Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/x86-64/kernel/time.c |
| 3 | * |
| 4 | * "High Precision Event Timer" based timekeeping. |
| 5 | * |
| 6 | * Copyright (c) 1991,1992,1995 Linus Torvalds |
| 7 | * Copyright (c) 1994 Alan Modra |
| 8 | * Copyright (c) 1995 Markus Kuhn |
| 9 | * Copyright (c) 1996 Ingo Molnar |
| 10 | * Copyright (c) 1998 Andrea Arcangeli |
| 11 | * Copyright (c) 2002 Vojtech Pavlik |
| 12 | * Copyright (c) 2003 Andi Kleen |
| 13 | * RTC support code taken from arch/i386/kernel/timers/time_hpet.c |
| 14 | */ |
| 15 | |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/sched.h> |
| 18 | #include <linux/interrupt.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/mc146818rtc.h> |
| 21 | #include <linux/irq.h> |
| 22 | #include <linux/time.h> |
| 23 | #include <linux/ioport.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/device.h> |
| 26 | #include <linux/sysdev.h> |
| 27 | #include <linux/bcd.h> |
| 28 | #include <linux/kallsyms.h> |
| 29 | #include <asm/8253pit.h> |
| 30 | #include <asm/pgtable.h> |
| 31 | #include <asm/vsyscall.h> |
| 32 | #include <asm/timex.h> |
| 33 | #include <asm/proto.h> |
| 34 | #include <asm/hpet.h> |
| 35 | #include <asm/sections.h> |
| 36 | #include <linux/cpufreq.h> |
| 37 | #include <linux/hpet.h> |
| 38 | #ifdef CONFIG_X86_LOCAL_APIC |
| 39 | #include <asm/apic.h> |
| 40 | #endif |
| 41 | |
| 42 | u64 jiffies_64 = INITIAL_JIFFIES; |
| 43 | |
| 44 | EXPORT_SYMBOL(jiffies_64); |
| 45 | |
| 46 | #ifdef CONFIG_CPU_FREQ |
| 47 | static void cpufreq_delayed_get(void); |
| 48 | #endif |
| 49 | extern void i8254_timer_resume(void); |
| 50 | extern int using_apic_timer; |
| 51 | |
| 52 | DEFINE_SPINLOCK(rtc_lock); |
| 53 | DEFINE_SPINLOCK(i8253_lock); |
| 54 | |
| 55 | static int nohpet __initdata = 0; |
| 56 | static int notsc __initdata = 0; |
| 57 | |
| 58 | #undef HPET_HACK_ENABLE_DANGEROUS |
| 59 | |
| 60 | unsigned int cpu_khz; /* TSC clocks / usec, not used here */ |
| 61 | static unsigned long hpet_period; /* fsecs / HPET clock */ |
| 62 | unsigned long hpet_tick; /* HPET clocks / interrupt */ |
| 63 | unsigned long vxtime_hz = PIT_TICK_RATE; |
| 64 | int report_lost_ticks; /* command line option */ |
| 65 | unsigned long long monotonic_base; |
| 66 | |
| 67 | struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */ |
| 68 | |
| 69 | volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; |
| 70 | unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES; |
| 71 | struct timespec __xtime __section_xtime; |
| 72 | struct timezone __sys_tz __section_sys_tz; |
| 73 | |
| 74 | static inline void rdtscll_sync(unsigned long *tsc) |
| 75 | { |
| 76 | #ifdef CONFIG_SMP |
| 77 | sync_core(); |
| 78 | #endif |
| 79 | rdtscll(*tsc); |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * do_gettimeoffset() returns microseconds since last timer interrupt was |
| 84 | * triggered by hardware. A memory read of HPET is slower than a register read |
| 85 | * of TSC, but much more reliable. It's also synchronized to the timer |
| 86 | * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a |
| 87 | * timer interrupt has happened already, but vxtime.trigger wasn't updated yet. |
| 88 | * This is not a problem, because jiffies hasn't updated either. They are bound |
| 89 | * together by xtime_lock. |
| 90 | */ |
| 91 | |
| 92 | static inline unsigned int do_gettimeoffset_tsc(void) |
| 93 | { |
| 94 | unsigned long t; |
| 95 | unsigned long x; |
| 96 | rdtscll_sync(&t); |
| 97 | if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */ |
| 98 | x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32; |
| 99 | return x; |
| 100 | } |
| 101 | |
| 102 | static inline unsigned int do_gettimeoffset_hpet(void) |
| 103 | { |
| 104 | return ((hpet_readl(HPET_COUNTER) - vxtime.last) * vxtime.quot) >> 32; |
| 105 | } |
| 106 | |
| 107 | unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc; |
| 108 | |
| 109 | /* |
| 110 | * This version of gettimeofday() has microsecond resolution and better than |
