Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * arch/mips/kernel/gdb-stub.c |
| 3 | * |
| 4 | * Originally written by Glenn Engel, Lake Stevens Instrument Division |
| 5 | * |
| 6 | * Contributed by HP Systems |
| 7 | * |
| 8 | * Modified for SPARC by Stu Grossman, Cygnus Support. |
| 9 | * |
| 10 | * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse |
| 11 | * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> |
| 12 | * |
| 13 | * Copyright (C) 1995 Andreas Busse |
| 14 | * |
| 15 | * Copyright (C) 2003 MontaVista Software Inc. |
| 16 | * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net |
| 17 | */ |
| 18 | |
| 19 | /* |
| 20 | * To enable debugger support, two things need to happen. One, a |
| 21 | * call to set_debug_traps() is necessary in order to allow any breakpoints |
| 22 | * or error conditions to be properly intercepted and reported to gdb. |
| 23 | * Two, a breakpoint needs to be generated to begin communication. This |
| 24 | * is most easily accomplished by a call to breakpoint(). Breakpoint() |
| 25 | * simulates a breakpoint by executing a BREAK instruction. |
| 26 | * |
| 27 | * |
| 28 | * The following gdb commands are supported: |
| 29 | * |
| 30 | * command function Return value |
| 31 | * |
| 32 | * g return the value of the CPU registers hex data or ENN |
| 33 | * G set the value of the CPU registers OK or ENN |
| 34 | * |
| 35 | * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| 36 | * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| 37 | * |
| 38 | * c Resume at current address SNN ( signal NN) |
| 39 | * cAA..AA Continue at address AA..AA SNN |
| 40 | * |
| 41 | * s Step one instruction SNN |
| 42 | * sAA..AA Step one instruction from AA..AA SNN |
| 43 | * |
| 44 | * k kill |
| 45 | * |
| 46 | * ? What was the last sigval ? SNN (signal NN) |
| 47 | * |
| 48 | * bBB..BB Set baud rate to BB..BB OK or BNN, then sets |
| 49 | * baud rate |
| 50 | * |
| 51 | * All commands and responses are sent with a packet which includes a |
| 52 | * checksum. A packet consists of |
| 53 | * |
| 54 | * $<packet info>#<checksum>. |
| 55 | * |
| 56 | * where |
| 57 | * <packet info> :: <characters representing the command or response> |
| 58 | * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> |
| 59 | * |
| 60 | * When a packet is received, it is first acknowledged with either '+' or '-'. |
| 61 | * '+' indicates a successful transfer. '-' indicates a failed transfer. |
| 62 | * |
| 63 | * Example: |
| 64 | * |
| 65 | * Host: Reply: |
| 66 | * $m0,10#2a +$00010203040506070809101112131415#42 |
| 67 | * |
| 68 | * |
| 69 | * ============== |
| 70 | * MORE EXAMPLES: |
| 71 | * ============== |
| 72 | * |
| 73 | * For reference -- the following are the steps that one |
| 74 | * company took (RidgeRun Inc) to get remote gdb debugging |
| 75 | * going. In this scenario the host machine was a PC and the |
| 76 | * target platform was a Galileo EVB64120A MIPS evaluation |
| 77 | * board. |
| 78 | * |
| 79 | * Step 1: |
| 80 | * First download gdb-5.0.tar.gz from the internet. |
| 81 | * and then build/install the package. |
| 82 | * |
| 83 | * Example: |
| 84 | * $ tar zxf gdb-5.0.tar.gz |
| 85 | * $ cd gdb-5.0 |
| 86 | * $ ./configure --target=mips-linux-elf |
| 87 | * $ make |
| 88 | * $ install |
| 89 | * $ which mips-linux-elf-gdb |
| 90 | * /usr/local/bin/mips-linux-elf-gdb |
| 91 | * |
| 92 | * Step 2: |
| 93 | * Configure linux for remote debugging and build it. |
| 94 | * |
| 95 | * Example: |
| 96 | * $ cd ~/linux |
| 97 | * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging> |
| 98 | * $ make |
| 99 | * |
| 100 | * Step 3: |
| 101 | * Download the kernel to the remote target and start |
| 102 | * the kernel running. It will promptly halt and wait |
| 103 | * for the host gdb session to connect. It does this |
| 104 | * since the "Kernel Hacking" option has defined |
| 105 | * CONFIG_KGDB which in turn enables your calls |
| 106 | * to: |
| 107 | * set_debug_traps(); |
| 108 | * breakpoint(); |
| 109 | * |
| 110 | * Step 4: |
| 111 | * Start the gdb session on the host. |
| 112 | * |
| 113 | * Example: |
| 114 | * $ mips-linux-elf-gdb vmlinux |
