Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*!************************************************************************** |
| 2 | *! |
| 3 | *! FILE NAME : kgdb.c |
| 4 | *! |
| 5 | *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100. |
| 6 | *! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c. |
| 7 | *! |
| 8 | *!--------------------------------------------------------------------------- |
| 9 | *! HISTORY |
| 10 | *! |
| 11 | *! DATE NAME CHANGES |
| 12 | *! ---- ---- ------- |
| 13 | *! Apr 26 1999 Hendrik Ruijter Initial version. |
| 14 | *! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed |
| 15 | *! struct assignment as it generates calls to |
| 16 | *! memcpy in libc. |
| 17 | *! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'. |
| 18 | *! Jul 21 1999 Bjorn Wesen eLinux port |
| 19 | *! |
| 20 | *! $Log: kgdb.c,v $ |
| 21 | *! Revision 1.5 2004/10/07 13:59:08 starvik |
| 22 | *! Corrected call to set_int_vector |
| 23 | *! |
| 24 | *! Revision 1.4 2003/04/09 05:20:44 starvik |
| 25 | *! Merge of Linux 2.5.67 |
| 26 | *! |
| 27 | *! Revision 1.3 2003/01/21 19:11:08 starvik |
| 28 | *! Modified include path for new dir layout |
| 29 | *! |
| 30 | *! Revision 1.2 2002/11/19 14:35:24 starvik |
| 31 | *! Changes from linux 2.4 |
| 32 | *! Changed struct initializer syntax to the currently prefered notation |
| 33 | *! |
| 34 | *! Revision 1.1 2001/12/17 13:59:27 bjornw |
| 35 | *! Initial revision |
| 36 | *! |
| 37 | *! Revision 1.6 2001/10/09 13:10:03 matsfg |
| 38 | *! Added $ on registers and removed some underscores |
| 39 | *! |
| 40 | *! Revision 1.5 2001/04/17 13:58:39 orjanf |
| 41 | *! * Renamed CONFIG_KGDB to CONFIG_ETRAX_KGDB. |
| 42 | *! |
| 43 | *! Revision 1.4 2001/02/23 13:45:19 bjornw |
| 44 | *! config.h check |
| 45 | *! |
| 46 | *! Revision 1.3 2001/01/31 18:08:23 orjanf |
| 47 | *! Removed kgdb_handle_breakpoint from being the break 8 handler. |
| 48 | *! |
| 49 | *! Revision 1.2 2001/01/12 14:22:25 orjanf |
| 50 | *! Updated kernel debugging support to work with ETRAX 100LX. |
| 51 | *! |
| 52 | *! Revision 1.1 2000/07/10 16:25:21 bjornw |
| 53 | *! Initial revision |
| 54 | *! |
| 55 | *! Revision 1.1.1.1 1999/12/03 14:57:31 bjornw |
| 56 | *! * Initial version of arch/cris, the latest CRIS architecture with an MMU. |
| 57 | *! Mostly copied from arch/etrax100 with appropriate renames of files. |
| 58 | *! The mm/ subdir is copied from arch/i386. |
| 59 | *! This does not compile yet at all. |
| 60 | *! |
| 61 | *! |
| 62 | *! Revision 1.4 1999/07/22 17:25:25 bjornw |
| 63 | *! Dont wait for + in putpacket if we havent hit the initial breakpoint yet. Added a kgdb_init function which sets up the break and irq vectors. |
| 64 | *! |
| 65 | *! Revision 1.3 1999/07/21 19:51:18 bjornw |
| 66 | *! Check if the interrupting char is a ctrl-C, ignore otherwise. |
| 67 | *! |
| 68 | *! Revision 1.2 1999/07/21 18:09:39 bjornw |
| 69 | *! Ported to eLinux architecture, and added some kgdb documentation. |
| 70 | *! |
| 71 | *! |
| 72 | *!--------------------------------------------------------------------------- |
| 73 | *! |
| 74 | *! $Id: kgdb.c,v 1.5 2004/10/07 13:59:08 starvik Exp $ |
| 75 | *! |
| 76 | *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN |
| 77 | *! |
| 78 | *!**************************************************************************/ |
| 79 | /* @(#) cris_stub.c 1.3 06/17/99 */ |
| 80 | |
| 81 | /* |
| 82 | * kgdb usage notes: |
| 83 | * ----------------- |
| 84 | * |
| 85 | * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be |
| 86 | * built with different gcc flags: "-g" is added to get debug infos, and |
| 87 | * "-fomit-frame-pointer" is omitted to make debugging easier. Since the |
| 88 | * resulting kernel will be quite big (approx. > 7 MB), it will be stripped |
| 89 | * before compresion. Such a kernel will behave just as usually, except if |
| 90 | * given a "debug=<device>" command line option. (Only serial devices are |
| 91 | * allowed for <device>, i.e. no printers or the like; possible values are |
| 92 | * machine depedend and are the same as for the usual debug device, the one |
| 93 | * for logging kernel messages.) If that option is given and the device can be |
| 94 | * initialized, the kernel will connect to the remote gdb in trap_init(). The |
| 95 | * serial parameters are fixed to 8N1 and 115200 bps, for easyness of |
| 96 | * implementation. |
| 97 | * |
| 98 | * To start a debugging session, start that gdb with the debugging kernel |
| 99 | * image (the one with the symbols, vmlinux.debug) named on the command line. |
| 100 | * This file will be used by gdb to get symbol and debugging infos about the |
| 101 | * kernel. Next, select remote debug mode by |
| 102 | * target remote <device> |
| 103 | * where <device> is the name of the serial device over which the debugged |
| 104 | * machine is connected. Maybe you have to adjust the baud rate by |
| 105 | * set remotebaud <rate> |
| 106 | * or also other parameters with stty: |
| 107 | * shell stty ... </dev/... |
| 108 | * If the kernel to debug has already booted, it waited for gdb and now |
| 109 | * connects, and you'll see a breakpoint being reported. If the kernel isn't |
| 110 | * running yet, start it now. The order of gdb and the kernel doesn't matter. |
| 111 | * Another thing worth knowing about in the getting-started phase is how to |
| 112 | * debug the remote protocol itself. This is activated with |
| 113 | * set remotedebug 1 |
| 114 | * gdb will then print out each packet sent or received. You'll also get some |
| 115 | * messages about the gdb stub on the console of the debugged machine. |
| 116 | * |
| 117 | * If all that works, you can use lots of the usual debugging techniques on |
| 118 | * the kernel, e.g. inspecting and changing variables/memory, setting |
| 119 | * breakpoints, single stepping and so on. It's also possible to interrupt the |
| 120 | * debugged kernel by pressing C-c in gdb. Have fun! :-) |
| 121 | * |
| 122 | * The gdb stub is entered (and thus the remote gdb gets control) in the |
| 123 | * following situations: |
| 124 | * |
| 125 | * - If breakpoint() is called. This is just after kgdb initialization, or if |
| 126 | * a breakpoint() call has been put somewhere into the kernel source. |
| 127 | * (Breakpoints can of course also be set the usual way in gdb.) |
| 128 | * In eLinux, we call breakpoint() in init/main.c after IRQ initialization. |
| 129 | * |
| 130 | * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel() |
| 131 | * are entered. All the CPU exceptions are mapped to (more or less..., see |
| 132 | * the hard_trap_info array below) appropriate signal, which are reported |
| 133 | * to gdb. die_if_kernel() is usually called after some kind of access |
| 134 | * error and thus is reported as SIGSEGV. |
| 135 | * |
| 136 | * - When panic() is called. This is reported as SIGABRT. |
| 137 | * |
| 138 | * - If C-c is received over the serial line, which is treated as |
| 139 | * SIGINT. |
| 140 | * |
| 141 | * Of course, all these signals are just faked for gdb, since there is no |
| 142 | * signal concept as such for the kernel. It also isn't possible --obviously-- |
| 143 | * to set signal handlers from inside gdb, or restart the kernel with a |
| 144 | * signal. |
| 145 | * |
| 146 | * Current limitations: |
| 147 | * |
| 148 | * - While the kernel is stopped, interrupts are disabled for safety reasons |
| 149 | * (i.e., variables not changing magically or the like). But this also |
| 150 | * means that the clock isn't running anymore, and that interrupts from the |
| 151 | * hardware may get lost/not be served in time. This can cause some device |
| 152 | * errors... |
| 153 | * |
| 154 | * - When single-stepping, only one instruction of the current thread is |