| 111 | * microsecond precision, as we're using at least a 10 MHz (usually 14.31818 |
| 112 | * MHz) HPET timer. |
| 113 | */ |
| 114 | |
| 115 | void do_gettimeofday(struct timeval *tv) |
| 116 | { |
| 117 | unsigned long seq, t; |
| 118 | unsigned int sec, usec; |
| 119 | |
| 120 | do { |
| 121 | seq = read_seqbegin(&xtime_lock); |
| 122 | |
| 123 | sec = xtime.tv_sec; |
| 124 | usec = xtime.tv_nsec / 1000; |
| 125 | |
| 126 | /* i386 does some correction here to keep the clock |
| 127 | monotonous even when ntpd is fixing drift. |
| 128 | But they didn't work for me, there is a non monotonic |
| 129 | clock anyways with ntp. |
| 130 | I dropped all corrections now until a real solution can |
| 131 | be found. Note when you fix it here you need to do the same |
| 132 | in arch/x86_64/kernel/vsyscall.c and export all needed |
| 133 | variables in vmlinux.lds. -AK */ |
| 134 | |
| 135 | t = (jiffies - wall_jiffies) * (1000000L / HZ) + |
| 136 | do_gettimeoffset(); |
| 137 | usec += t; |
| 138 | |
| 139 | } while (read_seqretry(&xtime_lock, seq)); |
| 140 | |
| 141 | tv->tv_sec = sec + usec / 1000000; |
| 142 | tv->tv_usec = usec % 1000000; |
| 143 | } |
| 144 | |
| 145 | EXPORT_SYMBOL(do_gettimeofday); |
| 146 | |
| 147 | /* |
| 148 | * settimeofday() first undoes the correction that gettimeofday would do |
| 149 | * on the time, and then saves it. This is ugly, but has been like this for |
| 150 | * ages already. |
| 151 | */ |
| 152 | |
| 153 | int do_settimeofday(struct timespec *tv) |
| 154 | { |
| 155 | time_t wtm_sec, sec = tv->tv_sec; |
| 156 | long wtm_nsec, nsec = tv->tv_nsec; |
| 157 | |
| 158 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| 159 | return -EINVAL; |
| 160 | |
| 161 | write_seqlock_irq(&xtime_lock); |
| 162 | |
| 163 | nsec -= do_gettimeoffset() * 1000 + |
| 164 | (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ); |
| 165 | |
| 166 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| 167 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| 168 | |
| 169 | set_normalized_timespec(&xtime, sec, nsec); |
| 170 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| 171 | |
| 172 | time_adjust = 0; /* stop active adjtime() */ |
| 173 | time_status |= STA_UNSYNC; |
| 174 | time_maxerror = NTP_PHASE_LIMIT; |
| 175 | time_esterror = NTP_PHASE_LIMIT; |
| 176 | |
| 177 | write_sequnlock_irq(&xtime_lock); |
| 178 | clock_was_set(); |
| 179 | return 0; |
| 180 | } |
| 181 | |
| 182 | EXPORT_SYMBOL(do_settimeofday); |
| 183 | |
| 184 | unsigned long profile_pc(struct pt_regs *regs) |
| 185 | { |
| 186 | unsigned long pc = instruction_pointer(regs); |
| 187 | |
| 188 | /* Assume the lock function has either no stack frame or only a single word. |
| 189 | This checks if the address on the stack looks like a kernel text address. |
| 190 | There is a small window for false hits, but in that case the tick |
| 191 | is just accounted to the spinlock function. |
| 192 | Better would be to write these functions in assembler again |
| 193 | and check exactly. */ |
| 194 | if (in_lock_functions(pc)) { |
| 195 | char *v = *(char **)regs->rsp; |
| 196 | if ((v >= _stext && v <= _etext) || |
| 197 | (v >= _sinittext && v <= _einittext) || |
| 198 | (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END)) |
| 199 | return (unsigned long)v; |
| 200 | return ((unsigned long *)regs->rsp)[1]; |
| 201 | } |
| 202 | return pc; |
| 203 | } |
| 204 | EXPORT_SYMBOL(profile_pc); |
| 205 | |
| 206 | /* |
| 207 | * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 |
| 208 | * ms after the second nowtime has started, because when nowtime is written |
| 209 | * into the registers of the CMOS clock, it will jump to the next second |
| 210 | * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data |
| 211 | * sheet for details. |
| 212 | */ |
| 213 | |
| 214 | static void set_rtc_mmss(unsigned long nowtime) |
| 215 | { |
| 216 | int real_seconds, real_minutes, cmos_minutes; |