| 115 | * (gdb) set remotebaud 115200 |
| 116 | * (gdb) target remote /dev/ttyS1 |
| 117 | * ...at this point you are connected to |
| 118 | * the remote target and can use gdb |
| 119 | * in the normal fasion. Setting |
| 120 | * breakpoints, single stepping, |
| 121 | * printing variables, etc. |
| 122 | */ |
| 123 | #include <linux/config.h> |
| 124 | #include <linux/string.h> |
| 125 | #include <linux/kernel.h> |
| 126 | #include <linux/signal.h> |
| 127 | #include <linux/sched.h> |
| 128 | #include <linux/mm.h> |
| 129 | #include <linux/console.h> |
| 130 | #include <linux/init.h> |
| 131 | #include <linux/smp.h> |
| 132 | #include <linux/spinlock.h> |
| 133 | #include <linux/slab.h> |
| 134 | #include <linux/reboot.h> |
| 135 | |
| 136 | #include <asm/asm.h> |
| 137 | #include <asm/cacheflush.h> |
| 138 | #include <asm/mipsregs.h> |
| 139 | #include <asm/pgtable.h> |
| 140 | #include <asm/system.h> |
| 141 | #include <asm/gdb-stub.h> |
| 142 | #include <asm/inst.h> |
| 143 | |
| 144 | /* |
| 145 | * external low-level support routines |
| 146 | */ |
| 147 | |
| 148 | extern int putDebugChar(char c); /* write a single character */ |
| 149 | extern char getDebugChar(void); /* read and return a single char */ |
| 150 | extern void trap_low(void); |
| 151 | |
| 152 | /* |
| 153 | * breakpoint and test functions |
| 154 | */ |
| 155 | extern void breakpoint(void); |
| 156 | extern void breakinst(void); |
| 157 | extern void async_breakpoint(void); |
| 158 | extern void async_breakinst(void); |
| 159 | extern void adel(void); |
| 160 | |
| 161 | /* |
| 162 | * local prototypes |
| 163 | */ |
| 164 | |
| 165 | static void getpacket(char *buffer); |
| 166 | static void putpacket(char *buffer); |
| 167 | static int computeSignal(int tt); |
| 168 | static int hex(unsigned char ch); |
| 169 | static int hexToInt(char **ptr, int *intValue); |
| 170 | static int hexToLong(char **ptr, long *longValue); |
| 171 | static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault); |
| 172 | void handle_exception(struct gdb_regs *regs); |
| 173 | |
| 174 | int kgdb_enabled; |
| 175 | |
| 176 | /* |
| 177 | * spin locks for smp case |
| 178 | */ |
| 179 | static spinlock_t kgdb_lock = SPIN_LOCK_UNLOCKED; |
| 180 | static spinlock_t kgdb_cpulock[NR_CPUS] = { [0 ... NR_CPUS-1] = SPIN_LOCK_UNLOCKED}; |
| 181 | |
| 182 | /* |
| 183 | * BUFMAX defines the maximum number of characters in inbound/outbound buffers |
| 184 | * at least NUMREGBYTES*2 are needed for register packets |
| 185 | */ |
| 186 | #define BUFMAX 2048 |
| 187 | |
| 188 | static char input_buffer[BUFMAX]; |
| 189 | static char output_buffer[BUFMAX]; |
| 190 | static int initialized; /* !0 means we've been initialized */ |
| 191 | static int kgdb_started; |
| 192 | static const char hexchars[]="0123456789abcdef"; |
| 193 | |
| 194 | /* Used to prevent crashes in memory access. Note that they'll crash anyway if |
| 195 | we haven't set up fault handlers yet... */ |
| 196 | int kgdb_read_byte(unsigned char *address, unsigned char *dest); |
| 197 | int kgdb_write_byte(unsigned char val, unsigned char *dest); |
| 198 | |
| 199 | /* |
| 200 | * Convert ch from a hex digit to an int |
| 201 | */ |
| 202 | static int hex(unsigned char ch) |
| 203 | { |
| 204 | if (ch >= 'a' && ch <= 'f') |
| 205 | return ch-'a'+10; |
| 206 | if (ch >= '0' && ch <= '9') |
| 207 | return ch-'0'; |
| 208 | if (ch >= 'A' && ch <= 'F') |
| 209 | return ch-'A'+10; |
| 210 | return -1; |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * scan for the sequence $<data>#<checksum> |
| 215 | */ |
| 216 | static void getpacket(char *buffer) |
| 217 | { |
| 218 | unsigned char checksum; |
| 219 | unsigned char xmitcsum; |
| 220 | int i; |
| 221 | int count; |
| 222 | unsigned char ch; |
| 223 | |
| 224 | do { |
| 225 | /* |
| 226 | * wait around for the start character, |
| 227 | * ignore all other characters |
| 228 | */ |
| 229 | while ((ch = (getDebugChar() & 0x7f)) != '$') ; |
| 230 | |
| 231 | checksum = 0; |
| 232 | xmitcsum = -1; |
| 233 | count = 0; |
| 234 | |
| 235 | /* |
| 236 | * now, read until a # or end of buffer is found |
| 237 | */ |
| 238 | while (count < BUFMAX) { |