| 155 | * executed, but interrupts are allowed for that time and will be serviced |
| 156 | * if pending. Be prepared for that. |
| 157 | * |
| 158 | * - All debugging happens in kernel virtual address space. There's no way to |
| 159 | * access physical memory not mapped in kernel space, or to access user |
| 160 | * space. A way to work around this is using get_user_long & Co. in gdb |
| 161 | * expressions, but only for the current process. |
| 162 | * |
| 163 | * - Interrupting the kernel only works if interrupts are currently allowed, |
| 164 | * and the interrupt of the serial line isn't blocked by some other means |
| 165 | * (IPL too high, disabled, ...) |
| 166 | * |
| 167 | * - The gdb stub is currently not reentrant, i.e. errors that happen therein |
| 168 | * (e.g. accessing invalid memory) may not be caught correctly. This could |
| 169 | * be removed in future by introducing a stack of struct registers. |
| 170 | * |
| 171 | */ |
| 172 | |
| 173 | /* |
| 174 | * To enable debugger support, two things need to happen. One, a |
| 175 | * call to kgdb_init() is necessary in order to allow any breakpoints |
| 176 | * or error conditions to be properly intercepted and reported to gdb. |
| 177 | * Two, a breakpoint needs to be generated to begin communication. This |
| 178 | * is most easily accomplished by a call to breakpoint(). |
| 179 | * |
| 180 | * The following gdb commands are supported: |
| 181 | * |
| 182 | * command function Return value |
| 183 | * |
| 184 | * g return the value of the CPU registers hex data or ENN |
| 185 | * G set the value of the CPU registers OK or ENN |
| 186 | * |
| 187 | * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| 188 | * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| 189 | * |
| 190 | * c Resume at current address SNN ( signal NN) |
| 191 | * cAA..AA Continue at address AA..AA SNN |
| 192 | * |
| 193 | * s Step one instruction SNN |
| 194 | * sAA..AA Step one instruction from AA..AA SNN |
| 195 | * |
| 196 | * k kill |
| 197 | * |
| 198 | * ? What was the last sigval ? SNN (signal NN) |
| 199 | * |
| 200 | * bBB..BB Set baud rate to BB..BB OK or BNN, then sets |
| 201 | * baud rate |
| 202 | * |
| 203 | * All commands and responses are sent with a packet which includes a |
| 204 | * checksum. A packet consists of |
| 205 | * |
| 206 | * $<packet info>#<checksum>. |
| 207 | * |
| 208 | * where |
| 209 | * <packet info> :: <characters representing the command or response> |
| 210 | * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> |
| 211 | * |
| 212 | * When a packet is received, it is first acknowledged with either '+' or '-'. |
| 213 | * '+' indicates a successful transfer. '-' indicates a failed transfer. |
| 214 | * |
| 215 | * Example: |
| 216 | * |
| 217 | * Host: Reply: |
| 218 | * $m0,10#2a +$00010203040506070809101112131415#42 |
| 219 | * |
| 220 | */ |
| 221 | |
| 222 | |
| 223 | #include <linux/string.h> |
| 224 | #include <linux/signal.h> |
| 225 | #include <linux/kernel.h> |
| 226 | #include <linux/delay.h> |
| 227 | #include <linux/linkage.h> |
| 228 | |
| 229 | #include <asm/setup.h> |
| 230 | #include <asm/ptrace.h> |
| 231 | |
| 232 | #include <asm/arch/svinto.h> |
| 233 | #include <asm/irq.h> |
| 234 | |
| 235 | static int kgdb_started = 0; |
| 236 | |
| 237 | /********************************* Register image ****************************/ |
| 238 | /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's |
| 239 | Reference", p. 1-1, with the additional register definitions of the |
| 240 | ETRAX 100LX in cris-opc.h. |
| 241 | There are 16 general 32-bit registers, R0-R15, where R14 is the stack |
| 242 | pointer, SP, and R15 is the program counter, PC. |
| 243 | There are 16 special registers, P0-P15, where three of the unimplemented |
| 244 | registers, P0, P4 and P8, are reserved as zero-registers. A read from |
| 245 | any of these registers returns zero and a write has no effect. */ |
| 246 | |
| 247 | typedef |
| 248 | struct register_image |
| 249 | { |
| 250 | /* Offset */ |
| 251 | unsigned int r0; /* 0x00 */ |
| 252 | unsigned int r1; /* 0x04 */ |
| 253 | unsigned int r2; /* 0x08 */ |
| 254 | unsigned int r3; /* 0x0C */ |
| 255 | unsigned int r4; /* 0x10 */ |
| 256 | unsigned int r5; /* 0x14 */ |
| 257 | unsigned int r6; /* 0x18 */ |
| 258 | unsigned int r7; /* 0x1C */ |
| 259 | unsigned int r8; /* 0x20 Frame pointer */ |
| 260 | unsigned int r9; /* 0x24 */ |
| 261 | unsigned int r10; /* 0x28 */ |
| 262 | unsigned int r11; /* 0x2C */ |
| 263 | unsigned int r12; /* 0x30 */ |
| 264 | unsigned int r13; /* 0x34 */ |
| 265 | unsigned int sp; /* 0x38 Stack pointer */ |
| 266 | unsigned int pc; /* 0x3C Program counter */ |
| 267 | |
| 268 | unsigned char p0; /* 0x40 8-bit zero-register */ |
| 269 | unsigned char vr; /* 0x41 Version register */ |
| 270 | |
| 271 | unsigned short p4; /* 0x42 16-bit zero-register */ |
| 272 | unsigned short ccr; /* 0x44 Condition code register */ |
| 273 | |
| 274 | unsigned int mof; /* 0x46 Multiply overflow register */ |
| 275 | |
| 276 | unsigned int p8; /* 0x4A 32-bit zero-register */ |
| 277 | unsigned int ibr; /* 0x4E Interrupt base register */ |
| 278 | unsigned int irp; /* 0x52 Interrupt return pointer */ |
| 279 | unsigned int srp; /* 0x56 Subroutine return pointer */ |
| 280 | unsigned int bar; /* 0x5A Breakpoint address register */ |
| 281 | unsigned int dccr; /* 0x5E Double condition code register */ |
| 282 | unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */ |
| 283 | unsigned int usp; /* 0x66 User mode stack pointer */ |
| 284 | } registers; |
| 285 | |
| 286 | /************** Prototypes for local library functions ***********************/ |
| 287 | |
| 288 | /* Copy of strcpy from libc. */ |
| 289 | static char *gdb_cris_strcpy (char *s1, const char *s2); |
| 290 | |
| 291 | /* Copy of strlen from libc. */ |
| 292 | static int gdb_cris_strlen (const char *s); |
| 293 | |
| 294 | /* Copy of memchr from libc. */ |
| 295 | static void *gdb_cris_memchr (const void *s, int c, int n); |
| 296 | |
| 297 | /* Copy of strtol from libc. Does only support base 16. */ |
| 298 | static int gdb_cris_strtol (const char *s, char **endptr, int base); |
| 299 | |
| 300 | /********************** Prototypes for local functions. **********************/ |
| 301 | /* Copy the content of a register image into another. The size n is |
| 302 | the size of the register image. Due to struct assignment generation of |
| 303 | memcpy in libc. */ |
| 304 | static void copy_registers (registers *dptr, registers *sptr, int n); |
| 305 | |
| 306 | /* Copy the stored registers from the stack. Put the register contents |
| 307 | of thread thread_id in the struct reg. */ |
| 308 | static void copy_registers_from_stack (int thread_id, registers *reg); |
| 309 | |
| 310 | /* Copy the registers to the stack. Put the register contents of thread |
| 311 | thread_id from struct reg to the stack. */ |
| 312 | static void copy_registers_to_stack (int thread_id, registers *reg); |
| 313 | |
| 314 | /* Write a value to a specified register regno in the register image |
| 315 | of the current thread. */ |
| 316 | static int write_register (int regno, char *val); |
| 317 | |
| 318 | /* Write a value to a specified register in the stack of a thread other |
| 319 | than the current thread. */ |
| 320 | static write_stack_register (int thread_id, int regno, char *valptr); |
| 321 | |
| 322 | /* Read a value from a specified register in the register image. Returns the |
| 323 | status of the read operation. The register value is returned in valptr. */ |
| 324 | static int read_register (char regno, unsigned int *valptr); |
| 325 | |
| 326 | /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */ |
| 327 | int getDebugChar (void); |
| 328 | |
| 329 | /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */ |
| 330 | void putDebugChar (int val); |
| 331 | |
| 332 | void enableDebugIRQ (void); |
| 333 | |
| 334 | /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, |
| 335 | represented by int x. */ |
| 336 | static char highhex (int x); |
| 337 | |
| 338 | /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, |
| 339 | represented by int x. */ |
| 340 | static char lowhex (int x); |
| 341 | |
| 342 | /* Returns the integer equivalent of a hexadecimal character. */ |
| 343 | static int hex (char ch); |
| 344 | |
| 345 | /* Convert the memory, pointed to by mem into hexadecimal representation. |
| 346 | Put the result in buf, and return a pointer to the last character |
| 347 | in buf (null). */ |
| 348 | static char *mem2hex (char *buf, unsigned char *mem, int count); |
| 349 | |
| 350 | /* Convert the array, in hexadecimal representation, pointed to by buf into |
| 351 | binary representation. Put the result in mem, and return a pointer to |
| 352 | the character after the last byte written. */ |
| 353 | static unsigned char *hex2mem (unsigned char *mem, char *buf, int count); |
| 354 | |
| 355 | /* Put the content of the array, in binary representation, pointed to by buf |
| 356 | into memory pointed to by mem, and return a pointer to |
| 357 | the character after the last byte written. */ |
| 358 | static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count); |
| 359 | |
| 360 | /* Await the sequence $<data>#<checksum> and store <data> in the array buffer |
| 361 | returned. */ |
| 362 | static void getpacket (char *buffer); |
| 363 | |
| 364 | /* Send $<data>#<checksum> from the <data> in the array buffer. */ |
| 365 | static void putpacket (char *buffer); |
| 366 | |
| 367 | /* Build and send a response packet in order to inform the host the |
| 368 | stub is stopped. */ |
| 369 | static void stub_is_stopped (int sigval); |
| 370 | |
| 371 | /* All expected commands are sent from remote.c. Send a response according |
| 372 | to the description in remote.c. */ |
| 373 | static void handle_exception (int sigval); |
| 374 | |
| 375 | /* Performs a complete re-start from scratch. ETRAX specific. */ |
| 376 | static void kill_restart (void); |
| 377 | |
| 378 | /******************** Prototypes for global functions. ***********************/ |
| 379 | |
| 380 | /* The string str is prepended with the GDB printout token and sent. */ |
| 381 | void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */ |
| 382 | |
| 383 | /* The hook for both static (compiled) and dynamic breakpoints set by GDB. |
| 384 | ETRAX 100 specific. */ |
| 385 | void handle_breakpoint (void); /* used by irq.c */ |
| 386 | |
| 387 | /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */ |
| 388 | void handle_interrupt (void); /* used by irq.c */ |
| 389 | |
| 390 | /* A static breakpoint to be used at startup. */ |
| 391 | void breakpoint (void); /* called by init/main.c */ |
| 392 | |
| 393 | /* From osys_int.c, executing_task contains the number of the current |
| 394 | executing task in osys. Does not know of object-oriented threads. */ |
| 395 | extern unsigned char executing_task; |
| 396 | |
| 397 | /* The number of characters used for a 64 bit thread identifier. */ |
| 398 | #define HEXCHARS_IN_THREAD_ID 16 |
| 399 | |
| 400 | /* Avoid warning as the internal_stack is not used in the C-code. */ |
| 401 | #define USEDVAR(name) { if (name) { ; } } |
| 402 | #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) } |
| 403 | |
| 404 | /********************************** Packet I/O ******************************/ |
| 405 | /* BUFMAX defines the maximum number of characters in |
| 406 | inbound/outbound buffers */ |
| 407 | #define BUFMAX 512 |
| 408 | |
| 409 | /* Run-length encoding maximum length. Send 64 at most. */ |
| 410 | #define RUNLENMAX 64 |
| 411 | |
| 412 | /* Definition of all valid hexadecimal characters */ |
| 413 | static const char hexchars[] = "0123456789abcdef"; |
| 414 | |
| 415 | /* The inbound/outbound buffers used in packet I/O */ |
| 416 | static char remcomInBuffer[BUFMAX]; |
| 417 | static char remcomOutBuffer[BUFMAX]; |
| 418 | |
| 419 | /* Error and warning messages. */ |
| 420 | enum error_type |
| 421 | { |
| 422 | SUCCESS, E01, E02, E03, E04, E05, E06, E07 |
| 423 | }; |
| 424 | static char *error_message[] = |
| 425 | { |
| 426 | "", |
| 427 | "E01 Set current or general thread - H[c,g] - internal error.", |
| 428 | "E02 Change register content - P - cannot change read-only register.", |
| 429 | "E03 Thread is not alive.", /* T, not used. */ |
| 430 | "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.", |
| 431 | "E05 Change register content - P - the register is not implemented..", |
| 432 | "E06 Change memory content - M - internal error.", |
| 433 | "E07 Change register content - P - the register is not stored on the stack" |
| 434 | }; |
| 435 | /********************************* Register image ****************************/ |
| 436 | /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's |
| 437 | Reference", p. 1-1, with the additional register definitions of the |
| 438 | ETRAX 100LX in cris-opc.h. |
| 439 | There are 16 general 32-bit registers, R0-R15, where R14 is the stack |
| 440 | pointer, SP, and R15 is the program counter, PC. |
| 441 | There are 16 special registers, P0-P15, where three of the unimplemented |
| 442 | registers, P0, P4 and P8, are reserved as zero-registers. A read from |
| 443 | any of these registers returns zero and a write has no effect. */ |
| 444 | enum register_name |
| 445 | { |
| 446 | R0, R1, R2, R3, |
| 447 | R4, R5, R6, R7, |
| 448 | R8, R9, R10, R11, |
| 449 | R12, R13, SP, PC, |
| 450 | P0, VR, P2, P3, |
| 451 | P4, CCR, P6, MOF, |
| 452 | P8, IBR, IRP, SRP, |
| 453 | BAR, DCCR, BRP, USP |
| 454 | }; |
| 455 | |
| 456 | /* The register sizes of the registers in register_name. An unimplemented register |
| 457 | is designated by size 0 in this array. */ |
| 458 | static int register_size[] = |
| 459 | { |
| 460 | 4, 4, 4, 4, |
| 461 | 4, 4, 4, 4, |
| 462 | 4, 4, 4, 4, |
| 463 | 4, 4, 4, 4, |
| 464 | 1, 1, 0, 0, |
| 465 | 2, 2, 0, 4, |
| 466 | 4, 4, 4, 4, |
| 467 | 4, 4, 4, 4 |
| 468 | }; |
| 469 | |
| 470 | /* Contains the register image of the executing thread in the assembler |
| 471 | part of the code in order to avoid horrible addressing modes. */ |
| 472 | static registers reg; |
| 473 | |
| 474 | /* FIXME: Should this be used? Delete otherwise. */ |
| 475 | /* Contains the assumed consistency state of the register image. Uses the |
| 476 | enum error_type for state information. */ |
| 477 | static int consistency_status = SUCCESS; |
| 478 | |
| 479 | /********************************** Handle exceptions ************************/ |
| 480 | /* The variable reg contains the register image associated with the |
| 481 | current_thread_c variable. It is a complete register image created at |
| 482 | entry. The reg_g contains a register image of a task where the general |
| 483 | registers are taken from the stack and all special registers are taken |
| 484 | from the executing task. It is associated with current_thread_g and used |
| 485 | in order to provide access mainly for 'g', 'G' and 'P'. |
| 486 | */ |
| 487 | |
| 488 | /* Need two task id pointers in order to handle Hct and Hgt commands. */ |
| 489 | static int current_thread_c = 0; |
| 490 | static int current_thread_g = 0; |
| 491 | |
| 492 | /* Need two register images in order to handle Hct and Hgt commands. The |
| 493 | variable reg_g is in addition to reg above. */ |
| 494 | static registers reg_g; |
| 495 | |
| 496 | /********************************** Breakpoint *******************************/ |
| 497 | /* Use an internal stack in the breakpoint and interrupt response routines */ |
| 498 | #define INTERNAL_STACK_SIZE 1024 |