| 217 | unsigned char control, freq_select; |
| 218 | |
| 219 | /* |
| 220 | * IRQs are disabled when we're called from the timer interrupt, |
| 221 | * no need for spin_lock_irqsave() |
| 222 | */ |
| 223 | |
| 224 | spin_lock(&rtc_lock); |
| 225 | |
| 226 | /* |
| 227 | * Tell the clock it's being set and stop it. |
| 228 | */ |
| 229 | |
| 230 | control = CMOS_READ(RTC_CONTROL); |
| 231 | CMOS_WRITE(control | RTC_SET, RTC_CONTROL); |
| 232 | |
| 233 | freq_select = CMOS_READ(RTC_FREQ_SELECT); |
| 234 | CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); |
| 235 | |
| 236 | cmos_minutes = CMOS_READ(RTC_MINUTES); |
| 237 | BCD_TO_BIN(cmos_minutes); |
| 238 | |
| 239 | /* |
| 240 | * since we're only adjusting minutes and seconds, don't interfere with hour |
| 241 | * overflow. This avoids messing with unknown time zones but requires your RTC |
| 242 | * not to be off by more than 15 minutes. Since we're calling it only when |
| 243 | * our clock is externally synchronized using NTP, this shouldn't be a problem. |
| 244 | */ |
| 245 | |
| 246 | real_seconds = nowtime % 60; |
| 247 | real_minutes = nowtime / 60; |
| 248 | if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) |
| 249 | real_minutes += 30; /* correct for half hour time zone */ |
| 250 | real_minutes %= 60; |
| 251 | |
| 252 | #if 0 |
| 253 | /* AMD 8111 is a really bad time keeper and hits this regularly. |
| 254 | It probably was an attempt to avoid screwing up DST, but ignore |
| 255 | that for now. */ |
| 256 | if (abs(real_minutes - cmos_minutes) >= 30) { |
| 257 | printk(KERN_WARNING "time.c: can't update CMOS clock " |
| 258 | "from %d to %d\n", cmos_minutes, real_minutes); |
| 259 | } else |
| 260 | #endif |
| 261 | |
| 262 | { |
| 263 | BIN_TO_BCD(real_seconds); |
| 264 | BIN_TO_BCD(real_minutes); |
| 265 | CMOS_WRITE(real_seconds, RTC_SECONDS); |
| 266 | CMOS_WRITE(real_minutes, RTC_MINUTES); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * The following flags have to be released exactly in this order, otherwise the |
| 271 | * DS12887 (popular MC146818A clone with integrated battery and quartz) will |
| 272 | * not reset the oscillator and will not update precisely 500 ms later. You |
| 273 | * won't find this mentioned in the Dallas Semiconductor data sheets, but who |
| 274 | * believes data sheets anyway ... -- Markus Kuhn |
| 275 | */ |
| 276 | |
| 277 | CMOS_WRITE(control, RTC_CONTROL); |
| 278 | CMOS_WRITE(freq_select, RTC_FREQ_SELECT); |
| 279 | |
| 280 | spin_unlock(&rtc_lock); |
| 281 | } |
| 282 | |
| 283 | |
| 284 | /* monotonic_clock(): returns # of nanoseconds passed since time_init() |
| 285 | * Note: This function is required to return accurate |
| 286 | * time even in the absence of multiple timer ticks. |
| 287 | */ |
| 288 | unsigned long long monotonic_clock(void) |
| 289 | { |
| 290 | unsigned long seq; |
| 291 | u32 last_offset, this_offset, offset; |
| 292 | unsigned long long base; |
| 293 | |
| 294 | if (vxtime.mode == VXTIME_HPET) { |
| 295 | do { |
| 296 | seq = read_seqbegin(&xtime_lock); |
| 297 | |
| 298 | last_offset = vxtime.last; |
| 299 | base = monotonic_base; |
| 300 | this_offset = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| 301 | |
| 302 | } while (read_seqretry(&xtime_lock, seq)); |
| 303 | offset = (this_offset - last_offset); |
| 304 | offset *=(NSEC_PER_SEC/HZ)/hpet_tick; |
| 305 | return base + offset; |
| 306 | }else{ |
| 307 | do { |
| 308 | seq = read_seqbegin(&xtime_lock); |
| 309 | |
| 310 | last_offset = vxtime.last_tsc; |
| 311 | base = monotonic_base; |
| 312 | } while (read_seqretry(&xtime_lock, seq)); |
| 313 | sync_core(); |
| 314 | rdtscll(this_offset); |
| 315 | offset = (this_offset - last_offset)*1000/cpu_khz; |
| 316 | return base + offset; |
| 317 | } |
| 318 | |
| 319 | |
| 320 | } |
| 321 | EXPORT_SYMBOL(monotonic_clock); |
| 322 | |
| 323 | static noinline void handle_lost_ticks(int lost, struct pt_regs *regs) |
| 324 | { |
| 325 | static long lost_count; |
| 326 | static int warned; |
