbuf_pagesize); | 
 | 637 | 	} | 
 | 638 |  | 
 | 639 | 	/* Fixup the wbuf if we are moving to a new eraseblock.  The checks below | 
 | 640 | 	   fail for ECC'd NOR because cleanmarker == 16, so a block starts at | 
 | 641 | 	   xxx0010.  */ | 
 | 642 | 	if (jffs2_nor_ecc(c)) { | 
 | 643 | 		if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { | 
 | 644 | 			c->wbuf_ofs = PAGE_DIV(to); | 
 | 645 | 			c->wbuf_len = PAGE_MOD(to); | 
 | 646 | 			memset(c->wbuf,0xff,c->wbuf_pagesize); | 
 | 647 | 		} | 
 | 648 | 	} | 
 | 649 | 	 | 
 | 650 | 	/* Sanity checks on target address.  | 
 | 651 | 	   It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),  | 
 | 652 | 	   and it's permitted to write at the beginning of a new  | 
 | 653 | 	   erase block. Anything else, and you die. | 
 | 654 | 	   New block starts at xxx000c (0-b = block header) | 
 | 655 | 	*/ | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 656 | 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 657 | 		/* It's a write to a new block */ | 
 | 658 | 		if (c->wbuf_len) { | 
 | 659 | 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); | 
 | 660 | 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
 | 661 | 			if (ret) { | 
 | 662 | 				/* the underlying layer has to check wbuf_len to do the cleanup */ | 
 | 663 | 				D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
 | 664 | 				*retlen = 0; | 
 | 665 | 				goto exit; | 
 | 666 | 			} | 
 | 667 | 		} | 
 | 668 | 		/* set pointer to new block */ | 
 | 669 | 		c->wbuf_ofs = PAGE_DIV(to); | 
 | 670 | 		c->wbuf_len = PAGE_MOD(to);			 | 
 | 671 | 	}  | 
 | 672 |  | 
 | 673 | 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { | 
 | 674 | 		/* We're not writing immediately after the writebuffer. Bad. */ | 
 | 675 | 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); | 
 | 676 | 		if (c->wbuf_len) | 
 | 677 | 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n", | 
 | 678 | 					  c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); | 
 | 679 | 		BUG(); | 
 | 680 | 	} | 
 | 681 |  | 
 | 682 | 	/* Note outvecs[3] above. We know count is never greater than 2 */ | 
 | 683 | 	if (count > 2) { | 
 | 684 | 		printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); | 
 | 685 | 		BUG(); | 
 | 686 | 	} | 
 | 687 |  | 
 | 688 | 	invec = 0; | 
 | 689 | 	outvec = 0; | 
 | 690 |  | 
 | 691 | 	/* Fill writebuffer first, if already in use */	 | 
 | 692 | 	if (c->wbuf_len) { | 
 | 693 | 		uint32_t invec_ofs = 0; | 
 | 694 |  | 
 | 695 | 		/* adjust alignment offset */  | 
 | 696 | 		if (c->wbuf_len != PAGE_MOD(to)) { | 
 | 697 | 			c->wbuf_len = PAGE_MOD(to); | 
 | 698 | 			/* take care of alignment to next page */ | 
 | 699 | 			if (!c->wbuf_len) | 
 | 700 | 				c->wbuf_len = c->wbuf_pagesize; | 
 | 701 | 		} | 
 | 702 | 		 | 
 | 703 | 		while(c->wbuf_len < c->wbuf_pagesize) { | 
 | 704 | 			uint32_t thislen; | 
 | 705 | 			 | 
 | 706 | 			if (invec == count) | 
 | 707 | 				goto alldone; | 
 | 708 |  | 
 | 709 | 			thislen = c->wbuf_pagesize - c->wbuf_len; | 
 | 710 |  | 
 | 711 | 			if (thislen >= invecs[invec].iov_len) | 
 | 712 | 				thislen = invecs[invec].iov_len; | 
 | 713 | 	 | 