| 499 | static char internal_stack[INTERNAL_STACK_SIZE]; |
| 500 | |
| 501 | /* Due to the breakpoint return pointer, a state variable is needed to keep |
| 502 | track of whether it is a static (compiled) or dynamic (gdb-invoked) |
| 503 | breakpoint to be handled. A static breakpoint uses the content of register |
| 504 | BRP as it is whereas a dynamic breakpoint requires subtraction with 2 |
| 505 | in order to execute the instruction. The first breakpoint is static. */ |
| 506 | static unsigned char is_dyn_brkp = 0; |
| 507 | |
| 508 | /********************************* String library ****************************/ |
| 509 | /* Single-step over library functions creates trap loops. */ |
| 510 | |
| 511 | /* Copy char s2[] to s1[]. */ |
| 512 | static char* |
| 513 | gdb_cris_strcpy (char *s1, const char *s2) |
| 514 | { |
| 515 | char *s = s1; |
| 516 | |
| 517 | for (s = s1; (*s++ = *s2++) != '\0'; ) |
| 518 | ; |
| 519 | return (s1); |
| 520 | } |
| 521 | |
| 522 | /* Find length of s[]. */ |
| 523 | static int |
| 524 | gdb_cris_strlen (const char *s) |
| 525 | { |
| 526 | const char *sc; |
| 527 | |
| 528 | for (sc = s; *sc != '\0'; sc++) |
| 529 | ; |
| 530 | return (sc - s); |
| 531 | } |
| 532 | |
| 533 | /* Find first occurrence of c in s[n]. */ |
| 534 | static void* |
| 535 | gdb_cris_memchr (const void *s, int c, int n) |
| 536 | { |
| 537 | const unsigned char uc = c; |
| 538 | const unsigned char *su; |
| 539 | |
| 540 | for (su = s; 0 < n; ++su, --n) |
| 541 | if (*su == uc) |
| 542 | return ((void *)su); |
| 543 | return (NULL); |
| 544 | } |
| 545 | /******************************* Standard library ****************************/ |
| 546 | /* Single-step over library functions creates trap loops. */ |
| 547 | /* Convert string to long. */ |
| 548 | static int |
| 549 | gdb_cris_strtol (const char *s, char **endptr, int base) |
| 550 | { |
| 551 | char *s1; |
| 552 | char *sd; |
| 553 | int x = 0; |
| 554 | |
| 555 | for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1) |
| 556 | x = x * base + (sd - hexchars); |
| 557 | |
| 558 | if (endptr) |
| 559 | { |
| 560 | /* Unconverted suffix is stored in endptr unless endptr is NULL. */ |
| 561 | *endptr = s1; |
| 562 | } |
| 563 | |
| 564 | return x; |
| 565 | } |
| 566 | |
| 567 | int |
| 568 | double_this(int x) |
| 569 | { |
| 570 | return 2 * x; |
| 571 | } |
| 572 | |
| 573 | /********************************* Register image ****************************/ |
| 574 | /* Copy the content of a register image into another. The size n is |
| 575 | the size of the register image. Due to struct assignment generation of |
| 576 | memcpy in libc. */ |
| 577 | static void |
| 578 | copy_registers (registers *dptr, registers *sptr, int n) |
| 579 | { |
| 580 | unsigned char *dreg; |
| 581 | unsigned char *sreg; |
| 582 | |
| 583 | for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--) |
| 584 | *dreg++ = *sreg++; |
| 585 | } |
| 586 | |
| 587 | #ifdef PROCESS_SUPPORT |
| 588 | /* Copy the stored registers from the stack. Put the register contents |
| 589 | of thread thread_id in the struct reg. */ |
| 590 | static void |
| 591 | copy_registers_from_stack (int thread_id, registers *regptr) |
| 592 | { |
| 593 | int j; |
| 594 | stack_registers *s = (stack_registers *)stack_list[thread_id]; |
| 595 | unsigned int *d = (unsigned int *)regptr; |
| 596 | |
| 597 | for (j = 13; j >= 0; j--) |
| 598 | *d++ = s->r[j]; |
| 599 | regptr->sp = (unsigned int)stack_list[thread_id]; |
| 600 | regptr->pc = s->pc; |
| 601 | regptr->dccr = s->dccr; |
| 602 | regptr->srp = s->srp; |
| 603 | } |
| 604 | |
| 605 | /* Copy the registers to the stack. Put the register contents of thread |
| 606 | thread_id from struct reg to the stack. */ |
| 607 | static void |
| 608 | copy_registers_to_stack (int thread_id, registers *regptr) |
| 609 | { |
| 610 | int i; |
| 611 | stack_registers *d = (stack_registers *)stack_list[thread_id]; |
| 612 | unsigned int *s = (unsigned int *)regptr; |
| 613 | |
| 614 | for (i = 0; i < 14; i++) { |
| 615 | d->r[i] = *s++; |
| 616 | } |
| 617 | d->pc = regptr->pc; |
| 618 | d->dccr = regptr->dccr; |
| 619 | d->srp = regptr->srp; |
| 620 | } |
| 621 | #endif |
| 622 | |
| 623 | /* Write a value to a specified register in the register image of the current |
| 624 | thread. Returns status code SUCCESS, E02 or E05. */ |
| 625 | static int |
| 626 | write_register (int regno, char *val) |
| 627 | { |
| 628 | int status = SUCCESS; |
| 629 | registers *current_reg = ® |
| 630 | |
| 631 | if (regno >= R0 && regno <= PC) { |
| 632 | /* 32-bit register with simple offset. */ |
| 633 | hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int), |
| 634 | val, sizeof(unsigned int)); |
| 635 | } |
| 636 | else if (regno == P0 || regno == VR || regno == P4 || regno == P8) { |
| 637 | /* Do not support read-only registers. */ |
| 638 | status = E02; |
| 639 | } |
| 640 | else if (regno == CCR) { |
| 641 | /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented, |
| 642 | and P7 (MOF) is 32 bits in ETRAX 100LX. */ |
| 643 | hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short), |
| 644 | val, sizeof(unsigned short)); |
| 645 | } |
| 646 | else if (regno >= MOF && regno <= USP) { |
| 647 | /* 32 bit register with complex offset. (P8 has been taken care of.) */ |
| 648 | hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int), |
| 649 | val, sizeof(unsigned int)); |
| 650 | } |
| 651 | else { |
| 652 | /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */ |
| 653 | status = E05; |
| 654 | } |
| 655 | return status; |
| 656 | } |
| 657 | |
| 658 | #ifdef PROCESS_SUPPORT |
| 659 | /* Write a value to a specified register in the stack of a thread other |
| 660 | than the current thread. Returns status code SUCCESS or E07. */ |
| 661 | static int |
| 662 | write_stack_register (int thread_id, int regno, char *valptr) |
| 663 | { |
| 664 | int status = SUCCESS; |
| 665 | stack_registers *d = (stack_registers *)stack_list[thread_id]; |
| 666 | unsigned int val; |
| 667 | |
| 668 | hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int)); |
| 669 | if (regno >= R0 && regno < SP) { |
| 670 | d->r[regno] = val; |
| 671 | } |
| 672 | else if (regno == SP) { |
| 673 | stack_list[thread_id] = val; |
| 674 | } |
| 675 | else if (regno == PC) { |
| 676 | d->pc = val; |
| 677 | } |
| 678 | else if (regno == SRP) { |
| 679 | d->srp = val; |
| 680 | } |
| 681 | else if (regno == DCCR) { |
| 682 | d->dccr = val; |
| 683 | } |
| 684 | else { |
| 685 | /* Do not support registers in the current thread. */ |
| 686 | status = E07; |
| 687 | } |
| 688 | return status; |
| 689 | } |
| 690 | #endif |
| 691 | |
| 692 | /* Read a value from a specified register in the register image. Returns the |
| 693 | value in the register or -1 for non-implemented registers. |
| 694 | Should check consistency_status after a call which may be E05 after changes |
| 695 | in the implementation. */ |
| 696 | static int |
| 697 | read_register (char regno, unsigned int *valptr) |
| 698 | { |
| 699 | registers *current_reg = ® |
| 700 | |
| 701 | if (regno >= R0 && regno <= PC) { |
| 702 | /* 32-bit register with simple offset. */ |
| 703 | *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int)); |
| 704 | return SUCCESS; |
| 705 | } |
| 706 | else if (regno == P0 || regno == VR) { |
| 707 | /* 8 bit register with complex offset. */ |
| 708 | *valptr = (unsigned int)(*(unsigned char *) |
| 709 | ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char))); |
| 710 | return SUCCESS; |
| 711 | } |
| 712 | else if (regno == P4 || regno == CCR) { |
| 713 | /* 16 bit register with complex offset. */ |
| 714 | *valptr = (unsigned int)(*(unsigned short *) |
| 715 | ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short))); |
| 716 | return SUCCESS; |
| 717 | } |
