Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Real Time Clock interface for PPC64. |
| 3 | * |
| 4 | * Based on rtc.c by Paul Gortmaker |
| 5 | * |
| 6 | * This driver allows use of the real time clock |
| 7 | * from user space. It exports the /dev/rtc |
| 8 | * interface supporting various ioctl() and also the |
| 9 | * /proc/driver/rtc pseudo-file for status information. |
| 10 | * |
| 11 | * Interface does not support RTC interrupts nor an alarm. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or |
| 14 | * modify it under the terms of the GNU General Public License |
| 15 | * as published by the Free Software Foundation; either version |
| 16 | * 2 of the License, or (at your option) any later version. |
| 17 | * |
| 18 | * 1.0 Mike Corrigan: IBM iSeries rtc support |
| 19 | * 1.1 Dave Engebretsen: IBM pSeries rtc support |
| 20 | */ |
| 21 | |
| 22 | #define RTC_VERSION "1.1" |
| 23 | |
| 24 | #include <linux/config.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/types.h> |
| 28 | #include <linux/miscdevice.h> |
| 29 | #include <linux/ioport.h> |
| 30 | #include <linux/fcntl.h> |
| 31 | #include <linux/mc146818rtc.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/poll.h> |
| 34 | #include <linux/proc_fs.h> |
| 35 | #include <linux/spinlock.h> |
| 36 | #include <linux/bcd.h> |
| 37 | #include <linux/interrupt.h> |
| 38 | |
| 39 | #include <asm/io.h> |
| 40 | #include <asm/uaccess.h> |
| 41 | #include <asm/system.h> |
| 42 | #include <asm/time.h> |
| 43 | #include <asm/rtas.h> |
| 44 | |
| 45 | #include <asm/iSeries/LparData.h> |
| 46 | #include <asm/iSeries/mf.h> |
| 47 | #include <asm/machdep.h> |
| 48 | #include <asm/iSeries/ItSpCommArea.h> |
| 49 | |
| 50 | extern int piranha_simulator; |
| 51 | |
| 52 | /* |
| 53 | * We sponge a minor off of the misc major. No need slurping |
| 54 | * up another valuable major dev number for this. If you add |
| 55 | * an ioctl, make sure you don't conflict with SPARC's RTC |
| 56 | * ioctls. |
| 57 | */ |
| 58 | |
| 59 | static ssize_t rtc_read(struct file *file, char __user *buf, |
| 60 | size_t count, loff_t *ppos); |
| 61 | |
| 62 | static int rtc_ioctl(struct inode *inode, struct file *file, |
| 63 | unsigned int cmd, unsigned long arg); |
| 64 | |
| 65 | static int rtc_read_proc(char *page, char **start, off_t off, |
| 66 | int count, int *eof, void *data); |
| 67 | |
| 68 | /* |
| 69 | * If this driver ever becomes modularised, it will be really nice |
| 70 | * to make the epoch retain its value across module reload... |
| 71 | */ |
| 72 | |
| 73 | static unsigned long epoch = 1900; /* year corresponding to 0x00 */ |
| 74 | |
| 75 | static const unsigned char days_in_mo[] = |
| 76 | {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
| 77 | |
| 78 | /* |
| 79 | * Now all the various file operations that we export. |
| 80 | */ |
| 81 | |
| 82 | static ssize_t rtc_read(struct file *file, char __user *buf, |
| 83 | size_t count, loff_t *ppos) |
| 84 | { |
| 85 | return -EIO; |
| 86 | } |
| 87 | |
| 88 | static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, |
| 89 | unsigned long arg) |
| 90 | { |
| 91 | struct rtc_time wtime; |
| 92 | |
| 93 | switch (cmd) { |
| 94 | case RTC_RD_TIME: /* Read the time/date from RTC */ |
| 95 | { |
| 96 | memset(&wtime, 0, sizeof(struct rtc_time)); |
| 97 | ppc_md.get_rtc_time(&wtime); |
| 98 | break; |
| 99 | } |
| 100 | case RTC_SET_TIME: /* Set the RTC */ |
| 101 | { |
| 102 | struct rtc_time rtc_tm; |
| 103 | unsigned char mon, day, hrs, min, sec, leap_yr; |