 | 714 | 			invec_ofs = thislen; | 
 | 715 |  | 
 | 716 | 			memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); | 
 | 717 | 			c->wbuf_len += thislen; | 
 | 718 | 			donelen += thislen; | 
 | 719 | 			/* Get next invec, if actual did not fill the buffer */ | 
 | 720 | 			if (c->wbuf_len < c->wbuf_pagesize)  | 
 | 721 | 				invec++; | 
 | 722 | 		}			 | 
 | 723 | 		 | 
 | 724 | 		/* write buffer is full, flush buffer */ | 
 | 725 | 		ret = __jffs2_flush_wbuf(c, NOPAD); | 
 | 726 | 		if (ret) { | 
 | 727 | 			/* the underlying layer has to check wbuf_len to do the cleanup */ | 
 | 728 | 			D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
 | 729 | 			/* Retlen zero to make sure our caller doesn't mark the space dirty. | 
 | 730 | 			   We've already done everything that's necessary */ | 
 | 731 | 			*retlen = 0; | 
 | 732 | 			goto exit; | 
 | 733 | 		} | 
 | 734 | 		outvec_to += donelen; | 
 | 735 | 		c->wbuf_ofs = outvec_to; | 
 | 736 |  | 
 | 737 | 		/* All invecs done ? */ | 
 | 738 | 		if (invec == count) | 
 | 739 | 			goto alldone; | 
 | 740 |  | 
 | 741 | 		/* Set up the first outvec, containing the remainder of the | 
 | 742 | 		   invec we partially used */ | 
 | 743 | 		if (invecs[invec].iov_len > invec_ofs) { | 
 | 744 | 			outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; | 
 | 745 | 			totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; | 
 | 746 | 			if (totlen > c->wbuf_pagesize) { | 
 | 747 | 				splitvec = outvec; | 
 | 748 | 				split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); | 
 | 749 | 			} | 
 | 750 | 			outvec++; | 
 | 751 | 		} | 
 | 752 | 		invec++; | 
 | 753 | 	} | 
 | 754 |  | 
 | 755 | 	/* OK, now we've flushed the wbuf and the start of the bits | 
 | 756 | 	   we have been asked to write, now to write the rest.... */ | 
 | 757 |  | 
 | 758 | 	/* totlen holds the amount of data still to be written */ | 
 | 759 | 	old_totlen = totlen; | 
 | 760 | 	for ( ; invec < count; invec++,outvec++ ) { | 
 | 761 | 		outvecs[outvec].iov_base = invecs[invec].iov_base; | 
 | 762 | 		totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; | 
 | 763 | 		if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { | 
 | 764 | 			splitvec = outvec; | 
 | 765 | 			split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); | 
 | 766 | 			old_totlen = totlen; | 
 | 767 | 		} | 
 | 768 | 	} | 
 | 769 |  | 
 | 770 | 	/* Now the outvecs array holds all the remaining data to write */ | 
 | 771 | 	/* Up to splitvec,split_ofs is to be written immediately. The rest | 
 | 772 | 	   goes into the (now-empty) wbuf */ | 
 | 773 |  | 
 | 774 | 	if (splitvec != -1) { | 
 | 775 | 		uint32_t remainder; | 
 | 776 |  | 
 | 777 | 		remainder = outvecs[splitvec].iov_len - split_ofs; | 
 | 778 | 		outvecs[splitvec].iov_len = split_ofs; | 
 | 779 |  | 
 | 780 | 		/* We did cross a page boundary, so we write some now */ | 
 | 781 | 		if (jffs2_cleanmarker_oob(c)) | 
 | 782 | 			ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);  | 
 | 783 | 		else | 
 | 784 | 			ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); | 
 | 785 | 		 | 
 | 786 | 		if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { | 