| 239 | ch = getDebugChar(); |
| 240 | if (ch == '#') |
| 241 | break; |
| 242 | checksum = checksum + ch; |
| 243 | buffer[count] = ch; |
| 244 | count = count + 1; |
| 245 | } |
| 246 | |
| 247 | if (count >= BUFMAX) |
| 248 | continue; |
| 249 | |
| 250 | buffer[count] = 0; |
| 251 | |
| 252 | if (ch == '#') { |
| 253 | xmitcsum = hex(getDebugChar() & 0x7f) << 4; |
| 254 | xmitcsum |= hex(getDebugChar() & 0x7f); |
| 255 | |
| 256 | if (checksum != xmitcsum) |
| 257 | putDebugChar('-'); /* failed checksum */ |
| 258 | else { |
| 259 | putDebugChar('+'); /* successful transfer */ |
| 260 | |
| 261 | /* |
| 262 | * if a sequence char is present, |
| 263 | * reply the sequence ID |
| 264 | */ |
| 265 | if (buffer[2] == ':') { |
| 266 | putDebugChar(buffer[0]); |
| 267 | putDebugChar(buffer[1]); |
| 268 | |
| 269 | /* |
| 270 | * remove sequence chars from buffer |
| 271 | */ |
| 272 | count = strlen(buffer); |
| 273 | for (i=3; i <= count; i++) |
| 274 | buffer[i-3] = buffer[i]; |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | while (checksum != xmitcsum); |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * send the packet in buffer. |
| 284 | */ |
| 285 | static void putpacket(char *buffer) |
| 286 | { |
| 287 | unsigned char checksum; |
| 288 | int count; |
| 289 | unsigned char ch; |
| 290 | |
| 291 | /* |
| 292 | * $<packet info>#<checksum>. |
| 293 | */ |
| 294 | |
| 295 | do { |
| 296 | putDebugChar('$'); |
| 297 | checksum = 0; |
| 298 | count = 0; |
| 299 | |
| 300 | while ((ch = buffer[count]) != 0) { |
| 301 | if (!(putDebugChar(ch))) |
| 302 | return; |
| 303 | checksum += ch; |
| 304 | count += 1; |
| 305 | } |
| 306 | |
| 307 | putDebugChar('#'); |
| 308 | putDebugChar(hexchars[checksum >> 4]); |
| 309 | putDebugChar(hexchars[checksum & 0xf]); |
| 310 | |
| 311 | } |
| 312 | while ((getDebugChar() & 0x7f) != '+'); |
| 313 | } |
| 314 | |
| 315 | |
| 316 | /* |
| 317 | * Convert the memory pointed to by mem into hex, placing result in buf. |
| 318 | * Return a pointer to the last char put in buf (null), in case of mem fault, |
| 319 | * return 0. |
| 320 | * may_fault is non-zero if we are reading from arbitrary memory, but is currently |
| 321 | * not used. |
| 322 | */ |
| 323 | static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault) |
| 324 | { |
| 325 | unsigned char ch; |
| 326 | |
| 327 | while (count-- > 0) { |
| 328 | if (kgdb_read_byte(mem++, &ch) != 0) |
| 329 | return 0; |
| 330 | *buf++ = hexchars[ch >> 4]; |
| 331 | *buf++ = hexchars[ch & 0xf]; |
| 332 | } |
| 333 | |
| 334 | *buf = 0; |
| 335 | |
| 336 | return buf; |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * convert the hex array pointed to by buf into binary to be placed in mem |
| 341 | * return a pointer to the character AFTER the last byte written |
| 342 | * may_fault is non-zero if we are reading from arbitrary memory, but is currently |
| 343 | * not used. |
| 344 | */ |
| 345 | static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault) |
| 346 | { |
| 347 | int i; |
| 348 | unsigned char ch; |
| 349 | |
| 350 | for (i=0; i<count; i++) |
| 351 | { |
| 352 | if (binary) { |
| 353 | ch = *buf++; |
| 354 | if (ch == 0x7d) |
| 355 | ch = 0x20 ^ *buf++; |
| 356 | } |
| 357 | else { |
| 358 | ch = hex(*buf++) << 4; |
| 359 | ch |= hex(*buf++); |
| 360 | } |
| 361 | if (kgdb_write_byte(ch, mem++) != 0) |
| 362 | return 0; |
| 363 | } |
| 364 | |
| 365 | return mem; |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * This table contains the mapping between SPARC hardware trap types, and |
| 370 | * signals, which are primarily what GDB understands. It also indicates |
| 371 | * which hardware traps we need to commandeer when initializing the stub. |
| 372 | */ |
| 373 | static struct hard_trap_info { |
| 374 | unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */ |
| 375 | unsigned char signo; /* Signal that we map this trap into */ |
| 376 | } hard_trap_info[] = { |
| 377 | { 6, SIGBUS }, /* instruction bus error */ |
| 378 | { 7, SIGBUS }, /* data bus error */ |
| 379 | { 9, SIGTRAP }, /* break */ |
| 380 | { 10, SIGILL }, /* reserved instruction */ |
| 381 | /* { 11, SIGILL }, */ /* CPU unusable */ |