| 327 | |
| 328 | if (report_lost_ticks) { |
| 329 | printk(KERN_WARNING "time.c: Lost %d timer " |
| 330 | "tick(s)! ", lost); |
| 331 | print_symbol("rip %s)\n", regs->rip); |
| 332 | } |
| 333 | |
| 334 | if (lost_count == 1000 && !warned) { |
| 335 | printk(KERN_WARNING |
| 336 | "warning: many lost ticks.\n" |
| 337 | KERN_WARNING "Your time source seems to be instable or " |
| 338 | "some driver is hogging interupts\n"); |
| 339 | print_symbol("rip %s\n", regs->rip); |
| 340 | if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) { |
| 341 | printk(KERN_WARNING "Falling back to HPET\n"); |
| 342 | vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| 343 | vxtime.mode = VXTIME_HPET; |
| 344 | do_gettimeoffset = do_gettimeoffset_hpet; |
| 345 | } |
| 346 | /* else should fall back to PIT, but code missing. */ |
| 347 | warned = 1; |
| 348 | } else |
| 349 | lost_count++; |
| 350 | |
| 351 | #ifdef CONFIG_CPU_FREQ |
| 352 | /* In some cases the CPU can change frequency without us noticing |
| 353 | (like going into thermal throttle) |
| 354 | Give cpufreq a change to catch up. */ |
| 355 | if ((lost_count+1) % 25 == 0) { |
| 356 | cpufreq_delayed_get(); |
| 357 | } |
| 358 | #endif |
| 359 | } |
| 360 | |
| 361 | static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 362 | { |
| 363 | static unsigned long rtc_update = 0; |
| 364 | unsigned long tsc; |
| 365 | int delay, offset = 0, lost = 0; |
| 366 | |
| 367 | /* |
| 368 | * Here we are in the timer irq handler. We have irqs locally disabled (so we |
| 369 | * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running |
| 370 | * on the other CPU, so we need a lock. We also need to lock the vsyscall |
| 371 | * variables, because both do_timer() and us change them -arca+vojtech |
| 372 | */ |
| 373 | |
| 374 | write_seqlock(&xtime_lock); |
| 375 | |
| 376 | if (vxtime.hpet_address) { |
| 377 | offset = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| 378 | delay = hpet_readl(HPET_COUNTER) - offset; |
| 379 | } else { |
| 380 | spin_lock(&i8253_lock); |
| 381 | outb_p(0x00, 0x43); |
| 382 | delay = inb_p(0x40); |
| 383 | delay |= inb(0x40) << 8; |
| 384 | spin_unlock(&i8253_lock); |
| 385 | delay = LATCH - 1 - delay; |
| 386 | } |
| 387 | |
| 388 | rdtscll_sync(&tsc); |
| 389 | |
| 390 | if (vxtime.mode == VXTIME_HPET) { |
| 391 | if (offset - vxtime.last > hpet_tick) { |
| 392 | lost = (offset - vxtime.last) / hpet_tick - 1; |
| 393 | } |
| 394 | |
| 395 | monotonic_base += |
| 396 | (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick; |
| 397 | |
| 398 | vxtime.last = offset; |
| 399 | } else { |
| 400 | offset = (((tsc - vxtime.last_tsc) * |
| 401 | vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ); |
| 402 | |
| 403 | if (offset < 0) |
| 404 | offset = 0; |
| 405 | |
| 406 | if (offset > (USEC_PER_SEC / HZ)) { |
| 407 | lost = offset / (USEC_PER_SEC / HZ); |
| 408 | offset %= (USEC_PER_SEC / HZ); |
| 409 | } |
| 410 | |
| 411 | monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ; |
| 412 | |
| 413 | vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot; |
| 414 | |
| 415 | if ((((tsc - vxtime.last_tsc) * |
| 416 | vxtime.tsc_quot) >> 32) < offset) |
| 417 | vxtime.last_tsc = tsc - |
| 418 | (((long) offset << 32) / vxtime.tsc_quot) - 1; |
| 419 | } |
| 420 | |
| 421 | if (lost > 0) { |
| 422 | handle_lost_ticks(lost, regs); |
| 423 | jiffies += lost; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Do the timer stuff. |
| 428 | */ |
| 429 | |
| 430 | do_timer(regs); |
| 431 | #ifndef CONFIG_SMP |
| 432 | update_process_times(user_mode(regs)); |
| 433 | #endif |
| 434 | |
| 435 | /* |
| 436 | * In the SMP case we use the local APIC timer interrupt to do the profiling, |
| 437 | * except when we simulate SMP mode on a uniprocessor system, in that case we |
| 438 | * have to call the local interrupt handler. |
| 439 | */ |
| 440 | |
| 441 | #ifndef CONFIG_X86_LOCAL_APIC |
| 442 | profile_tick(CPU_PROFILING, regs); |