| 104 | unsigned int yrs; |
| 105 | |
| 106 | if (!capable(CAP_SYS_TIME)) |
| 107 | return -EACCES; |
| 108 | |
| 109 | if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, |
| 110 | sizeof(struct rtc_time))) |
| 111 | return -EFAULT; |
| 112 | |
| 113 | yrs = rtc_tm.tm_year; |
| 114 | mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ |
| 115 | day = rtc_tm.tm_mday; |
| 116 | hrs = rtc_tm.tm_hour; |
| 117 | min = rtc_tm.tm_min; |
| 118 | sec = rtc_tm.tm_sec; |
| 119 | |
| 120 | if (yrs < 70) |
| 121 | return -EINVAL; |
| 122 | |
| 123 | leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); |
| 124 | |
| 125 | if ((mon > 12) || (day == 0)) |
| 126 | return -EINVAL; |
| 127 | |
| 128 | if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) |
| 129 | return -EINVAL; |
| 130 | |
| 131 | if ((hrs >= 24) || (min >= 60) || (sec >= 60)) |
| 132 | return -EINVAL; |
| 133 | |
| 134 | if ( yrs > 169 ) |
| 135 | return -EINVAL; |
| 136 | |
| 137 | ppc_md.set_rtc_time(&rtc_tm); |
| 138 | |
| 139 | return 0; |
| 140 | } |
| 141 | case RTC_EPOCH_READ: /* Read the epoch. */ |
| 142 | { |
| 143 | return put_user (epoch, (unsigned long __user *)arg); |
| 144 | } |
| 145 | case RTC_EPOCH_SET: /* Set the epoch. */ |
| 146 | { |
| 147 | /* |
| 148 | * There were no RTC clocks before 1900. |
| 149 | */ |
| 150 | if (arg < 1900) |
| 151 | return -EINVAL; |
| 152 | |
| 153 | if (!capable(CAP_SYS_TIME)) |
| 154 | return -EACCES; |
| 155 | |
| 156 | epoch = arg; |
| 157 | return 0; |
| 158 | } |
| 159 | default: |
| 160 | return -EINVAL; |
| 161 | } |
| 162 | return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; |
| 163 | } |
| 164 | |
| 165 | static int rtc_open(struct inode *inode, struct file *file) |
| 166 | { |
| 167 | nonseekable_open(inode, file); |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | static int rtc_release(struct inode *inode, struct file *file) |
| 172 | { |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * The various file operations we support. |
| 178 | */ |
| 179 | static struct file_operations rtc_fops = { |
| 180 | .owner = THIS_MODULE, |
| 181 | .llseek = no_llseek, |
| 182 | .read = rtc_read, |
| 183 | .ioctl = rtc_ioctl, |
| 184 | .open = rtc_open, |
| 185 | .release = rtc_release, |
| 186 | }; |
| 187 | |
| 188 | static struct miscdevice rtc_dev = { |
| 189 | .minor = RTC_MINOR, |
| 190 | .name = "rtc", |
| 191 | .fops = &rtc_fops |
| 192 | }; |
| 193 | |
| 194 | static int __init rtc_init(void) |
| 195 | { |
| 196 | int retval; |
| 197 | |
| 198 | retval = misc_register(&rtc_dev); |
| 199 | if(retval < 0) |
| 200 | return retval; |
| 201 | |
| 202 | #ifdef CONFIG_PROC_FS |
| 203 | if (create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, NULL) |
| 204 | == NULL) { |
| 205 | misc_deregister(&rtc_dev); |
| 206 | return -ENOMEM; |
| 207 | } |
| 208 | #endif |
| 209 | |
| 210 | printk(KERN_INFO "i/pSeries Real Time Clock Driver v" RTC_VERSION "\n"); |
| 211 | |
| 212 | return 0; |
| 213 | } |
| 214 | |
| 215 | static void __exit rtc_exit (void) |
| 216 | { |
| 217 | remove_proc_entry ("driver/rtc", NULL); |
| 218 | misc_deregister(&rtc_dev); |
| 219 | } |
| 220 | |
| 221 | module_init(rtc_init); |
| 222 | module_exit(rtc_exit); |
| 223 | |
| 224 | /* |
| 225 | * Info exported via "/proc/driver/rtc". |
| 226 | */ |
| 227 | |
| 228 | static int rtc_proc_output (char *buf) |
| 229 | { |
| 230 | |
| 231 | char *p; |
| 232 | struct rtc_time tm; |
| 233 | |
| 234 | p = buf; |
| 235 | |