| 382 | { 12, SIGFPE }, /* overflow */ |
| 383 | { 13, SIGTRAP }, /* trap */ |
| 384 | { 14, SIGSEGV }, /* virtual instruction cache coherency */ |
| 385 | { 15, SIGFPE }, /* floating point exception */ |
| 386 | { 23, SIGSEGV }, /* watch */ |
| 387 | { 31, SIGSEGV }, /* virtual data cache coherency */ |
| 388 | { 0, 0} /* Must be last */ |
| 389 | }; |
| 390 | |
| 391 | /* Save the normal trap handlers for user-mode traps. */ |
| 392 | void *saved_vectors[32]; |
| 393 | |
| 394 | /* |
| 395 | * Set up exception handlers for tracing and breakpoints |
| 396 | */ |
| 397 | void set_debug_traps(void) |
| 398 | { |
| 399 | struct hard_trap_info *ht; |
| 400 | unsigned long flags; |
| 401 | unsigned char c; |
| 402 | |
| 403 | local_irq_save(flags); |
| 404 | for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| 405 | saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low); |
| 406 | |
| 407 | putDebugChar('+'); /* 'hello world' */ |
| 408 | /* |
| 409 | * In case GDB is started before us, ack any packets |
| 410 | * (presumably "$?#xx") sitting there. |
| 411 | */ |
| 412 | while((c = getDebugChar()) != '$'); |
| 413 | while((c = getDebugChar()) != '#'); |
| 414 | c = getDebugChar(); /* eat first csum byte */ |
| 415 | c = getDebugChar(); /* eat second csum byte */ |
| 416 | putDebugChar('+'); /* ack it */ |
| 417 | |
| 418 | initialized = 1; |
| 419 | local_irq_restore(flags); |
| 420 | } |
| 421 | |
| 422 | void restore_debug_traps(void) |
| 423 | { |
| 424 | struct hard_trap_info *ht; |
| 425 | unsigned long flags; |
| 426 | |
| 427 | local_irq_save(flags); |
| 428 | for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| 429 | set_except_vector(ht->tt, saved_vectors[ht->tt]); |
| 430 | local_irq_restore(flags); |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * Convert the MIPS hardware trap type code to a Unix signal number. |
| 435 | */ |
| 436 | static int computeSignal(int tt) |
| 437 | { |
| 438 | struct hard_trap_info *ht; |
| 439 | |
| 440 | for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| 441 | if (ht->tt == tt) |
| 442 | return ht->signo; |
| 443 | |
| 444 | return SIGHUP; /* default for things we don't know about */ |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * While we find nice hex chars, build an int. |
| 449 | * Return number of chars processed. |
| 450 | */ |
| 451 | static int hexToInt(char **ptr, int *intValue) |
| 452 | { |
| 453 | int numChars = 0; |
| 454 | int hexValue; |
| 455 | |
| 456 | *intValue = 0; |
| 457 | |
| 458 | while (**ptr) { |
| 459 | hexValue = hex(**ptr); |
| 460 | if (hexValue < 0) |
| 461 | break; |
| 462 | |
| 463 | *intValue = (*intValue << 4) | hexValue; |
| 464 | numChars ++; |
| 465 | |
| 466 | (*ptr)++; |
| 467 | } |
| 468 | |
| 469 | return (numChars); |
| 470 | } |
| 471 | |
| 472 | static int hexToLong(char **ptr, long *longValue) |
| 473 | { |
| 474 | int numChars = 0; |
| 475 | int hexValue; |
| 476 | |
| 477 | *longValue = 0; |
| 478 | |
| 479 | while (**ptr) { |
| 480 | hexValue = hex(**ptr); |
| 481 | if (hexValue < 0) |
| 482 | break; |
| 483 | |
| 484 | *longValue = (*longValue << 4) | hexValue; |
| 485 | numChars ++; |
| 486 | |
| 487 | (*ptr)++; |
| 488 | } |
| 489 | |
| 490 | return numChars; |
| 491 | } |
| 492 | |
| 493 | |
| 494 | #if 0 |
| 495 | /* |
| 496 | * Print registers (on target console) |
| 497 | * Used only to debug the stub... |
| 498 | */ |
| 499 | void show_gdbregs(struct gdb_regs * regs) |
| 500 | { |
| 501 | /* |
| 502 | * Saved main processor registers |
| 503 | */ |
| 504 | printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| 505 | regs->reg0, regs->reg1, regs->reg2, regs->reg3, |
| 506 | regs->reg4, regs->reg5, regs->reg6, regs->reg7); |
| 507 | printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| 508 | regs->reg8, regs->reg9, regs->reg10, regs->reg11, |
| 509 | regs->reg12, regs->reg13, regs->reg14, regs->reg15); |
| 510 | printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| 511 | regs->reg16, regs->reg17, regs->reg18, regs->reg19, |
| 512 | regs->reg20, regs->reg21, regs->reg22, regs->reg23); |
| 513 | printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", |