| 443 | #else |
| 444 | if (!using_apic_timer) |
| 445 | smp_local_timer_interrupt(regs); |
| 446 | #endif |
| 447 | |
| 448 | /* |
| 449 | * If we have an externally synchronized Linux clock, then update CMOS clock |
| 450 | * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy |
| 451 | * closest to exactly 500 ms before the next second. If the update fails, we |
| 452 | * don't care, as it'll be updated on the next turn, and the problem (time way |
| 453 | * off) isn't likely to go away much sooner anyway. |
| 454 | */ |
| 455 | |
| 456 | if ((~time_status & STA_UNSYNC) && xtime.tv_sec > rtc_update && |
| 457 | abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) { |
| 458 | set_rtc_mmss(xtime.tv_sec); |
| 459 | rtc_update = xtime.tv_sec + 660; |
| 460 | } |
| 461 | |
| 462 | write_sequnlock(&xtime_lock); |
| 463 | |
| 464 | return IRQ_HANDLED; |
| 465 | } |
| 466 | |
| 467 | static unsigned int cyc2ns_scale; |
| 468 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ |
| 469 | |
| 470 | static inline void set_cyc2ns_scale(unsigned long cpu_mhz) |
| 471 | { |
| 472 | cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; |
| 473 | } |
| 474 | |
| 475 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| 476 | { |
| 477 | return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; |
| 478 | } |
| 479 | |
| 480 | unsigned long long sched_clock(void) |
| 481 | { |
| 482 | unsigned long a = 0; |
| 483 | |
| 484 | #if 0 |
| 485 | /* Don't do a HPET read here. Using TSC always is much faster |
| 486 | and HPET may not be mapped yet when the scheduler first runs. |
| 487 | Disadvantage is a small drift between CPUs in some configurations, |
| 488 | but that should be tolerable. */ |
| 489 | if (__vxtime.mode == VXTIME_HPET) |
| 490 | return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32; |
| 491 | #endif |
| 492 | |
| 493 | /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, |
| 494 | which means it is not completely exact and may not be monotonous between |
| 495 | CPUs. But the errors should be too small to matter for scheduling |
| 496 | purposes. */ |
| 497 | |
| 498 | rdtscll(a); |
| 499 | return cycles_2_ns(a); |
| 500 | } |
| 501 | |
| 502 | unsigned long get_cmos_time(void) |
| 503 | { |
| 504 | unsigned int timeout, year, mon, day, hour, min, sec; |
| 505 | unsigned char last, this; |
| 506 | unsigned long flags; |
| 507 | |
| 508 | /* |
| 509 | * The Linux interpretation of the CMOS clock register contents: When the |
| 510 | * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the |
| 511 | * second which has precisely just started. Waiting for this can take up to 1 |
| 512 | * second, we timeout approximately after 2.4 seconds on a machine with |
| 513 | * standard 8.3 MHz ISA bus. |
| 514 | */ |
| 515 | |
| 516 | spin_lock_irqsave(&rtc_lock, flags); |
| 517 | |
| 518 | timeout = 1000000; |
| 519 | last = this = 0; |
| 520 | |
| 521 | while (timeout && last && !this) { |
| 522 | last = this; |
| 523 | this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP; |
| 524 | timeout--; |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * Here we are safe to assume the registers won't change for a whole second, so |
| 529 | * we just go ahead and read them. |
| 530 | */ |
| 531 | |
| 532 | sec = CMOS_READ(RTC_SECONDS); |
| 533 | min = CMOS_READ(RTC_MINUTES); |
| 534 | hour = CMOS_READ(RTC_HOURS); |
| 535 | day = CMOS_READ(RTC_DAY_OF_MONTH); |
| 536 | mon = CMOS_READ(RTC_MONTH); |
| 537 | year = CMOS_READ(RTC_YEAR); |
| 538 | |
| 539 | spin_unlock_irqrestore(&rtc_lock, flags); |
| 540 | |
| 541 | /* |
| 542 | * We know that x86-64 always uses BCD format, no need to check the config |
| 543 | * register. |
| 544 | */ |
| 545 | |
| 546 | BCD_TO_BIN(sec); |
| 547 | BCD_TO_BIN(min); |
| 548 | BCD_TO_BIN(hour); |
| 549 | BCD_TO_BIN(day); |
| 550 | BCD_TO_BIN(mon); |
| 551 | BCD_TO_BIN(year); |
| 552 | |
| 553 | /* |
| 554 | * x86-64 systems only exists since 2002. |
| 555 | * This will work up to Dec 31, 2100 |