 | 787 | 			/* At this point we have no problem, | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 788 | 			   c->wbuf is empty. However refile nextblock to avoid | 
 | 789 | 			   writing again to same address. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 790 | 			*/ | 
| Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 791 | 			struct jffs2_eraseblock *jeb; | 
 | 792 |  | 
 | 793 | 			spin_lock(&c->erase_completion_lock); | 
 | 794 |  | 
 | 795 | 			jeb = &c->blocks[outvec_to / c->sector_size]; | 
 | 796 | 			jffs2_block_refile(c, jeb, REFILE_ANYWAY); | 
 | 797 |  | 
 | 798 | 			*retlen = 0; | 
 | 799 | 			spin_unlock(&c->erase_completion_lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 800 | 			goto exit; | 
 | 801 | 		} | 
 | 802 | 		 | 
 | 803 | 		donelen += wbuf_retlen; | 
 | 804 | 		c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); | 
 | 805 |  | 
 | 806 | 		if (remainder) { | 
 | 807 | 			outvecs[splitvec].iov_base += split_ofs; | 
 | 808 | 			outvecs[splitvec].iov_len = remainder; | 
 | 809 | 		} else { | 
 | 810 | 			splitvec++; | 
 | 811 | 		} | 
 | 812 |  | 
 | 813 | 	} else { | 
 | 814 | 		splitvec = 0; | 
 | 815 | 	} | 
 | 816 |  | 
 | 817 | 	/* Now splitvec points to the start of the bits we have to copy | 
 | 818 | 	   into the wbuf */ | 
 | 819 | 	wbuf_ptr = c->wbuf; | 
 | 820 |  | 
 | 821 | 	for ( ; splitvec < outvec; splitvec++) { | 
 | 822 | 		/* Don't copy the wbuf into itself */ | 
 | 823 | 		if (outvecs[splitvec].iov_base == c->wbuf) | 
 | 824 | 			continue; | 
 | 825 | 		memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); | 
 | 826 | 		wbuf_ptr += outvecs[splitvec].iov_len; | 
 | 827 | 		donelen += outvecs[splitvec].iov_len; | 
 | 828 | 	} | 
 | 829 | 	c->wbuf_len = wbuf_ptr - c->wbuf; | 
 | 830 |  | 
 | 831 | 	/* If there's a remainder in the wbuf and it's a non-GC write, | 
 | 832 | 	   remember that the wbuf affects this ino */ | 
 | 833 | alldone: | 
 | 834 | 	*retlen = donelen; | 
 | 835 |  | 
| Ferenc Havasi | e631ddb | 2005-09-07 09:35:26 +0100 | [diff] [blame] | 836 | 	if (jffs2_sum_active()) { | 
 | 837 | 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); | 
 | 838 | 		if (res) | 
 | 839 | 			return res; | 
 | 840 | 	} | 
 | 841 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 842 | 	if (c->wbuf_len && ino) | 
 | 843 | 		jffs2_wbuf_dirties_inode(c, ino); | 
 | 844 |  | 
 | 845 | 	ret = 0; | 
 | 846 | 	 | 
 | 847 | exit: | 
 | 848 | 	up_write(&c->wbuf_sem); | 
 | 849 | 	return ret; | 
 | 850 | } | 
 | 851 |  | 
 | 852 | /* | 
 | 853 |  *	This is the entry for flash write. | 
 | 854 |  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev | 
 | 855 | */ | 
 | 856 | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) | 
 | 857 | { | 
 | 858 | 	struct kvec vecs[1]; | 
 | 859 |  | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 860 | 	if (!jffs2_is_writebuffered(c)) | 
| Ferenc Havasi | e631ddb | 2005-09-07 09:35:26 +0100 | [diff] [blame] | 861 | 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 862 |  | 
 | 863 | 	vecs[0].iov_base = (unsigned char *) buf; | 
 | 864 | 	vecs[0].iov_len = len; | 
 | 865 | 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); | 