| 236 | ppc_md.get_rtc_time(&tm); |
| 237 | |
| 238 | /* |
| 239 | * There is no way to tell if the luser has the RTC set for local |
| 240 | * time or for Universal Standard Time (GMT). Probably local though. |
| 241 | */ |
| 242 | p += sprintf(p, |
| 243 | "rtc_time\t: %02d:%02d:%02d\n" |
| 244 | "rtc_date\t: %04d-%02d-%02d\n" |
| 245 | "rtc_epoch\t: %04lu\n", |
| 246 | tm.tm_hour, tm.tm_min, tm.tm_sec, |
| 247 | tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); |
| 248 | |
| 249 | p += sprintf(p, |
| 250 | "DST_enable\t: no\n" |
| 251 | "BCD\t\t: yes\n" |
| 252 | "24hr\t\t: yes\n" ); |
| 253 | |
| 254 | return p - buf; |
| 255 | } |
| 256 | |
| 257 | static int rtc_read_proc(char *page, char **start, off_t off, |
| 258 | int count, int *eof, void *data) |
| 259 | { |
| 260 | int len = rtc_proc_output (page); |
| 261 | if (len <= off+count) *eof = 1; |
| 262 | *start = page + off; |
| 263 | len -= off; |
| 264 | if (len>count) len = count; |
| 265 | if (len<0) len = 0; |
| 266 | return len; |
| 267 | } |
| 268 | |
| 269 | #ifdef CONFIG_PPC_ISERIES |
| 270 | /* |
| 271 | * Get the RTC from the virtual service processor |
| 272 | * This requires flowing LpEvents to the primary partition |
| 273 | */ |
| 274 | void iSeries_get_rtc_time(struct rtc_time *rtc_tm) |
| 275 | { |
| 276 | if (piranha_simulator) |
| 277 | return; |
| 278 | |
| 279 | mf_get_rtc(rtc_tm); |
| 280 | rtc_tm->tm_mon--; |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Set the RTC in the virtual service processor |
| 285 | * This requires flowing LpEvents to the primary partition |
| 286 | */ |
| 287 | int iSeries_set_rtc_time(struct rtc_time *tm) |
| 288 | { |
| 289 | mf_set_rtc(tm); |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | void iSeries_get_boot_time(struct rtc_time *tm) |
| 294 | { |
| 295 | unsigned long time; |
| 296 | static unsigned long lastsec = 1; |
| 297 | |
| 298 | u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart)); |
| 299 | u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1); |
| 300 | int year = 1970; |
| 301 | int year1 = ( dataWord1 >> 24 ) & 0x000000FF; |
| 302 | int year2 = ( dataWord1 >> 16 ) & 0x000000FF; |
| 303 | int sec = ( dataWord1 >> 8 ) & 0x000000FF; |
| 304 | int min = dataWord1 & 0x000000FF; |
| 305 | int hour = ( dataWord2 >> 24 ) & 0x000000FF; |
| 306 | int day = ( dataWord2 >> 8 ) & 0x000000FF; |
| 307 | int mon = dataWord2 & 0x000000FF; |
| 308 | |
| 309 | if ( piranha_simulator ) |
| 310 | return; |
| 311 | |
| 312 | BCD_TO_BIN(sec); |
| 313 | BCD_TO_BIN(min); |
| 314 | BCD_TO_BIN(hour); |
| 315 | BCD_TO_BIN(day); |
| 316 | BCD_TO_BIN(mon); |
| 317 | BCD_TO_BIN(year1); |
| 318 | BCD_TO_BIN(year2); |
| 319 | year = year1 * 100 + year2; |
| 320 | |
| 321 | time = mktime(year, mon, day, hour, min, sec); |
| 322 | time += ( jiffies / HZ ); |
| 323 | |
| 324 | /* Now THIS is a nasty hack! |
| 325 | * It ensures that the first two calls get different answers. |
| 326 | * That way the loop in init_time (time.c) will not think |
| 327 | * the clock is stuck. |
| 328 | */ |
| 329 | if ( lastsec ) { |
| 330 | time -= lastsec; |
| 331 | --lastsec; |
| 332 | } |
| 333 | |
| 334 | to_tm(time, tm); |
| 335 | tm->tm_year -= 1900; |
| 336 | tm->tm_mon -= 1; |
| 337 | } |
| 338 | #endif |
| 339 | |
| 340 | #ifdef CONFIG_PPC_RTAS |
| 341 | #define MAX_RTC_WAIT 5000 /* 5 sec */ |
| 342 | #define RTAS_CLOCK_BUSY (-2) |
| 343 | void pSeries_get_boot_time(struct rtc_time *rtc_tm) |
| 344 | { |
| 345 | int ret[8]; |
| 346 | int error, wait_time; |