| 718 | else if (regno >= MOF && regno <= USP) { |
| 719 | /* 32 bit register with complex offset. */ |
| 720 | *valptr = *(unsigned int *)((char *)&(current_reg->p8) |
| 721 | + (regno-P8) * sizeof(unsigned int)); |
| 722 | return SUCCESS; |
| 723 | } |
| 724 | else { |
| 725 | /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */ |
| 726 | consistency_status = E05; |
| 727 | return E05; |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | /********************************** Packet I/O ******************************/ |
| 732 | /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, |
| 733 | represented by int x. */ |
| 734 | static inline char |
| 735 | highhex(int x) |
| 736 | { |
| 737 | return hexchars[(x >> 4) & 0xf]; |
| 738 | } |
| 739 | |
| 740 | /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, |
| 741 | represented by int x. */ |
| 742 | static inline char |
| 743 | lowhex(int x) |
| 744 | { |
| 745 | return hexchars[x & 0xf]; |
| 746 | } |
| 747 | |
| 748 | /* Returns the integer equivalent of a hexadecimal character. */ |
| 749 | static int |
| 750 | hex (char ch) |
| 751 | { |
| 752 | if ((ch >= 'a') && (ch <= 'f')) |
| 753 | return (ch - 'a' + 10); |
| 754 | if ((ch >= '0') && (ch <= '9')) |
| 755 | return (ch - '0'); |
| 756 | if ((ch >= 'A') && (ch <= 'F')) |
| 757 | return (ch - 'A' + 10); |
| 758 | return (-1); |
| 759 | } |
| 760 | |
| 761 | /* Convert the memory, pointed to by mem into hexadecimal representation. |
| 762 | Put the result in buf, and return a pointer to the last character |
| 763 | in buf (null). */ |
| 764 | |
| 765 | static int do_printk = 0; |
| 766 | |
| 767 | static char * |
| 768 | mem2hex(char *buf, unsigned char *mem, int count) |
| 769 | { |
| 770 | int i; |
| 771 | int ch; |
| 772 | |
| 773 | if (mem == NULL) { |
| 774 | /* Bogus read from m0. FIXME: What constitutes a valid address? */ |
| 775 | for (i = 0; i < count; i++) { |
| 776 | *buf++ = '0'; |
| 777 | *buf++ = '0'; |
| 778 | } |
| 779 | } else { |
| 780 | /* Valid mem address. */ |
| 781 | for (i = 0; i < count; i++) { |
| 782 | ch = *mem++; |
| 783 | *buf++ = highhex (ch); |
| 784 | *buf++ = lowhex (ch); |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | /* Terminate properly. */ |
| 789 | *buf = '\0'; |
| 790 | return (buf); |
| 791 | } |
| 792 | |
| 793 | /* Convert the array, in hexadecimal representation, pointed to by buf into |
| 794 | binary representation. Put the result in mem, and return a pointer to |
| 795 | the character after the last byte written. */ |
| 796 | static unsigned char* |
| 797 | hex2mem (unsigned char *mem, char *buf, int count) |
| 798 | { |
| 799 | int i; |
| 800 | unsigned char ch; |
| 801 | for (i = 0; i < count; i++) { |
| 802 | ch = hex (*buf++) << 4; |
| 803 | ch = ch + hex (*buf++); |
| 804 | *mem++ = ch; |
| 805 | } |
| 806 | return (mem); |
| 807 | } |
| 808 | |
| 809 | /* Put the content of the array, in binary representation, pointed to by buf |
| 810 | into memory pointed to by mem, and return a pointer to the character after |
| 811 | the last byte written. |
| 812 | Gdb will escape $, #, and the escape char (0x7d). */ |
| 813 | static unsigned char* |
| 814 | bin2mem (unsigned char *mem, unsigned char *buf, int count) |
| 815 | { |
| 816 | int i; |
| 817 | unsigned char *next; |
| 818 | for (i = 0; i < count; i++) { |
| 819 | /* Check for any escaped characters. Be paranoid and |
| 820 | only unescape chars that should be escaped. */ |
| 821 | if (*buf == 0x7d) { |
| 822 | next = buf + 1; |
| 823 | if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */ |
| 824 | { |
| 825 | buf++; |
| 826 | *buf += 0x20; |
| 827 | } |
| 828 | } |
| 829 | *mem++ = *buf++; |
| 830 | } |
| 831 | return (mem); |
| 832 | } |
| 833 | |
| 834 | /* Await the sequence $<data>#<checksum> and store <data> in the array buffer |
| 835 | returned. */ |
| 836 | static void |
| 837 | getpacket (char *buffer) |
| 838 | { |
| 839 | unsigned char checksum; |
| 840 | unsigned char xmitcsum; |
| 841 | int i; |
| 842 | int count; |
| 843 | char ch; |
| 844 | do { |
| 845 | while ((ch = getDebugChar ()) != '$') |
| 846 | /* Wait for the start character $ and ignore all other characters */; |
| 847 | checksum = 0; |
| 848 | xmitcsum = -1; |
| 849 | count = 0; |
| 850 | /* Read until a # or the end of the buffer is reached */ |
| 851 | while (count < BUFMAX) { |
| 852 | ch = getDebugChar (); |
| 853 | if (ch == '#') |
| 854 | break; |
| 855 | checksum = checksum + ch; |
| 856 | buffer[count] = ch; |
| 857 | count = count + 1; |
| 858 | } |
| 859 | buffer[count] = '\0'; |
| 860 | |
| 861 | if (ch == '#') { |
| 862 | xmitcsum = hex (getDebugChar ()) << 4; |
| 863 | xmitcsum += hex (getDebugChar ()); |
| 864 | if (checksum != xmitcsum) { |
| 865 | /* Wrong checksum */ |
| 866 | putDebugChar ('-'); |
| 867 | } |
| 868 | else { |
| 869 | /* Correct checksum */ |
| 870 | putDebugChar ('+'); |
| 871 | /* If sequence characters are received, reply with them */ |
| 872 | if (buffer[2] == ':') { |
| 873 | putDebugChar (buffer[0]); |
| 874 | putDebugChar (buffer[1]); |
| 875 | /* Remove the sequence characters from the buffer */ |
| 876 | count = gdb_cris_strlen (buffer); |
| 877 | for (i = 3; i <= count; i++) |
| 878 | buffer[i - 3] = buffer[i]; |
| 879 | } |
| 880 | } |
| 881 | } |
| 882 | } while (checksum != xmitcsum); |
| 883 | } |
| 884 | |
| 885 | /* Send $<data>#<checksum> from the <data> in the array buffer. */ |
| 886 | |
| 887 | static void |
| 888 | putpacket(char *buffer) |
| 889 | { |
| 890 | int checksum; |
| 891 | int runlen; |
| 892 | int encode; |
| 893 | |
| 894 | do { |
| 895 | char *src = buffer; |
| 896 | putDebugChar ('$'); |
| 897 | checksum = 0; |
| 898 | while (*src) { |
| 899 | /* Do run length encoding */ |
| 900 | putDebugChar (*src); |
| 901 | checksum += *src; |
| 902 | runlen = 0; |
| 903 | while (runlen < RUNLENMAX && *src == src[runlen]) { |
| 904 | runlen++; |
| 905 | } |
| 906 | if (runlen > 3) { |
| 907 | /* Got a useful amount */ |
| 908 | putDebugChar ('*'); |
| 909 | checksum += '*'; |
| 910 | encode = runlen + ' ' - 4; |
| 911 | putDebugChar (encode); |
| 912 | checksum += encode; |
| 913 | src += runlen; |
| 914 | } |
| 915 | else { |
| 916 | src++; |
| 917 | } |
| 918 | } |
| 919 | putDebugChar ('#'); |
| 920 | putDebugChar (highhex (checksum)); |
| 921 | putDebugChar (lowhex (checksum)); |
| 922 | } while(kgdb_started && (getDebugChar() != '+')); |
| 923 | } |
| 924 | |
| 925 | /* The string str is prepended with the GDB printout token and sent. Required |
| 926 | in traditional implementations. */ |
| 927 | void |
| 928 | putDebugString (const unsigned char *str, int length) |
| 929 | { |
| 930 | remcomOutBuffer[0] = 'O'; |
| 931 | mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length); |
| 932 | putpacket(remcomOutBuffer); |
| 933 | } |
| 934 | |
| 935 | /********************************** Handle exceptions ************************/ |
| 936 | /* Build and send a response packet in order to inform the host the |
| 937 | stub is stopped. TAAn...:r...;n...:r...;n...:r...; |
| 938 | AA = signal number |
| 939 | n... = register number (hex) |
| 940 | r... = register contents |
| 941 | n... = `thread' |
| 942 | r... = thread process ID. This is a hex integer. |
| 943 | n... = other string not starting with valid hex digit. |
| 944 | gdb should ignore this n,r pair and go on to the next. |
| 945 | This way we can extend the protocol. */ |
| 946 | static void |
| 947 | stub_is_stopped(int sigval) |
| 948 | { |
| 949 | char *ptr = remcomOutBuffer; |
| 950 | int regno; |
| 951 | |
| 952 | unsigned int reg_cont; |
| 953 | int status; |
| 954 | |
| 955 | /* Send trap type (converted to signal) */ |
| 956 | |
| 957 | *ptr++ = 'T'; |
| 958 | *ptr++ = highhex (sigval); |
| 959 | *ptr++ = lowhex (sigval); |
| 960 | |