 | 866 | } | 
 | 867 |  | 
 | 868 | /* | 
 | 869 | 	Handle readback from writebuffer and ECC failure return | 
 | 870 | */ | 
 | 871 | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) | 
 | 872 | { | 
 | 873 | 	loff_t	orbf = 0, owbf = 0, lwbf = 0; | 
 | 874 | 	int	ret; | 
 | 875 |  | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 876 | 	if (!jffs2_is_writebuffered(c)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 877 | 		return c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
 | 878 |  | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 879 | 	/* Read flash */ | 
| Artem B. Bityuckiy | 894214d | 2005-04-05 13:51:58 +0100 | [diff] [blame] | 880 | 	down_read(&c->wbuf_sem); | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 881 | 	if (jffs2_cleanmarker_oob(c)) | 
 | 882 | 		ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); | 
 | 883 | 	else | 
 | 884 | 		ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
 | 885 |  | 
 | 886 | 	if ( (ret == -EBADMSG) && (*retlen == len) ) { | 
 | 887 | 		printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", | 
 | 888 | 		       len, ofs); | 
 | 889 | 		/*  | 
 | 890 | 		 * We have the raw data without ECC correction in the buffer, maybe  | 
 | 891 | 		 * we are lucky and all data or parts are correct. We check the node. | 
 | 892 | 		 * If data are corrupted node check will sort it out. | 
 | 893 | 		 * We keep this block, it will fail on write or erase and the we | 
 | 894 | 		 * mark it bad. Or should we do that now? But we should give him a chance. | 
 | 895 | 		 * Maybe we had a system crash or power loss before the ecc write or   | 
 | 896 | 		 * a erase was completed. | 
 | 897 | 		 * So we return success. :) | 
 | 898 | 		 */ | 
 | 899 | 	 	ret = 0; | 
 | 900 | 	}	 | 
 | 901 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 902 | 	/* if no writebuffer available or write buffer empty, return */ | 
 | 903 | 	if (!c->wbuf_pagesize || !c->wbuf_len) | 
| Artem B. Bityuckiy | 894214d | 2005-04-05 13:51:58 +0100 | [diff] [blame] | 904 | 		goto exit; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 905 |  | 
 | 906 | 	/* if we read in a different block, return */ | 
| Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 907 | 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) | 
| Artem B. Bityuckiy | 894214d | 2005-04-05 13:51:58 +0100 | [diff] [blame] | 908 | 		goto exit; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 909 |  | 
 | 910 | 	if (ofs >= c->wbuf_ofs) { | 
 | 911 | 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */ | 
 | 912 | 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */ | 
 | 913 | 			goto exit; | 
 | 914 | 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */ | 
 | 915 | 		if (lwbf > len)	 | 
 | 916 | 			lwbf = len; | 
 | 917 | 	} else {	 | 
 | 918 | 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */ | 
 | 919 | 		if (orbf > len)			/* is write beyond write buffer ? */ | 
 | 920 | 			goto exit; | 
 | 921 | 		lwbf = len - orbf; 		/* number of bytes to copy */ | 
 | 922 | 		if (lwbf > c->wbuf_len)	 | 
 | 923 | 			lwbf = c->wbuf_len; | 
 | 924 | 	}	 | 
 | 925 | 	if (lwbf > 0) | 