| 347 | unsigned long max_wait_tb; |
| 348 | |
| 349 | max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; |
| 350 | do { |
| 351 | error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); |
| 352 | if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { |
| 353 | wait_time = rtas_extended_busy_delay_time(error); |
| 354 | /* This is boot time so we spin. */ |
| 355 | udelay(wait_time*1000); |
| 356 | error = RTAS_CLOCK_BUSY; |
| 357 | } |
| 358 | } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); |
| 359 | |
| 360 | if (error != 0 && printk_ratelimit()) { |
| 361 | printk(KERN_WARNING "error: reading the clock failed (%d)\n", |
| 362 | error); |
| 363 | return; |
| 364 | } |
| 365 | |
| 366 | rtc_tm->tm_sec = ret[5]; |
| 367 | rtc_tm->tm_min = ret[4]; |
| 368 | rtc_tm->tm_hour = ret[3]; |
| 369 | rtc_tm->tm_mday = ret[2]; |
| 370 | rtc_tm->tm_mon = ret[1] - 1; |
| 371 | rtc_tm->tm_year = ret[0] - 1900; |
| 372 | } |
| 373 | |
| 374 | /* NOTE: get_rtc_time will get an error if executed in interrupt context |
| 375 | * and if a delay is needed to read the clock. In this case we just |
| 376 | * silently return without updating rtc_tm. |
| 377 | */ |
| 378 | void pSeries_get_rtc_time(struct rtc_time *rtc_tm) |
| 379 | { |
| 380 | int ret[8]; |
| 381 | int error, wait_time; |
| 382 | unsigned long max_wait_tb; |
| 383 | |
| 384 | max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; |
| 385 | do { |
| 386 | error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); |
| 387 | if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { |
| 388 | if (in_interrupt() && printk_ratelimit()) { |
| 389 | printk(KERN_WARNING "error: reading clock would delay interrupt\n"); |
| 390 | return; /* delay not allowed */ |
| 391 | } |
| 392 | wait_time = rtas_extended_busy_delay_time(error); |
| 393 | set_current_state(TASK_INTERRUPTIBLE); |
| 394 | schedule_timeout(wait_time); |
| 395 | error = RTAS_CLOCK_BUSY; |
| 396 | } |
| 397 | } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); |
| 398 | |
| 399 | if (error != 0 && printk_ratelimit()) { |
| 400 | printk(KERN_WARNING "error: reading the clock failed (%d)\n", |
| 401 | error); |
| 402 | return; |
| 403 | } |
| 404 | |
| 405 | rtc_tm->tm_sec = ret[5]; |
| 406 | rtc_tm->tm_min = ret[4]; |
| 407 | rtc_tm->tm_hour = ret[3]; |
| 408 | rtc_tm->tm_mday = ret[2]; |
| 409 | rtc_tm->tm_mon = ret[1] - 1; |
| 410 | rtc_tm->tm_year = ret[0] - 1900; |
| 411 | } |
| 412 | |
| 413 | int pSeries_set_rtc_time(struct rtc_time *tm) |
| 414 | { |
| 415 | int error, wait_time; |
| 416 | unsigned long max_wait_tb; |
| 417 | |
| 418 | max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; |
| 419 | do { |
| 420 | error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, |
| 421 | tm->tm_year + 1900, tm->tm_mon + 1, |
| 422 | tm->tm_mday, tm->tm_hour, tm->tm_min, |
| 423 | tm->tm_sec, 0); |
| 424 | if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { |
| 425 | if (in_interrupt()) |
| 426 | return 1; /* probably decrementer */ |
| 427 | wait_time = rtas_extended_busy_delay_time(error); |
| 428 | set_current_state(TASK_INTERRUPTIBLE); |
| 429 | schedule_timeout(wait_time); |
| 430 | error = RTAS_CLOCK_BUSY; |
| 431 | } |
| 432 | } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); |
| 433 | |
| 434 | if (error != 0 && printk_ratelimit()) |
| 435 | printk(KERN_WARNING "error: setting the clock failed (%d)\n", |
| 436 | error); |
| 437 | |
| 438 | return 0; |
| 439 | } |
| 440 | #endif |