| 961 | /* Send register contents. We probably only need to send the |
| 962 | * PC, frame pointer and stack pointer here. Other registers will be |
| 963 | * explicitely asked for. But for now, send all. |
| 964 | */ |
| 965 | |
| 966 | for (regno = R0; regno <= USP; regno++) { |
| 967 | /* Store n...:r...; for the registers in the buffer. */ |
| 968 | |
| 969 | status = read_register (regno, ®_cont); |
| 970 | |
| 971 | if (status == SUCCESS) { |
| 972 | |
| 973 | *ptr++ = highhex (regno); |
| 974 | *ptr++ = lowhex (regno); |
| 975 | *ptr++ = ':'; |
| 976 | |
| 977 | ptr = mem2hex(ptr, (unsigned char *)®_cont, |
| 978 | register_size[regno]); |
| 979 | *ptr++ = ';'; |
| 980 | } |
| 981 | |
| 982 | } |
| 983 | |
| 984 | #ifdef PROCESS_SUPPORT |
| 985 | /* Store the registers of the executing thread. Assume that both step, |
| 986 | continue, and register content requests are with respect to this |
| 987 | thread. The executing task is from the operating system scheduler. */ |
| 988 | |
| 989 | current_thread_c = executing_task; |
| 990 | current_thread_g = executing_task; |
| 991 | |
| 992 | /* A struct assignment translates into a libc memcpy call. Avoid |
| 993 | all libc functions in order to prevent recursive break points. */ |
| 994 | copy_registers (®_g, ®, sizeof(registers)); |
| 995 | |
| 996 | /* Store thread:r...; with the executing task TID. */ |
| 997 | gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:"); |
| 998 | pos += gdb_cris_strlen ("thread:"); |
| 999 | remcomOutBuffer[pos++] = highhex (executing_task); |
| 1000 | remcomOutBuffer[pos++] = lowhex (executing_task); |
| 1001 | gdb_cris_strcpy (&remcomOutBuffer[pos], ";"); |
| 1002 | #endif |
| 1003 | |
| 1004 | /* null-terminate and send it off */ |
| 1005 | |
| 1006 | *ptr = 0; |
| 1007 | |
| 1008 | putpacket (remcomOutBuffer); |
| 1009 | } |
| 1010 | |
| 1011 | /* All expected commands are sent from remote.c. Send a response according |
| 1012 | to the description in remote.c. */ |
| 1013 | static void |
| 1014 | handle_exception (int sigval) |
| 1015 | { |
| 1016 | /* Avoid warning of not used. */ |
| 1017 | |
| 1018 | USEDFUN(handle_exception); |
| 1019 | USEDVAR(internal_stack[0]); |
| 1020 | |
| 1021 | /* Send response. */ |
| 1022 | |
| 1023 | stub_is_stopped (sigval); |
| 1024 | |
| 1025 | for (;;) { |
| 1026 | remcomOutBuffer[0] = '\0'; |
| 1027 | getpacket (remcomInBuffer); |
| 1028 | switch (remcomInBuffer[0]) { |
| 1029 | case 'g': |
| 1030 | /* Read registers: g |
| 1031 | Success: Each byte of register data is described by two hex digits. |
| 1032 | Registers are in the internal order for GDB, and the bytes |
| 1033 | in a register are in the same order the machine uses. |
| 1034 | Failure: void. */ |
| 1035 | |
| 1036 | { |
| 1037 | #ifdef PROCESS_SUPPORT |
| 1038 | /* Use the special register content in the executing thread. */ |
| 1039 | copy_registers (®_g, ®, sizeof(registers)); |
| 1040 | /* Replace the content available on the stack. */ |
| 1041 | if (current_thread_g != executing_task) { |
| 1042 | copy_registers_from_stack (current_thread_g, ®_g); |
| 1043 | } |
| 1044 | mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)®_g, sizeof(registers)); |
| 1045 | #else |
| 1046 | mem2hex(remcomOutBuffer, (char *)®, sizeof(registers)); |
| 1047 | #endif |
| 1048 | } |
| 1049 | break; |
| 1050 | |
| 1051 | case 'G': |
| 1052 | /* Write registers. GXX..XX |
| 1053 | Each byte of register data is described by two hex digits. |
| 1054 | Success: OK |
| 1055 | Failure: void. */ |
| 1056 | #ifdef PROCESS_SUPPORT |
| 1057 | hex2mem ((unsigned char *)®_g, &remcomInBuffer[1], sizeof(registers)); |
| 1058 | if (current_thread_g == executing_task) { |
| 1059 | copy_registers (®, ®_g, sizeof(registers)); |
| 1060 | } |
| 1061 | else { |
| 1062 | copy_registers_to_stack(current_thread_g, ®_g); |
| 1063 | } |
| 1064 | #else |
| 1065 | hex2mem((char *)®, &remcomInBuffer[1], sizeof(registers)); |
| 1066 | #endif |
| 1067 | gdb_cris_strcpy (remcomOutBuffer, "OK"); |
| 1068 | break; |
| 1069 | |
| 1070 | case 'P': |
| 1071 | /* Write register. Pn...=r... |
| 1072 | Write register n..., hex value without 0x, with value r..., |
| 1073 | which contains a hex value without 0x and two hex digits |
| 1074 | for each byte in the register (target byte order). P1f=11223344 means |
| 1075 | set register 31 to 44332211. |
| 1076 | Success: OK |
| 1077 | Failure: E02, E05 */ |
| 1078 | { |
| 1079 | char *suffix; |
| 1080 | int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16); |
| 1081 | int status; |
| 1082 | #ifdef PROCESS_SUPPORT |
| 1083 | if (current_thread_g != executing_task) |
| 1084 | status = write_stack_register (current_thread_g, regno, suffix+1); |
| 1085 | else |
| 1086 | #endif |
| 1087 | status = write_register (regno, suffix+1); |
| 1088 | |
| 1089 | switch (status) { |
| 1090 | case E02: |
| 1091 | /* Do not support read-only registers. */ |
| 1092 | gdb_cris_strcpy (remcomOutBuffer, error_message[E02]); |
| 1093 | break; |
| 1094 | case E05: |
| 1095 | /* Do not support non-existing registers. */ |
| 1096 | gdb_cris_strcpy (remcomOutBuffer, error_message[E05]); |
| 1097 | break; |
| 1098 | case E07: |
| 1099 | /* Do not support non-existing registers on the stack. */ |
| 1100 | gdb_cris_strcpy (remcomOutBuffer, error_message[E07]); |
| 1101 | break; |
| 1102 | default: |
| 1103 | /* Valid register number. */ |
| 1104 | gdb_cris_strcpy (remcomOutBuffer, "OK"); |
| 1105 | break; |
| 1106 | } |
| 1107 | } |
| 1108 | break; |
| 1109 | |
| 1110 | case 'm': |
| 1111 | /* Read from memory. mAA..AA,LLLL |
| 1112 | AA..AA is the address and LLLL is the length. |
| 1113 | Success: XX..XX is the memory content. Can be fewer bytes than |
| 1114 | requested if only part of the data may be read. m6000120a,6c means |
| 1115 | retrieve 108 byte from base address 6000120a. |
| 1116 | Failure: void. */ |
| 1117 | { |
| 1118 | char *suffix; |
| 1119 | unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1], |
| 1120 | &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16); |
| 1121 | |
| 1122 | mem2hex(remcomOutBuffer, addr, length); |
| 1123 | } |
| 1124 | break; |
| 1125 | |
| 1126 | case 'X': |
| 1127 | /* Write to memory. XAA..AA,LLLL:XX..XX |
| 1128 | AA..AA is the start address, LLLL is the number of bytes, and |
| 1129 | XX..XX is the binary data. |
| 1130 | Success: OK |
| 1131 | Failure: void. */ |
| 1132 | case 'M': |
| 1133 | /* Write to memory. MAA..AA,LLLL:XX..XX |
| 1134 | AA..AA is the start address, LLLL is the number of bytes, and |
| 1135 | XX..XX is the hexadecimal data. |
| 1136 | Success: OK |
| 1137 | Failure: void. */ |
| 1138 | { |
| 1139 | char *lenptr; |
| 1140 | char *dataptr; |
| 1141 | unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1], |
| 1142 | &lenptr, 16); |
| 1143 | int length = gdb_cris_strtol(lenptr+1, &dataptr, 16); |
| 1144 | if (*lenptr == ',' && *dataptr == ':') { |
| 1145 | if (remcomInBuffer[0] == 'M') { |
| 1146 | hex2mem(addr, dataptr + 1, length); |
| 1147 | } |
| 1148 | else /* X */ { |
| 1149 | bin2mem(addr, dataptr + 1, length); |
| 1150 | } |
| 1151 | gdb_cris_strcpy (remcomOutBuffer, "OK"); |
| 1152 | } |
| 1153 | else { |
| 1154 | gdb_cris_strcpy (remcomOutBuffer, error_message[E06]); |
| 1155 | } |
| 1156 | } |
| 1157 | break; |
| 1158 | |
| 1159 | case 'c': |
| 1160 | /* Continue execution. cAA..AA |
| 1161 | AA..AA is the address where execution is resumed. If AA..AA is |
| 1162 | omitted, resume at the present address. |
| 1163 | Success: return to the executing thread. |
| 1164 | Failure: will never know. */ |
| 1165 | if (remcomInBuffer[1] != '\0') { |
| 1166 | reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16); |
| 1167 | } |
| 1168 | enableDebugIRQ(); |
| 1169 | return; |
| 1170 | |
| 1171 | case 's': |
| 1172 | /* Step. sAA..AA |