 | 926 | 		memcpy(buf+orbf,c->wbuf+owbf,lwbf); | 
 | 927 |  | 
 | 928 | exit: | 
 | 929 | 	up_read(&c->wbuf_sem); | 
 | 930 | 	return ret; | 
 | 931 | } | 
 | 932 |  | 
 | 933 | /* | 
 | 934 |  *	Check, if the out of band area is empty | 
 | 935 |  */ | 
 | 936 | int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) | 
 | 937 | { | 
 | 938 | 	unsigned char *buf; | 
 | 939 | 	int 	ret = 0; | 
 | 940 | 	int	i,len,page; | 
 | 941 | 	size_t  retlen; | 
 | 942 | 	int	oob_size; | 
 | 943 |  | 
 | 944 | 	/* allocate a buffer for all oob data in this sector */ | 
 | 945 | 	oob_size = c->mtd->oobsize; | 
 | 946 | 	len = 4 * oob_size; | 
 | 947 | 	buf = kmalloc(len, GFP_KERNEL); | 
 | 948 | 	if (!buf) { | 
 | 949 | 		printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); | 
 | 950 | 		return -ENOMEM; | 
 | 951 | 	} | 
 | 952 | 	/*  | 
 | 953 | 	 * if mode = 0, we scan for a total empty oob area, else we have | 
 | 954 | 	 * to take care of the cleanmarker in the first page of the block | 
 | 955 | 	*/ | 
 | 956 | 	ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); | 
 | 957 | 	if (ret) { | 
 | 958 | 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
 | 959 | 		goto out; | 
 | 960 | 	} | 
 | 961 | 	 | 
 | 962 | 	if (retlen < len) { | 
 | 963 | 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " | 
 | 964 | 			  "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); | 
 | 965 | 		ret = -EIO; | 
 | 966 | 		goto out; | 
 | 967 | 	} | 
 | 968 | 	 | 
 | 969 | 	/* Special check for first page */ | 
 | 970 | 	for(i = 0; i < oob_size ; i++) { | 
 | 971 | 		/* Yeah, we know about the cleanmarker. */ | 
 | 972 | 		if (mode && i >= c->fsdata_pos &&  | 
 | 973 | 		    i < c->fsdata_pos + c->fsdata_len) | 
 | 974 | 			continue; | 
 | 975 |  | 
 | 976 | 		if (buf[i] != 0xFF) { | 
 | 977 | 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", | 
| Artem B. Bityutskiy | 730554d | 2005-07-17 07:56:26 +0100 | [diff] [blame] | 978 | 				  buf[i], i, jeb->offset)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 979 | 			ret = 1;  | 
 | 980 | 			goto out; | 
 | 981 | 		} | 
 | 982 | 	} | 
 | 983 |  | 
 | 984 | 	/* we know, we are aligned :) */	 | 
 | 985 | 	for (page = oob_size; page < len; page += sizeof(long)) { | 
 | 986 | 		unsigned long dat = *(unsigned long *)(&buf[page]); | 
 | 987 | 		if(dat != -1) { | 
 | 988 | 			ret = 1;  | 
 | 989 | 			goto out; | 
 | 990 | 		} | 
 | 991 | 	} | 
 | 992 |  | 
 | 993 | out: | 
 | 994 | 	kfree(buf);	 | 
 | 995 | 	 | 
 | 996 | 	return ret; | 
 | 997 | } | 
 | 998 |  | 
 | 999 | /* | 
 | 1000 | *	Scan for a valid cleanmarker and for bad blocks | 
 | 1001 | *	For virtual blocks (concatenated physical blocks) check the cleanmarker | 
 | 1002 | *	only in the first page of the first physical block, but scan for bad blocks in all | 
 | 1003 | *	physical blocks | 
 | 1004 | */ | 
 | 1005 | int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
 | 1006 | { | 
 | 1007 | 	struct jffs2_unknown_node n; | 
 | 1008 | 	unsigned char buf[2 * NAND_MAX_OOBSIZE]; | 
 | 1009 | 	unsigned char *p; | 
 | 1010 | 	int ret, i, cnt, retval = 0; | 
 | 1011 | 	size_t retlen, offset; | 
 | 1012 | 	int oob_size; | 
 | 1013 |  | 