| 514 | regs->reg24, regs->reg25, regs->reg26, regs->reg27, |
| 515 | regs->reg28, regs->reg29, regs->reg30, regs->reg31); |
| 516 | |
| 517 | /* |
| 518 | * Saved cp0 registers |
| 519 | */ |
| 520 | printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n", |
| 521 | regs->cp0_epc, regs->cp0_status, regs->cp0_cause); |
| 522 | } |
| 523 | #endif /* dead code */ |
| 524 | |
| 525 | /* |
| 526 | * We single-step by setting breakpoints. When an exception |
| 527 | * is handled, we need to restore the instructions hoisted |
| 528 | * when the breakpoints were set. |
| 529 | * |
| 530 | * This is where we save the original instructions. |
| 531 | */ |
| 532 | static struct gdb_bp_save { |
| 533 | unsigned long addr; |
| 534 | unsigned int val; |
| 535 | } step_bp[2]; |
| 536 | |
| 537 | #define BP 0x0000000d /* break opcode */ |
| 538 | |
| 539 | /* |
| 540 | * Set breakpoint instructions for single stepping. |
| 541 | */ |
| 542 | static void single_step(struct gdb_regs *regs) |
| 543 | { |
| 544 | union mips_instruction insn; |
| 545 | unsigned long targ; |
| 546 | int is_branch, is_cond, i; |
| 547 | |
| 548 | targ = regs->cp0_epc; |
| 549 | insn.word = *(unsigned int *)targ; |
| 550 | is_branch = is_cond = 0; |
| 551 | |
| 552 | switch (insn.i_format.opcode) { |
| 553 | /* |
| 554 | * jr and jalr are in r_format format. |
| 555 | */ |
| 556 | case spec_op: |
| 557 | switch (insn.r_format.func) { |
| 558 | case jalr_op: |
| 559 | case jr_op: |
| 560 | targ = *(®s->reg0 + insn.r_format.rs); |
| 561 | is_branch = 1; |
| 562 | break; |
| 563 | } |
| 564 | break; |
| 565 | |
| 566 | /* |
| 567 | * This group contains: |
| 568 | * bltz_op, bgez_op, bltzl_op, bgezl_op, |
| 569 | * bltzal_op, bgezal_op, bltzall_op, bgezall_op. |
| 570 | */ |
| 571 | case bcond_op: |
| 572 | is_branch = is_cond = 1; |
| 573 | targ += 4 + (insn.i_format.simmediate << 2); |
| 574 | break; |
| 575 | |
| 576 | /* |
| 577 | * These are unconditional and in j_format. |
| 578 | */ |
| 579 | case jal_op: |
| 580 | case j_op: |
| 581 | is_branch = 1; |
| 582 | targ += 4; |
| 583 | targ >>= 28; |
| 584 | targ <<= 28; |
| 585 | targ |= (insn.j_format.target << 2); |
| 586 | break; |
| 587 | |
| 588 | /* |
| 589 | * These are conditional. |
| 590 | */ |
| 591 | case beq_op: |
| 592 | case beql_op: |
| 593 | case bne_op: |
| 594 | case bnel_op: |
| 595 | case blez_op: |
| 596 | case blezl_op: |
| 597 | case bgtz_op: |
| 598 | case bgtzl_op: |
| 599 | case cop0_op: |
| 600 | case cop1_op: |
| 601 | case cop2_op: |
| 602 | case cop1x_op: |
| 603 | is_branch = is_cond = 1; |
| 604 | targ += 4 + (insn.i_format.simmediate << 2); |
| 605 | break; |
| 606 | } |
| 607 | |
| 608 | if (is_branch) { |
| 609 | i = 0; |
| 610 | if (is_cond && targ != (regs->cp0_epc + 8)) { |
| 611 | step_bp[i].addr = regs->cp0_epc + 8; |
| 612 | step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8); |
| 613 | *(unsigned *)(regs->cp0_epc + 8) = BP; |
| 614 | } |
| 615 | step_bp[i].addr = targ; |
| 616 | step_bp[i].val = *(unsigned *)targ; |
| 617 | *(unsigned *)targ = BP; |
| 618 | } else { |
| 619 | step_bp[0].addr = regs->cp0_epc + 4; |
| 620 | step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4); |
| 621 | *(unsigned *)(regs->cp0_epc + 4) = BP; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * If asynchronously interrupted by gdb, then we need to set a breakpoint |
| 627 | * at the interrupted instruction so that we wind up stopped with a |
| 628 | * reasonable stack frame. |
| 629 | */ |
| 630 | static struct gdb_bp_save async_bp; |
| 631 | |
| 632 | /* |
| 633 | * Swap the interrupted EPC with our asynchronous breakpoint routine. |
| 634 | * This is safer than stuffing the breakpoint in-place, since no cache |
| 635 | * flushes (or resulting smp_call_functions) are required. The |
| 636 | * assumption is that only one CPU will be handling asynchronous bp's, |
| 637 | * and only one can be active at a time. |
| 638 | */ |
| 639 | extern spinlock_t smp_call_lock; |
| 640 | void set_async_breakpoint(unsigned long *epc) |
| 641 | { |
| 642 | /* skip breaking into userland */ |
| 643 | if ((*epc & 0x80000000) == 0) |
| 644 | return; |