| 1173 | AA..AA is the address where execution is resumed. If AA..AA is |
| 1174 | omitted, resume at the present address. Success: return to the |
| 1175 | executing thread. Failure: will never know. |
| 1176 | |
| 1177 | Should never be invoked. The single-step is implemented on |
| 1178 | the host side. If ever invoked, it is an internal error E04. */ |
| 1179 | gdb_cris_strcpy (remcomOutBuffer, error_message[E04]); |
| 1180 | putpacket (remcomOutBuffer); |
| 1181 | return; |
| 1182 | |
| 1183 | case '?': |
| 1184 | /* The last signal which caused a stop. ? |
| 1185 | Success: SAA, where AA is the signal number. |
| 1186 | Failure: void. */ |
| 1187 | remcomOutBuffer[0] = 'S'; |
| 1188 | remcomOutBuffer[1] = highhex (sigval); |
| 1189 | remcomOutBuffer[2] = lowhex (sigval); |
| 1190 | remcomOutBuffer[3] = 0; |
| 1191 | break; |
| 1192 | |
| 1193 | case 'D': |
| 1194 | /* Detach from host. D |
| 1195 | Success: OK, and return to the executing thread. |
| 1196 | Failure: will never know */ |
| 1197 | putpacket ("OK"); |
| 1198 | return; |
| 1199 | |
| 1200 | case 'k': |
| 1201 | case 'r': |
| 1202 | /* kill request or reset request. |
| 1203 | Success: restart of target. |
| 1204 | Failure: will never know. */ |
| 1205 | kill_restart (); |
| 1206 | break; |
| 1207 | |
| 1208 | case 'C': |
| 1209 | case 'S': |
| 1210 | case '!': |
| 1211 | case 'R': |
| 1212 | case 'd': |
| 1213 | /* Continue with signal sig. Csig;AA..AA |
| 1214 | Step with signal sig. Ssig;AA..AA |
| 1215 | Use the extended remote protocol. ! |
| 1216 | Restart the target system. R0 |
| 1217 | Toggle debug flag. d |
| 1218 | Search backwards. tAA:PP,MM |
| 1219 | Not supported: E04 */ |
| 1220 | gdb_cris_strcpy (remcomOutBuffer, error_message[E04]); |
| 1221 | break; |
| 1222 | #ifdef PROCESS_SUPPORT |
| 1223 | |
| 1224 | case 'T': |
| 1225 | /* Thread alive. TXX |
| 1226 | Is thread XX alive? |
| 1227 | Success: OK, thread XX is alive. |
| 1228 | Failure: E03, thread XX is dead. */ |
| 1229 | { |
| 1230 | int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16); |
| 1231 | /* Cannot tell whether it is alive or not. */ |
| 1232 | if (thread_id >= 0 && thread_id < number_of_tasks) |
| 1233 | gdb_cris_strcpy (remcomOutBuffer, "OK"); |
| 1234 | } |
| 1235 | break; |
| 1236 | |
| 1237 | case 'H': |
| 1238 | /* Set thread for subsequent operations: Hct |
| 1239 | c = 'c' for thread used in step and continue; |
| 1240 | t can be -1 for all threads. |
| 1241 | c = 'g' for thread used in other operations. |
| 1242 | t = 0 means pick any thread. |
| 1243 | Success: OK |
| 1244 | Failure: E01 */ |
| 1245 | { |
| 1246 | int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16); |
| 1247 | if (remcomInBuffer[1] == 'c') { |
| 1248 | /* c = 'c' for thread used in step and continue */ |
| 1249 | /* Do not change current_thread_c here. It would create a mess in |
| 1250 | the scheduler. */ |
| 1251 | gdb_cris_strcpy (remcomOutBuffer, "OK"); |
| 1252 | } |
| 1253 | else if (remcomInBuffer[1] == 'g') { |
| 1254 | /* c = 'g' for thread used in other operations. |
| 1255 | t = 0 means pick any thread. Impossible since the scheduler does |
| 1256 | not allow that. */ |
| 1257 | if (thread_id >= 0 && thread_id < number_of_tasks) { |
| 1258 | current_thread_g = thread_id; |
| 1259 | gdb_cris_strcpy (remcomOutBuffer, "OK"); |
| 1260 | } |
| 1261 | else { |
| 1262 | /* Not expected - send an error message. */ |
| 1263 | gdb_cris_strcpy (remcomOutBuffer, error_message[E01]); |
| 1264 | } |
| 1265 | } |
| 1266 | else { |
| 1267 | /* Not expected - send an error message. */ |
| 1268 | gdb_cris_strcpy (remcomOutBuffer, error_message[E01]); |
| 1269 | } |
| 1270 | } |
| 1271 | break; |
| 1272 | |
| 1273 | case 'q': |
| 1274 | case 'Q': |
| 1275 | /* Query of general interest. qXXXX |
| 1276 | Set general value XXXX. QXXXX=yyyy */ |
| 1277 | { |
| 1278 | int pos; |
| 1279 | int nextpos; |
| 1280 | int thread_id; |
| 1281 | |
| 1282 | switch (remcomInBuffer[1]) { |
| 1283 | case 'C': |
| 1284 | /* Identify the remote current thread. */ |
| 1285 | gdb_cris_strcpy (&remcomOutBuffer[0], "QC"); |
| 1286 | remcomOutBuffer[2] = highhex (current_thread_c); |
| 1287 | remcomOutBuffer[3] = lowhex (current_thread_c); |
| 1288 | remcomOutBuffer[4] = '\0'; |
| 1289 | break; |
| 1290 | case 'L': |
| 1291 | gdb_cris_strcpy (&remcomOutBuffer[0], "QM"); |
| 1292 | /* Reply with number of threads. */ |
| 1293 | if (os_is_started()) { |
| 1294 | remcomOutBuffer[2] = highhex (number_of_tasks); |
| 1295 | remcomOutBuffer[3] = lowhex (number_of_tasks); |
| 1296 | } |
| 1297 | else { |
| 1298 | remcomOutBuffer[2] = highhex (0); |
| 1299 | remcomOutBuffer[3] = lowhex (1); |
| 1300 | } |
| 1301 | /* Done with the reply. */ |
| 1302 | remcomOutBuffer[4] = lowhex (1); |
| 1303 | pos = 5; |
| 1304 | /* Expects the argument thread id. */ |
| 1305 | for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++) |
| 1306 | remcomOutBuffer[pos] = remcomInBuffer[pos]; |
| 1307 | /* Reply with the thread identifiers. */ |
| 1308 | if (os_is_started()) { |
| 1309 | /* Store the thread identifiers of all tasks. */ |
| 1310 | for (thread_id = 0; thread_id < number_of_tasks; thread_id++) { |
| 1311 | nextpos = pos + HEXCHARS_IN_THREAD_ID - 1; |
| 1312 | for (; pos < nextpos; pos ++) |
| 1313 | remcomOutBuffer[pos] = lowhex (0); |
| 1314 | remcomOutBuffer[pos++] = lowhex (thread_id); |
| 1315 | } |
| 1316 | } |
| 1317 | else { |
| 1318 | /* Store the thread identifier of the boot task. */ |
| 1319 | nextpos = pos + HEXCHARS_IN_THREAD_ID - 1; |
| 1320 | for (; pos < nextpos; pos ++) |
| 1321 | remcomOutBuffer[pos] = lowhex (0); |
| 1322 | remcomOutBuffer[pos++] = lowhex (current_thread_c); |
| 1323 | } |
| 1324 | remcomOutBuffer[pos] = '\0'; |
| 1325 | break; |
| 1326 | default: |
| 1327 | /* Not supported: "" */ |
| 1328 | /* Request information about section offsets: qOffsets. */ |
| 1329 | remcomOutBuffer[0] = 0; |
| 1330 | break; |
| 1331 | } |
| 1332 | } |
| 1333 | break; |
| 1334 | #endif /* PROCESS_SUPPORT */ |
| 1335 | |
| 1336 | default: |
| 1337 | /* The stub should ignore other request and send an empty |
| 1338 | response ($#<checksum>). This way we can extend the protocol and GDB |
| 1339 | can tell whether the stub it is talking to uses the old or the new. */ |
| 1340 | remcomOutBuffer[0] = 0; |
| 1341 | break; |
| 1342 | } |
| 1343 | putpacket(remcomOutBuffer); |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | /* The jump is to the address 0x00000002. Performs a complete re-start |
| 1348 | from scratch. */ |
| 1349 | static void |
| 1350 | kill_restart () |
| 1351 | { |
| 1352 | __asm__ volatile ("jump 2"); |
| 1353 | } |
| 1354 | |
| 1355 | /********************************** Breakpoint *******************************/ |
| 1356 | /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB. |
| 1357 | An internal stack is used by the stub. The register image of the caller is |
| 1358 | stored in the structure register_image. |
| 1359 | Interactive communication with the host is handled by handle_exception and |
| 1360 | finally the register image is restored. */ |
| 1361 | |
| 1362 | void kgdb_handle_breakpoint(void); |
| 1363 | |
| 1364 | asm (" |
| 1365 | .global kgdb_handle_breakpoint |
| 1366 | kgdb_handle_breakpoint: |
| 1367 | ;; |
| 1368 | ;; Response to the break-instruction |
| 1369 | ;; |
| 1370 | ;; Create a register image of the caller |
| 1371 | ;; |
| 1372 | move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts |
| 1373 | di ; Disable interrupts |
| 1374 | move.d $r0,[reg] ; Save R0 |
| 1375 | move.d $r1,[reg+0x04] ; Save R1 |
| 1376 | move.d $r2,[reg+0x08] ; Save R2 |
| 1377 | move.d $r3,[reg+0x0C] ; Save R3 |
| 1378 | move.d $r4,[reg+0x10] ; Save R4 |
| 1379 | move.d $r5,[reg+0x14] ; Save R5 |
| 1380 | move.d $r6,[reg+0x18] ; Save R6 |
| 1381 | move.d $r7,[reg+0x1C] ; Save R7 |