 | 1014 | 	offset = jeb->offset; | 
 | 1015 | 	oob_size = c->mtd->oobsize; | 
 | 1016 |  | 
 | 1017 | 	/* Loop through the physical blocks */ | 
 | 1018 | 	for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { | 
 | 1019 | 		/* Check first if the block is bad. */ | 
 | 1020 | 		if (c->mtd->block_isbad (c->mtd, offset)) { | 
 | 1021 | 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); | 
 | 1022 | 			return 2; | 
 | 1023 | 		} | 
 | 1024 | 		/* | 
 | 1025 | 		   *    We read oob data from page 0 and 1 of the block. | 
 | 1026 | 		   *    page 0 contains cleanmarker and badblock info | 
 | 1027 | 		   *    page 1 contains failure count of this block | 
 | 1028 | 		 */ | 
 | 1029 | 		ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); | 
 | 1030 |  | 
 | 1031 | 		if (ret) { | 
 | 1032 | 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
 | 1033 | 			return ret; | 
 | 1034 | 		} | 
 | 1035 | 		if (retlen < (oob_size << 1)) { | 
 | 1036 | 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); | 
 | 1037 | 			return -EIO; | 
 | 1038 | 		} | 
 | 1039 |  | 
 | 1040 | 		/* Check cleanmarker only on the first physical block */ | 
 | 1041 | 		if (!cnt) { | 
 | 1042 | 			n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); | 
 | 1043 | 			n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); | 
 | 1044 | 			n.totlen = cpu_to_je32 (8); | 
 | 1045 | 			p = (unsigned char *) &n; | 
 | 1046 |  | 
 | 1047 | 			for (i = 0; i < c->fsdata_len; i++) { | 
 | 1048 | 				if (buf[c->fsdata_pos + i] != p[i]) { | 
 | 1049 | 					retval = 1; | 
 | 1050 | 				} | 
 | 1051 | 			} | 
 | 1052 | 			D1(if (retval == 1) { | 
 | 1053 | 				printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); | 
 | 1054 | 				printk(KERN_WARNING "OOB at %08x was ", offset); | 
 | 1055 | 				for (i=0; i < oob_size; i++) { | 
 | 1056 | 					printk("%02x ", buf[i]); | 
 | 1057 | 				} | 
 | 1058 | 				printk("\n"); | 
 | 1059 | 			}) | 
 | 1060 | 		} | 
 | 1061 | 		offset += c->mtd->erasesize; | 
 | 1062 | 	} | 
 | 1063 | 	return retval; | 
 | 1064 | } | 
 | 1065 |  | 
 | 1066 | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
 | 1067 | { | 
 | 1068 | 	struct 	jffs2_unknown_node n; | 
 | 1069 | 	int 	ret; | 
 | 1070 | 	size_t 	retlen; | 
 | 1071 |  | 
 | 1072 | 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
 | 1073 | 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); | 
 | 1074 | 	n.totlen = cpu_to_je32(8); | 
 | 1075 |  | 
 | 1076 | 	ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); | 
 | 1077 | 	 | 
 | 1078 | 	if (ret) { | 
 | 1079 | 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
 | 1080 | 		return ret; | 
 | 1081 | 	} | 
 | 1082 | 	if (retlen != c->fsdata_len) { | 
 | 1083 | 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); | 
 | 1084 | 		return ret; | 
 | 1085 | 	} | 
 | 1086 | 	return 0; | 
 | 1087 | } | 
 | 1088 |  | 
 | 1089 | /*  | 
 | 1090 |  * On NAND we try to mark this block bad. If the block was erased more | 
 | 1091 |  * than MAX_ERASE_FAILURES we mark it finaly bad. | 
 | 1092 |  * Don't care about failures. This block remains on the erase-pending | 
 | 1093 |  * or badblock list as long as nobody manipulates the flash with | 