| 645 | |
| 646 | /* avoid deadlock if someone is make IPC */ |
| 647 | if (spin_is_locked(&smp_call_lock)) |
| 648 | return; |
| 649 | |
| 650 | async_bp.addr = *epc; |
| 651 | *epc = (unsigned long)async_breakpoint; |
| 652 | } |
| 653 | |
| 654 | void kgdb_wait(void *arg) |
| 655 | { |
| 656 | unsigned flags; |
| 657 | int cpu = smp_processor_id(); |
| 658 | |
| 659 | local_irq_save(flags); |
| 660 | |
| 661 | spin_lock(&kgdb_cpulock[cpu]); |
| 662 | spin_unlock(&kgdb_cpulock[cpu]); |
| 663 | |
| 664 | local_irq_restore(flags); |
| 665 | } |
| 666 | |
| 667 | |
| 668 | /* |
| 669 | * This function does all command processing for interfacing to gdb. It |
| 670 | * returns 1 if you should skip the instruction at the trap address, 0 |
| 671 | * otherwise. |
| 672 | */ |
| 673 | void handle_exception (struct gdb_regs *regs) |
| 674 | { |
| 675 | int trap; /* Trap type */ |
| 676 | int sigval; |
| 677 | long addr; |
| 678 | int length; |
| 679 | char *ptr; |
| 680 | unsigned long *stack; |
| 681 | int i; |
| 682 | int bflag = 0; |
| 683 | |
| 684 | kgdb_started = 1; |
| 685 | |
| 686 | /* |
| 687 | * acquire the big kgdb spinlock |
| 688 | */ |
| 689 | if (!spin_trylock(&kgdb_lock)) { |
| 690 | /* |
| 691 | * some other CPU has the lock, we should go back to |
| 692 | * receive the gdb_wait IPC |
| 693 | */ |
| 694 | return; |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * If we're in async_breakpoint(), restore the real EPC from |
| 699 | * the breakpoint. |
| 700 | */ |
| 701 | if (regs->cp0_epc == (unsigned long)async_breakinst) { |
| 702 | regs->cp0_epc = async_bp.addr; |
| 703 | async_bp.addr = 0; |
| 704 | } |
| 705 | |
| 706 | /* |
| 707 | * acquire the CPU spinlocks |
| 708 | */ |
| 709 | for (i = num_online_cpus()-1; i >= 0; i--) |
| 710 | if (spin_trylock(&kgdb_cpulock[i]) == 0) |
| 711 | panic("kgdb: couldn't get cpulock %d\n", i); |
| 712 | |
| 713 | /* |
| 714 | * force other cpus to enter kgdb |
| 715 | */ |
| 716 | smp_call_function(kgdb_wait, NULL, 0, 0); |
| 717 | |
| 718 | /* |
| 719 | * If we're in breakpoint() increment the PC |
| 720 | */ |
| 721 | trap = (regs->cp0_cause & 0x7c) >> 2; |
| 722 | if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst) |
| 723 | regs->cp0_epc += 4; |
| 724 | |
| 725 | /* |
| 726 | * If we were single_stepping, restore the opcodes hoisted |
| 727 | * for the breakpoint[s]. |
| 728 | */ |
| 729 | if (step_bp[0].addr) { |
| 730 | *(unsigned *)step_bp[0].addr = step_bp[0].val; |
| 731 | step_bp[0].addr = 0; |
| 732 | |
| 733 | if (step_bp[1].addr) { |
| 734 | *(unsigned *)step_bp[1].addr = step_bp[1].val; |
| 735 | step_bp[1].addr = 0; |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | stack = (long *)regs->reg29; /* stack ptr */ |
| 740 | sigval = computeSignal(trap); |
| 741 | |
| 742 | /* |
| 743 | * reply to host that an exception has occurred |
| 744 | */ |
| 745 | ptr = output_buffer; |
| 746 | |
| 747 | /* |
| 748 | * Send trap type (converted to signal) |
| 749 | */ |
| 750 | *ptr++ = 'T'; |
| 751 | *ptr++ = hexchars[sigval >> 4]; |
| 752 | *ptr++ = hexchars[sigval & 0xf]; |
| 753 | |
| 754 | /* |
| 755 | * Send Error PC |
| 756 | */ |
| 757 | *ptr++ = hexchars[REG_EPC >> 4]; |
| 758 | *ptr++ = hexchars[REG_EPC & 0xf]; |
| 759 | *ptr++ = ':'; |
| 760 | ptr = mem2hex((char *)®s->cp0_epc, ptr, sizeof(long), 0); |
| 761 | *ptr++ = ';'; |
| 762 | |
| 763 | /* |
| 764 | * Send frame pointer |
| 765 | */ |
| 766 | *ptr++ = hexchars[REG_FP >> 4]; |
| 767 | *ptr++ = hexchars[REG_FP & 0xf]; |
| 768 | *ptr++ = ':'; |
| 769 | ptr = mem2hex((char *)®s->reg30, ptr, sizeof(long), 0); |
| 770 | *ptr++ = ';'; |
| 771 | |
| 772 | /* |
| 773 | * Send stack pointer |
| 774 | */ |
| 775 | *ptr++ = hexchars[REG_SP >> 4]; |
| 776 | *ptr++ = hexchars[REG_SP & 0xf]; |
| 777 | *ptr++ = ':'; |
| 778 | ptr = mem2hex((char *)®s->reg29, ptr, sizeof(long), 0); |
| 779 | *ptr++ = ';'; |
| 780 | |
| 781 | *ptr++ = 0; |
| 782 | putpacket(output_buffer); /* send it off... */ |
| 783 | |
| 784 | /* |
| 785 | * Wait for input from remote GDB |
| 786 | */ |
| 787 | while (1) { |
| 788 | output_buffer[0] = 0; |
| 789 | getpacket(input_buffer); |
| 790 | |