| 556 | */ |
| 557 | year += 2000; |
| 558 | |
| 559 | return mktime(year, mon, day, hour, min, sec); |
| 560 | } |
| 561 | |
| 562 | #ifdef CONFIG_CPU_FREQ |
| 563 | |
| 564 | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| 565 | changes. |
| 566 | |
| 567 | RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| 568 | not that important because current Opteron setups do not support |
| 569 | scaling on SMP anyroads. |
| 570 | |
| 571 | Should fix up last_tsc too. Currently gettimeofday in the |
| 572 | first tick after the change will be slightly wrong. */ |
| 573 | |
| 574 | #include <linux/workqueue.h> |
| 575 | |
| 576 | static unsigned int cpufreq_delayed_issched = 0; |
| 577 | static unsigned int cpufreq_init = 0; |
| 578 | static struct work_struct cpufreq_delayed_get_work; |
| 579 | |
| 580 | static void handle_cpufreq_delayed_get(void *v) |
| 581 | { |
| 582 | unsigned int cpu; |
| 583 | for_each_online_cpu(cpu) { |
| 584 | cpufreq_get(cpu); |
| 585 | } |
| 586 | cpufreq_delayed_issched = 0; |
| 587 | } |
| 588 | |
| 589 | /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries |
| 590 | * to verify the CPU frequency the timing core thinks the CPU is running |
| 591 | * at is still correct. |
| 592 | */ |
| 593 | static void cpufreq_delayed_get(void) |
| 594 | { |
| 595 | static int warned; |
| 596 | if (cpufreq_init && !cpufreq_delayed_issched) { |
| 597 | cpufreq_delayed_issched = 1; |
| 598 | if (!warned) { |
| 599 | warned = 1; |
| 600 | printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n"); |
| 601 | } |
| 602 | schedule_work(&cpufreq_delayed_get_work); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | static unsigned int ref_freq = 0; |
| 607 | static unsigned long loops_per_jiffy_ref = 0; |
| 608 | |
| 609 | static unsigned long cpu_khz_ref = 0; |
| 610 | |
| 611 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 612 | void *data) |
| 613 | { |
| 614 | struct cpufreq_freqs *freq = data; |
| 615 | unsigned long *lpj, dummy; |
| 616 | |
Andi Kleen | c29601e | 2005-04-16 15:25:05 -0700 | [diff] [blame] | 617 | if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC)) |
| 618 | return 0; |
| 619 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 620 | lpj = &dummy; |
| 621 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 622 | #ifdef CONFIG_SMP |
| 623 | lpj = &cpu_data[freq->cpu].loops_per_jiffy; |
| 624 | #else |
| 625 | lpj = &boot_cpu_data.loops_per_jiffy; |
| 626 | #endif |
| 627 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 628 | if (!ref_freq) { |
| 629 | ref_freq = freq->old; |
| 630 | loops_per_jiffy_ref = *lpj; |
| 631 | cpu_khz_ref = cpu_khz; |
| 632 | } |
| 633 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| 634 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| 635 | (val == CPUFREQ_RESUMECHANGE)) { |
| 636 | *lpj = |
| 637 | cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| 638 | |
| 639 | cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); |
| 640 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 641 | vxtime.tsc_quot = (1000L << 32) / cpu_khz; |
| 642 | } |
| 643 | |
| 644 | set_cyc2ns_scale(cpu_khz_ref / 1000); |
| 645 | |
| 646 | return 0; |
| 647 | } |
| 648 | |
| 649 | static struct notifier_block time_cpufreq_notifier_block = { |
| 650 | .notifier_call = time_cpufreq_notifier |
| 651 | }; |
| 652 | |
| 653 | static int __init cpufreq_tsc(void) |
| 654 | { |
| 655 | INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); |
| 656 | if (!cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| 657 | CPUFREQ_TRANSITION_NOTIFIER)) |
| 658 | cpufreq_init = 1; |
| 659 | return 0; |
| 660 | } |
| 661 | |
| 662 | core_initcall(cpufreq_tsc); |
| 663 | |
| 664 | #endif |
| 665 | |
| 666 | /* |
| 667 | * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing |
| 668 | * it to the HPET timer of known frequency. |
| 669 | */ |
| 670 | |
| 671 | #define TICK_COUNT 100000000 |
| 672 | |
| 673 | static unsigned int __init hpet_calibrate_tsc(void) |