 | 1094 |  * a bootloader or something like that. | 
 | 1095 |  */ | 
 | 1096 |  | 
 | 1097 | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) | 
 | 1098 | { | 
 | 1099 | 	int 	ret; | 
 | 1100 |  | 
 | 1101 | 	/* if the count is < max, we try to write the counter to the 2nd page oob area */ | 
 | 1102 | 	if( ++jeb->bad_count < MAX_ERASE_FAILURES) | 
 | 1103 | 		return 0; | 
 | 1104 |  | 
 | 1105 | 	if (!c->mtd->block_markbad) | 
 | 1106 | 		return 1; // What else can we do? | 
 | 1107 |  | 
 | 1108 | 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); | 
 | 1109 | 	ret = c->mtd->block_markbad(c->mtd, bad_offset); | 
 | 1110 | 	 | 
 | 1111 | 	if (ret) { | 
 | 1112 | 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
 | 1113 | 		return ret; | 
 | 1114 | 	} | 
 | 1115 | 	return 1; | 
 | 1116 | } | 
 | 1117 |  | 
 | 1118 | #define NAND_JFFS2_OOB16_FSDALEN	8 | 
 | 1119 |  | 
 | 1120 | static struct nand_oobinfo jffs2_oobinfo_docecc = { | 
 | 1121 | 	.useecc = MTD_NANDECC_PLACE, | 
 | 1122 | 	.eccbytes = 6, | 
 | 1123 | 	.eccpos = {0,1,2,3,4,5} | 
 | 1124 | }; | 
 | 1125 |  | 
 | 1126 |  | 
 | 1127 | static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) | 
 | 1128 | { | 
 | 1129 | 	struct nand_oobinfo *oinfo = &c->mtd->oobinfo; | 
 | 1130 |  | 
 | 1131 | 	/* Do this only, if we have an oob buffer */ | 
 | 1132 | 	if (!c->mtd->oobsize) | 
 | 1133 | 		return 0; | 
 | 1134 | 	 | 
 | 1135 | 	/* Cleanmarker is out-of-band, so inline size zero */ | 
 | 1136 | 	c->cleanmarker_size = 0; | 
 | 1137 |  | 
 | 1138 | 	/* Should we use autoplacement ? */ | 
 | 1139 | 	if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { | 
 | 1140 | 		D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); | 
 | 1141 | 		/* Get the position of the free bytes */ | 
 | 1142 | 		if (!oinfo->oobfree[0][1]) { | 
 | 1143 | 			printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); | 
 | 1144 | 			return -ENOSPC; | 
 | 1145 | 		} | 
 | 1146 | 		c->fsdata_pos = oinfo->oobfree[0][0]; | 
 | 1147 | 		c->fsdata_len = oinfo->oobfree[0][1]; | 
 | 1148 | 		if (c->fsdata_len > 8) | 
 | 1149 | 			c->fsdata_len = 8; | 
 | 1150 | 	} else { | 
 | 1151 | 		/* This is just a legacy fallback and should go away soon */ | 
 | 1152 | 		switch(c->mtd->ecctype) { | 
 | 1153 | 		case MTD_ECC_RS_DiskOnChip: | 
 | 1154 | 			printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); | 
 | 1155 | 			c->oobinfo = &jffs2_oobinfo_docecc; | 
 | 1156 | 			c->fsdata_pos = 6; | 
 | 1157 | 			c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; | 
 | 1158 | 			c->badblock_pos = 15; | 
 | 1159 | 			break; | 
 | 1160 | 	 | 
 | 1161 | 		default: | 
 | 1162 | 			D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); | 
 | 1163 | 			return -EINVAL; | 
 | 1164 | 		} | 
 | 1165 | 	} | 
 | 1166 | 	return 0; | 
 | 1167 | } | 
 | 1168 |  | 
 | 1169 | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) | 
 | 1170 | { | 
 | 1171 | 	int res; | 
 | 1172 |  | 
 | 1173 | 	/* Initialise write buffer */ | 
 | 1174 | 	init_rwsem(&c->wbuf_sem); | 
 | 1175 | 	c->wbuf_pagesize = c->mtd->oobblock; | 
 | 1176 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 | 1177 | 	 | 