| 791 | switch (input_buffer[0]) |
| 792 | { |
| 793 | case '?': |
| 794 | output_buffer[0] = 'S'; |
| 795 | output_buffer[1] = hexchars[sigval >> 4]; |
| 796 | output_buffer[2] = hexchars[sigval & 0xf]; |
| 797 | output_buffer[3] = 0; |
| 798 | break; |
| 799 | |
| 800 | /* |
| 801 | * Detach debugger; let CPU run |
| 802 | */ |
| 803 | case 'D': |
| 804 | putpacket(output_buffer); |
| 805 | goto finish_kgdb; |
| 806 | break; |
| 807 | |
| 808 | case 'd': |
| 809 | /* toggle debug flag */ |
| 810 | break; |
| 811 | |
| 812 | /* |
| 813 | * Return the value of the CPU registers |
| 814 | */ |
| 815 | case 'g': |
| 816 | ptr = output_buffer; |
| 817 | ptr = mem2hex((char *)®s->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */ |
| 818 | ptr = mem2hex((char *)®s->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */ |
| 819 | ptr = mem2hex((char *)®s->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */ |
| 820 | ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */ |
| 821 | ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */ |
| 822 | ptr = mem2hex((char *)®s->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */ |
| 823 | break; |
| 824 | |
| 825 | /* |
| 826 | * set the value of the CPU registers - return OK |
| 827 | */ |
| 828 | case 'G': |
| 829 | { |
| 830 | ptr = &input_buffer[1]; |
| 831 | hex2mem(ptr, (char *)®s->reg0, 32*sizeof(long), 0, 0); |
| 832 | ptr += 32*(2*sizeof(long)); |
| 833 | hex2mem(ptr, (char *)®s->cp0_status, 6*sizeof(long), 0, 0); |
| 834 | ptr += 6*(2*sizeof(long)); |
| 835 | hex2mem(ptr, (char *)®s->fpr0, 32*sizeof(long), 0, 0); |
| 836 | ptr += 32*(2*sizeof(long)); |
| 837 | hex2mem(ptr, (char *)®s->cp1_fsr, 2*sizeof(long), 0, 0); |
| 838 | ptr += 2*(2*sizeof(long)); |
| 839 | hex2mem(ptr, (char *)®s->frame_ptr, 2*sizeof(long), 0, 0); |
| 840 | ptr += 2*(2*sizeof(long)); |
| 841 | hex2mem(ptr, (char *)®s->cp0_index, 16*sizeof(long), 0, 0); |
| 842 | strcpy(output_buffer,"OK"); |
| 843 | } |
| 844 | break; |
| 845 | |
| 846 | /* |
| 847 | * mAA..AA,LLLL Read LLLL bytes at address AA..AA |
| 848 | */ |
| 849 | case 'm': |
| 850 | ptr = &input_buffer[1]; |
| 851 | |
| 852 | if (hexToLong(&ptr, &addr) |
| 853 | && *ptr++ == ',' |
| 854 | && hexToInt(&ptr, &length)) { |
| 855 | if (mem2hex((char *)addr, output_buffer, length, 1)) |
| 856 | break; |
| 857 | strcpy (output_buffer, "E03"); |
| 858 | } else |
| 859 | strcpy(output_buffer,"E01"); |
| 860 | break; |
| 861 | |
| 862 | /* |
| 863 | * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA |
| 864 | */ |
| 865 | case 'X': |
| 866 | bflag = 1; |
| 867 | /* fall through */ |
| 868 | |
| 869 | /* |
| 870 | * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK |
| 871 | */ |
| 872 | case 'M': |
| 873 | ptr = &input_buffer[1]; |
| 874 | |
| 875 | if (hexToLong(&ptr, &addr) |
| 876 | && *ptr++ == ',' |
| 877 | && hexToInt(&ptr, &length) |
| 878 | && *ptr++ == ':') { |
| 879 | if (hex2mem(ptr, (char *)addr, length, bflag, 1)) |
| 880 | strcpy(output_buffer, "OK"); |
| 881 | else |
| 882 | strcpy(output_buffer, "E03"); |
| 883 | } |
| 884 | else |
| 885 | strcpy(output_buffer, "E02"); |
| 886 | break; |
| 887 | |
| 888 | /* |
| 889 | * cAA..AA Continue at address AA..AA(optional) |
| 890 | */ |
| 891 | case 'c': |
| 892 | /* try to read optional parameter, pc unchanged if no parm */ |
| 893 | |
| 894 | ptr = &input_buffer[1]; |
| 895 | if (hexToLong(&ptr, &addr)) |
| 896 | regs->cp0_epc = addr; |
| 897 | |
| 898 | goto exit_kgdb_exception; |
| 899 | break; |
| 900 | |
| 901 | /* |
| 902 | * kill the program; let us try to restart the machine |
| 903 | * Reset the whole machine. |
| 904 | */ |
| 905 | case 'k': |
| 906 | case 'r': |
| 907 | machine_restart("kgdb restarts machine"); |
| 908 | break; |
| 909 | |
| 910 | /* |
| 911 | * Step to next instruction |
| 912 | */ |
| 913 | case 's': |
| 914 | /* |
| 915 | * There is no single step insn in the MIPS ISA, so we |
| 916 | * use breakpoints and continue, instead. |
| 917 | */ |
| 918 | single_step(regs); |
| 919 | goto exit_kgdb_exception; |
| 920 | /* NOTREACHED */ |
| 921 | break; |
| 922 | |
| 923 | /* |
| 924 | * Set baud rate (bBB) |
| 925 | * FIXME: Needs to be written |