| 1382 | move.d $r8,[reg+0x20] ; Save R8 |
| 1383 | move.d $r9,[reg+0x24] ; Save R9 |
| 1384 | move.d $r10,[reg+0x28] ; Save R10 |
| 1385 | move.d $r11,[reg+0x2C] ; Save R11 |
| 1386 | move.d $r12,[reg+0x30] ; Save R12 |
| 1387 | move.d $r13,[reg+0x34] ; Save R13 |
| 1388 | move.d $sp,[reg+0x38] ; Save SP (R14) |
| 1389 | ;; Due to the old assembler-versions BRP might not be recognized |
| 1390 | .word 0xE670 ; move brp,$r0 |
| 1391 | subq 2,$r0 ; Set to address of previous instruction. |
| 1392 | move.d $r0,[reg+0x3c] ; Save the address in PC (R15) |
| 1393 | clear.b [reg+0x40] ; Clear P0 |
| 1394 | move $vr,[reg+0x41] ; Save special register P1 |
| 1395 | clear.w [reg+0x42] ; Clear P4 |
| 1396 | move $ccr,[reg+0x44] ; Save special register CCR |
| 1397 | move $mof,[reg+0x46] ; P7 |
| 1398 | clear.d [reg+0x4A] ; Clear P8 |
| 1399 | move $ibr,[reg+0x4E] ; P9, |
| 1400 | move $irp,[reg+0x52] ; P10, |
| 1401 | move $srp,[reg+0x56] ; P11, |
| 1402 | move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR |
| 1403 | ; P13, register DCCR already saved |
| 1404 | ;; Due to the old assembler-versions BRP might not be recognized |
| 1405 | .word 0xE670 ; move brp,r0 |
| 1406 | ;; Static (compiled) breakpoints must return to the next instruction in order |
| 1407 | ;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction |
| 1408 | ;; in order to execute it when execution is continued. |
| 1409 | test.b [is_dyn_brkp] ; Is this a dynamic breakpoint? |
| 1410 | beq is_static ; No, a static breakpoint |
| 1411 | nop |
| 1412 | subq 2,$r0 ; rerun the instruction the break replaced |
| 1413 | is_static: |
| 1414 | moveq 1,$r1 |
| 1415 | move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint |
| 1416 | move.d $r0,[reg+0x62] ; Save the return address in BRP |
| 1417 | move $usp,[reg+0x66] ; USP |
| 1418 | ;; |
| 1419 | ;; Handle the communication |
| 1420 | ;; |
| 1421 | move.d internal_stack+1020,$sp ; Use the internal stack which grows upward |
| 1422 | moveq 5,$r10 ; SIGTRAP |
| 1423 | jsr handle_exception ; Interactive routine |
| 1424 | ;; |
| 1425 | ;; Return to the caller |
| 1426 | ;; |
| 1427 | move.d [reg],$r0 ; Restore R0 |
| 1428 | move.d [reg+0x04],$r1 ; Restore R1 |
| 1429 | move.d [reg+0x08],$r2 ; Restore R2 |
| 1430 | move.d [reg+0x0C],$r3 ; Restore R3 |
| 1431 | move.d [reg+0x10],$r4 ; Restore R4 |
| 1432 | move.d [reg+0x14],$r5 ; Restore R5 |
| 1433 | move.d [reg+0x18],$r6 ; Restore R6 |
| 1434 | move.d [reg+0x1C],$r7 ; Restore R7 |
| 1435 | move.d [reg+0x20],$r8 ; Restore R8 |
| 1436 | move.d [reg+0x24],$r9 ; Restore R9 |
| 1437 | move.d [reg+0x28],$r10 ; Restore R10 |
| 1438 | move.d [reg+0x2C],$r11 ; Restore R11 |
| 1439 | move.d [reg+0x30],$r12 ; Restore R12 |
| 1440 | move.d [reg+0x34],$r13 ; Restore R13 |
| 1441 | ;; |
| 1442 | ;; FIXME: Which registers should be restored? |
| 1443 | ;; |
| 1444 | move.d [reg+0x38],$sp ; Restore SP (R14) |
| 1445 | move [reg+0x56],$srp ; Restore the subroutine return pointer. |
| 1446 | move [reg+0x5E],$dccr ; Restore DCCR |
| 1447 | move [reg+0x66],$usp ; Restore USP |
| 1448 | jump [reg+0x62] ; A jump to the content in register BRP works. |
| 1449 | nop ; |
| 1450 | "); |
| 1451 | |
| 1452 | /* The hook for an interrupt generated by GDB. An internal stack is used |
| 1453 | by the stub. The register image of the caller is stored in the structure |
| 1454 | register_image. Interactive communication with the host is handled by |
| 1455 | handle_exception and finally the register image is restored. Due to the |
| 1456 | old assembler which does not recognise the break instruction and the |
| 1457 | breakpoint return pointer hex-code is used. */ |
| 1458 | |
| 1459 | void kgdb_handle_serial(void); |
| 1460 | |
| 1461 | asm (" |
| 1462 | .global kgdb_handle_serial |
| 1463 | kgdb_handle_serial: |
| 1464 | ;; |
| 1465 | ;; Response to a serial interrupt |
| 1466 | ;; |
| 1467 | |
| 1468 | move $dccr,[reg+0x5E] ; Save the flags in DCCR |
| 1469 | di ; Disable interrupts |
| 1470 | move.d $r0,[reg] ; Save R0 |
| 1471 | move.d $r1,[reg+0x04] ; Save R1 |
| 1472 | move.d $r2,[reg+0x08] ; Save R2 |
| 1473 | move.d $r3,[reg+0x0C] ; Save R3 |
| 1474 | move.d $r4,[reg+0x10] ; Save R4 |
| 1475 | move.d $r5,[reg+0x14] ; Save R5 |
| 1476 | move.d $r6,[reg+0x18] ; Save R6 |
| 1477 | move.d $r7,[reg+0x1C] ; Save R7 |
| 1478 | move.d $r8,[reg+0x20] ; Save R8 |
| 1479 | move.d $r9,[reg+0x24] ; Save R9 |
| 1480 | move.d $r10,[reg+0x28] ; Save R10 |
| 1481 | move.d $r11,[reg+0x2C] ; Save R11 |
| 1482 | move.d $r12,[reg+0x30] ; Save R12 |
| 1483 | move.d $r13,[reg+0x34] ; Save R13 |
| 1484 | move.d $sp,[reg+0x38] ; Save SP (R14) |
| 1485 | move $irp,[reg+0x3c] ; Save the address in PC (R15) |
| 1486 | clear.b [reg+0x40] ; Clear P0 |
| 1487 | move $vr,[reg+0x41] ; Save special register P1, |
| 1488 | clear.w [reg+0x42] ; Clear P4 |
| 1489 | move $ccr,[reg+0x44] ; Save special register CCR |
| 1490 | move $mof,[reg+0x46] ; P7 |
| 1491 | clear.d [reg+0x4A] ; Clear P8 |
| 1492 | move $ibr,[reg+0x4E] ; P9, |
| 1493 | move $irp,[reg+0x52] ; P10, |
| 1494 | move $srp,[reg+0x56] ; P11, |
| 1495 | move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR |
| 1496 | ; P13, register DCCR already saved |
| 1497 | ;; Due to the old assembler-versions BRP might not be recognized |
| 1498 | .word 0xE670 ; move brp,r0 |
| 1499 | move.d $r0,[reg+0x62] ; Save the return address in BRP |
| 1500 | move $usp,[reg+0x66] ; USP |
| 1501 | |
| 1502 | ;; get the serial character (from debugport.c) and check if it is a ctrl-c |
| 1503 | |
| 1504 | jsr getDebugChar |
| 1505 | cmp.b 3, $r10 |
| 1506 | bne goback |
| 1507 | nop |
| 1508 | |
| 1509 | ;; |
| 1510 | ;; Handle the communication |
| 1511 | ;; |
| 1512 | move.d internal_stack+1020,$sp ; Use the internal stack |
| 1513 | moveq 2,$r10 ; SIGINT |
| 1514 | jsr handle_exception ; Interactive routine |
| 1515 | |
| 1516 | goback: |
| 1517 | ;; |
| 1518 | ;; Return to the caller |
| 1519 | ;; |
| 1520 | move.d [reg],$r0 ; Restore R0 |
| 1521 | move.d [reg+0x04],$r1 ; Restore R1 |
| 1522 | move.d [reg+0x08],$r2 ; Restore R2 |
| 1523 | move.d [reg+0x0C],$r3 ; Restore R3 |
| 1524 | move.d [reg+0x10],$r4 ; Restore R4 |
| 1525 | move.d [reg+0x14],$r5 ; Restore R5 |
| 1526 | move.d [reg+0x18],$r6 ; Restore R6 |
| 1527 | move.d [reg+0x1C],$r7 ; Restore R7 |
| 1528 | move.d [reg+0x20],$r8 ; Restore R8 |
| 1529 | move.d [reg+0x24],$r9 ; Restore R9 |
| 1530 | move.d [reg+0x28],$r10 ; Restore R10 |
| 1531 | move.d [reg+0x2C],$r11 ; Restore R11 |
| 1532 | move.d [reg+0x30],$r12 ; Restore R12 |
| 1533 | move.d [reg+0x34],$r13 ; Restore R13 |
| 1534 | ;; |
| 1535 | ;; FIXME: Which registers should be restored? |
| 1536 | ;; |
| 1537 | move.d [reg+0x38],$sp ; Restore SP (R14) |
| 1538 | move [reg+0x56],$srp ; Restore the subroutine return pointer. |
| 1539 | move [reg+0x5E],$dccr ; Restore DCCR |
| 1540 | move [reg+0x66],$usp ; Restore USP |
| 1541 | reti ; Return from the interrupt routine |
| 1542 | nop |
| 1543 | "); |
| 1544 | |
| 1545 | /* Use this static breakpoint in the start-up only. */ |
| 1546 | |
| 1547 | void |
| 1548 | breakpoint(void) |
| 1549 | { |
| 1550 | kgdb_started = 1; |
| 1551 | is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */ |
| 1552 | __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */ |
| 1553 | } |
| 1554 | |
| 1555 | /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */ |
| 1556 | |
| 1557 | void |
| 1558 | kgdb_init(void) |
| 1559 | { |
| 1560 | /* could initialize debug port as well but it's done in head.S already... */ |
| 1561 | |
| 1562 | /* breakpoint handler is now set in irq.c */ |
| 1563 | set_int_vector(8, kgdb_handle_serial); |
| 1564 | |
| 1565 | enableDebugIRQ(); |
| 1566 | } |
| 1567 | |
| 1568 | /****************************** End of file **********************************/ |