 | 1178 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 1179 | 	if (!c->wbuf) | 
 | 1180 | 		return -ENOMEM; | 
 | 1181 |  | 
 | 1182 | 	res = jffs2_nand_set_oobinfo(c); | 
 | 1183 |  | 
 | 1184 | #ifdef BREAKME | 
 | 1185 | 	if (!brokenbuf) | 
 | 1186 | 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 1187 | 	if (!brokenbuf) { | 
 | 1188 | 		kfree(c->wbuf); | 
 | 1189 | 		return -ENOMEM; | 
 | 1190 | 	} | 
 | 1191 | 	memset(brokenbuf, 0xdb, c->wbuf_pagesize); | 
 | 1192 | #endif | 
 | 1193 | 	return res; | 
 | 1194 | } | 
 | 1195 |  | 
 | 1196 | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) | 
 | 1197 | { | 
 | 1198 | 	kfree(c->wbuf); | 
 | 1199 | } | 
 | 1200 |  | 
| Andrew Victor | 8f15fd5 | 2005-02-09 09:17:45 +0000 | [diff] [blame] | 1201 | int jffs2_dataflash_setup(struct jffs2_sb_info *c) { | 
 | 1202 | 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */ | 
 | 1203 | 	 | 
 | 1204 | 	/* Initialize write buffer */ | 
 | 1205 | 	init_rwsem(&c->wbuf_sem); | 
 | 1206 | 	c->wbuf_pagesize = c->sector_size; | 
 | 1207 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 | 1208 |  | 
 | 1209 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 1210 | 	if (!c->wbuf) | 
 | 1211 | 		return -ENOMEM; | 
 | 1212 |  | 
 | 1213 | 	printk(KERN_INFO "JFFS2 write-buffering enabled (%i)\n", c->wbuf_pagesize); | 
 | 1214 |  | 
 | 1215 | 	return 0; | 
 | 1216 | } | 
 | 1217 |  | 
 | 1218 | void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { | 
 | 1219 | 	kfree(c->wbuf); | 
 | 1220 | } | 
| Andrew Victor | 8f15fd5 | 2005-02-09 09:17:45 +0000 | [diff] [blame] | 1221 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1222 | int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { | 
 | 1223 | 	/* Cleanmarker is actually larger on the flashes */ | 
 | 1224 | 	c->cleanmarker_size = 16; | 
 | 1225 |  | 
 | 1226 | 	/* Initialize write buffer */ | 
 | 1227 | 	init_rwsem(&c->wbuf_sem); | 
 | 1228 | 	c->wbuf_pagesize = c->mtd->eccsize; | 
 | 1229 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 | 1230 |  | 
 | 1231 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 1232 | 	if (!c->wbuf) | 
 | 1233 | 		return -ENOMEM; | 
 | 1234 |  | 
 | 1235 | 	return 0; | 
 | 1236 | } | 
 | 1237 |  | 
 | 1238 | void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { | 
 | 1239 | 	kfree(c->wbuf); | 
 | 1240 | } | 
| Nicolas Pitre | 59da721 | 2005-08-06 05:51:33 +0100 | [diff] [blame] | 1241 |  | 
 | 1242 | int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { | 
 | 1243 | 	/* Cleanmarker currently occupies a whole programming region */ | 
 | 1244 | 	c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd); | 
 | 1245 |  | 
 | 1246 | 	/* Initialize write buffer */ | 
 | 1247 | 	init_rwsem(&c->wbuf_sem); | 
 | 1248 | 	c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd); | 
 | 1249 | 	c->wbuf_ofs = 0xFFFFFFFF; | 
 | 1250 |  | 
 | 1251 | 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
 | 1252 | 	if (!c->wbuf) | 
 | 1253 | 		return -ENOMEM; | 
 | 1254 |  | 
 | 1255 | 	return 0; | 
 | 1256 | } | 
 | 1257 |  | 
 | 1258 | void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { | 
 | 1259 | 	kfree(c->wbuf); | 
 | 1260 | } |