| 926 | */ |
| 927 | case 'b': |
| 928 | { |
| 929 | #if 0 |
| 930 | int baudrate; |
| 931 | extern void set_timer_3(); |
| 932 | |
| 933 | ptr = &input_buffer[1]; |
| 934 | if (!hexToInt(&ptr, &baudrate)) |
| 935 | { |
| 936 | strcpy(output_buffer,"B01"); |
| 937 | break; |
| 938 | } |
| 939 | |
| 940 | /* Convert baud rate to uart clock divider */ |
| 941 | |
| 942 | switch (baudrate) |
| 943 | { |
| 944 | case 38400: |
| 945 | baudrate = 16; |
| 946 | break; |
| 947 | case 19200: |
| 948 | baudrate = 33; |
| 949 | break; |
| 950 | case 9600: |
| 951 | baudrate = 65; |
| 952 | break; |
| 953 | default: |
| 954 | baudrate = 0; |
| 955 | strcpy(output_buffer,"B02"); |
| 956 | goto x1; |
| 957 | } |
| 958 | |
| 959 | if (baudrate) { |
| 960 | putpacket("OK"); /* Ack before changing speed */ |
| 961 | set_timer_3(baudrate); /* Set it */ |
| 962 | } |
| 963 | #endif |
| 964 | } |
| 965 | break; |
| 966 | |
| 967 | } /* switch */ |
| 968 | |
| 969 | /* |
| 970 | * reply to the request |
| 971 | */ |
| 972 | |
| 973 | putpacket(output_buffer); |
| 974 | |
| 975 | } /* while */ |
| 976 | |
| 977 | return; |
| 978 | |
| 979 | finish_kgdb: |
| 980 | restore_debug_traps(); |
| 981 | |
| 982 | exit_kgdb_exception: |
| 983 | /* release locks so other CPUs can go */ |
| 984 | for (i = num_online_cpus()-1; i >= 0; i--) |
| 985 | spin_unlock(&kgdb_cpulock[i]); |
| 986 | spin_unlock(&kgdb_lock); |
| 987 | |
| 988 | __flush_cache_all(); |
| 989 | return; |
| 990 | } |
| 991 | |
| 992 | /* |
| 993 | * This function will generate a breakpoint exception. It is used at the |
| 994 | * beginning of a program to sync up with a debugger and can be used |
| 995 | * otherwise as a quick means to stop program execution and "break" into |
| 996 | * the debugger. |
| 997 | */ |
| 998 | void breakpoint(void) |
| 999 | { |
| 1000 | if (!initialized) |
| 1001 | return; |
| 1002 | |
| 1003 | __asm__ __volatile__( |
| 1004 | ".globl breakinst\n\t" |
| 1005 | ".set\tnoreorder\n\t" |
| 1006 | "nop\n" |
| 1007 | "breakinst:\tbreak\n\t" |
| 1008 | "nop\n\t" |
| 1009 | ".set\treorder" |
| 1010 | ); |
| 1011 | } |
| 1012 | |
| 1013 | /* Nothing but the break; don't pollute any registers */ |
| 1014 | void async_breakpoint(void) |
| 1015 | { |
| 1016 | __asm__ __volatile__( |
| 1017 | ".globl async_breakinst\n\t" |
| 1018 | ".set\tnoreorder\n\t" |
| 1019 | "nop\n" |
| 1020 | "async_breakinst:\tbreak\n\t" |
| 1021 | "nop\n\t" |
| 1022 | ".set\treorder" |
| 1023 | ); |
| 1024 | } |
| 1025 | |
| 1026 | void adel(void) |
| 1027 | { |
| 1028 | __asm__ __volatile__( |
| 1029 | ".globl\tadel\n\t" |
| 1030 | "lui\t$8,0x8000\n\t" |
| 1031 | "lw\t$9,1($8)\n\t" |
| 1032 | ); |
| 1033 | } |
| 1034 | |
| 1035 | /* |
| 1036 | * malloc is needed by gdb client in "call func()", even a private one |
| 1037 | * will make gdb happy |
| 1038 | */ |
| 1039 | static void *malloc(size_t size) |
| 1040 | { |
| 1041 | return kmalloc(size, GFP_ATOMIC); |
| 1042 | } |
| 1043 | |
| 1044 | static void free(void *where) |
| 1045 | { |
| 1046 | kfree(where); |
| 1047 | } |
| 1048 | |
| 1049 | #ifdef CONFIG_GDB_CONSOLE |
| 1050 | |
| 1051 | void gdb_putsn(const char *str, int l) |
| 1052 | { |
| 1053 | char outbuf[18]; |
| 1054 | |
| 1055 | if (!kgdb_started) |
| 1056 | return; |
| 1057 | |
| 1058 | outbuf[0]='O'; |
| 1059 | |
| 1060 | while(l) { |
| 1061 | int i = (l>8)?8:l; |
| 1062 | mem2hex((char *)str, &outbuf[1], i, 0); |
| 1063 | outbuf[(i*2)+1]=0; |
| 1064 | putpacket(outbuf); |
| 1065 | str += i; |
| 1066 | l -= i; |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | static void gdb_console_write(struct console *con, const char *s, unsigned n) |
| 1071 | { |
| 1072 | gdb_putsn(s, n); |
| 1073 | } |
| 1074 | |
| 1075 | static struct console gdb_console = { |
| 1076 | .name = "gdb", |
| 1077 | .write = gdb_console_write, |
| 1078 | .flags = CON_PRINTBUFFER, |
| 1079 | .index = -1 |
| 1080 | }; |
| 1081 | |
| 1082 | static int __init register_gdb_console(void) |
| 1083 | { |
| 1084 | register_console(&gdb_console); |
| 1085 | |
| 1086 | return 0; |
| 1087 | } |
| 1088 | |
| 1089 | console_initcall(register_gdb_console); |
| 1090 | |
| 1091 | #endif |