| 674 | { |
| 675 | int tsc_start, hpet_start; |
| 676 | int tsc_now, hpet_now; |
| 677 | unsigned long flags; |
| 678 | |
| 679 | local_irq_save(flags); |
| 680 | local_irq_disable(); |
| 681 | |
| 682 | hpet_start = hpet_readl(HPET_COUNTER); |
| 683 | rdtscl(tsc_start); |
| 684 | |
| 685 | do { |
| 686 | local_irq_disable(); |
| 687 | hpet_now = hpet_readl(HPET_COUNTER); |
| 688 | sync_core(); |
| 689 | rdtscl(tsc_now); |
| 690 | local_irq_restore(flags); |
| 691 | } while ((tsc_now - tsc_start) < TICK_COUNT && |
| 692 | (hpet_now - hpet_start) < TICK_COUNT); |
| 693 | |
| 694 | return (tsc_now - tsc_start) * 1000000000L |
| 695 | / ((hpet_now - hpet_start) * hpet_period / 1000); |
| 696 | } |
| 697 | |
| 698 | |
| 699 | /* |
| 700 | * pit_calibrate_tsc() uses the speaker output (channel 2) of |
| 701 | * the PIT. This is better than using the timer interrupt output, |
| 702 | * because we can read the value of the speaker with just one inb(), |
| 703 | * where we need three i/o operations for the interrupt channel. |
| 704 | * We count how many ticks the TSC does in 50 ms. |
| 705 | */ |
| 706 | |
| 707 | static unsigned int __init pit_calibrate_tsc(void) |
| 708 | { |
| 709 | unsigned long start, end; |
| 710 | unsigned long flags; |
| 711 | |
| 712 | spin_lock_irqsave(&i8253_lock, flags); |
| 713 | |
| 714 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 715 | |
| 716 | outb(0xb0, 0x43); |
| 717 | outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); |
| 718 | outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); |
| 719 | rdtscll(start); |
| 720 | sync_core(); |
| 721 | while ((inb(0x61) & 0x20) == 0); |
| 722 | sync_core(); |
| 723 | rdtscll(end); |
| 724 | |
| 725 | spin_unlock_irqrestore(&i8253_lock, flags); |
| 726 | |
| 727 | return (end - start) / 50; |
| 728 | } |
| 729 | |
| 730 | #ifdef CONFIG_HPET |
| 731 | static __init int late_hpet_init(void) |
| 732 | { |
| 733 | struct hpet_data hd; |
| 734 | unsigned int ntimer; |
| 735 | |
| 736 | if (!vxtime.hpet_address) |
| 737 | return -1; |
| 738 | |
| 739 | memset(&hd, 0, sizeof (hd)); |
| 740 | |
| 741 | ntimer = hpet_readl(HPET_ID); |
| 742 | ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; |
| 743 | ntimer++; |
| 744 | |
| 745 | /* |
| 746 | * Register with driver. |
| 747 | * Timer0 and Timer1 is used by platform. |
| 748 | */ |
| 749 | hd.hd_phys_address = vxtime.hpet_address; |
| 750 | hd.hd_address = (void *)fix_to_virt(FIX_HPET_BASE); |
| 751 | hd.hd_nirqs = ntimer; |
| 752 | hd.hd_flags = HPET_DATA_PLATFORM; |
| 753 | hpet_reserve_timer(&hd, 0); |
| 754 | #ifdef CONFIG_HPET_EMULATE_RTC |
| 755 | hpet_reserve_timer(&hd, 1); |
| 756 | #endif |
| 757 | hd.hd_irq[0] = HPET_LEGACY_8254; |
| 758 | hd.hd_irq[1] = HPET_LEGACY_RTC; |
| 759 | if (ntimer > 2) { |
| 760 | struct hpet *hpet; |
| 761 | struct hpet_timer *timer; |
| 762 | int i; |
| 763 | |
| 764 | hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE); |
| 765 | |
| 766 | for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer; |
| 767 | timer++, i++) |
| 768 | hd.hd_irq[i] = (timer->hpet_config & |
| 769 | Tn_INT_ROUTE_CNF_MASK) >> |
| 770 | Tn_INT_ROUTE_CNF_SHIFT; |
| 771 | |
| 772 | } |
| 773 | |
| 774 | hpet_alloc(&hd); |
| 775 | return 0; |
| 776 | } |
| 777 | fs_initcall(late_hpet_init); |
| 778 | #endif |
| 779 | |
| 780 | static int hpet_timer_stop_set_go(unsigned long tick) |
| 781 | { |
| 782 | unsigned int cfg; |
| 783 | |
| 784 | /* |
| 785 | * Stop the timers and reset the main counter. |
| 786 | */ |
| 787 | |
| 788 | cfg = hpet_readl(HPET_CFG); |
| 789 | cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); |
| 790 | hpet_writel(cfg, HPET_CFG); |
| 791 | hpet_writel(0, HPET_COUNTER); |
| 792 | hpet_writel(0, HPET_COUNTER + 4); |
| 793 | |
| 794 | /* |
| 795 | * Set up timer 0, as periodic with first interrupt to happen at hpet_tick, |
| 796 | * and period also hpet_tick. |
| 797 | */ |
| 798 | |
| 799 | hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | |
| 800 | HPET_TN_32BIT, HPET_T0_CFG); |
| 801 | hpet_writel(hpet_tick, HPET_T0_CMP); |
| 802 | hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */ |
| 803 | |
| 804 | /* |
| 805 | * Go! |
| 806 | */ |
| 807 | |
| 808 | cfg |= HPET_CFG_ENABLE | HPET_CFG_LEGACY; |
| 809 | hpet_writel(cfg, HPET_CFG); |
| 810 | |
| 811 | return 0; |
| 812 | } |
| 813 | |
| 814 | static int hpet_init(void) |
| 815 | { |
| 816 | unsigned int id; |
| 817 | |
| 818 | if (!vxtime.hpet_address) |
| 819 | return -1; |
| 820 | set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address); |
| 821 | __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); |
| 822 | |
| 823 | /* |
| 824 | * Read the period, compute tick and quotient. |
| 825 | */ |
| 826 | |
| 827 | id = hpet_readl(HPET_ID); |
| 828 | |
| 829 | if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER) || |
| 830 | !(id & HPET_ID_LEGSUP)) |
| 831 | return -1; |
| 832 | |
| 833 | hpet_period = hpet_readl(HPET_PERIOD); |
| 834 | if (hpet_period < 100000 || hpet_period > 100000000) |
| 835 | return -1; |
| 836 | |
| 837 | hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) / |
| 838 | hpet_period; |
| 839 | |
| 840 | return hpet_timer_stop_set_go(hpet_tick); |
| 841 | } |
| 842 | |
| 843 | static int hpet_reenable(void) |
| 844 | { |
| 845 | return hpet_timer_stop_set_go(hpet_tick); |
| 846 | } |
| 847 | |
| 848 | void __init pit_init(void) |
| 849 | { |
| 850 | unsigned long flags; |
| 851 | |
| 852 | spin_lock_irqsave(&i8253_lock, flags); |
| 853 | outb_p(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */ |
| 854 | outb_p(LATCH & 0xff, 0x40); /* LSB */ |
| 855 | outb_p(LATCH >> 8, 0x40); /* MSB */ |
| 856 | spin_unlock_irqrestore(&i8253_lock, flags); |
| 857 | } |
| 858 | |
| 859 | int __init time_setup(char *str) |
| 860 | { |
| 861 | report_lost_ticks = 1; |
| 862 | return 1; |
| 863 | } |
| 864 | |
| 865 | static struct irqaction irq0 = { |
| 866 | timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL |
| 867 | }; |
| 868 | |
| 869 | extern void __init config_acpi_tables(void); |
| 870 | |
| 871 | void __init time_init(void) |
| 872 | { |
| 873 | char *timename; |
| 874 | |
| 875 | #ifdef HPET_HACK_ENABLE_DANGEROUS |
| 876 | if (!vxtime.hpet_address) { |
| 877 | printk(KERN_WARNING "time.c: WARNING: Enabling HPET base " |
| 878 | "manually!\n"); |
| 879 | outl(0x800038a0, 0xcf8); |
| 880 | outl(0xff000001, 0xcfc); |
| 881 | outl(0x800038a0, 0xcf8); |
| 882 | vxtime.hpet_address = inl(0xcfc) & 0xfffffffe; |
| 883 | printk(KERN_WARNING "time.c: WARNING: Enabled HPET " |
| 884 | "at %#lx.\n", vxtime.hpet_address); |
| 885 | } |
| 886 | #endif |
| 887 | if (nohpet) |
| 888 | vxtime.hpet_address = 0; |
| 889 | |
| 890 | xtime.tv_sec = get_cmos_time(); |
| 891 | xtime.tv_nsec = 0; |
| 892 | |
| 893 | set_normalized_timespec(&wall_to_monotonic, |
| 894 | -xtime.tv_sec, -xtime.tv_nsec); |
| 895 | |
| 896 | if (!hpet_init()) { |
| 897 | vxtime_hz = (1000000000000000L + hpet_period / 2) / |
| 898 | hpet_period; |
| 899 | cpu_khz = hpet_calibrate_tsc(); |
| 900 | timename = "HPET"; |
| 901 | } else { |
| 902 | pit_init(); |
| 903 | cpu_khz = pit_calibrate_tsc(); |
| 904 | timename = "PIT"; |
| 905 | } |
| 906 | |
| 907 | printk(KERN_INFO "time.c: Using %ld.%06ld MHz %s timer.\n", |
| 908 | vxtime_hz / 1000000, vxtime_hz % 1000000, timename); |
| 909 | printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", |
| 910 | cpu_khz / 1000, cpu_khz % 1000); |
| 911 | vxtime.mode = VXTIME_TSC; |
| 912 | vxtime.quot = (1000000L << 32) / vxtime_hz; |
| 913 | vxtime.tsc_quot = (1000L << 32) / cpu_khz; |
| 914 | vxtime.hz = vxtime_hz; |
| 915 | rdtscll_sync(&vxtime.last_tsc); |
| 916 | setup_irq(0, &irq0); |
| 917 | |
| 918 | set_cyc2ns_scale(cpu_khz / 1000); |
Andi Kleen | a8ab26f | 2005-04-16 15:25:19 -0700 | [diff] [blame] | 919 | |
| 920 | #ifndef CONFIG_SMP |
| 921 | time_init_gtod(); |
| 922 | #endif |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 923 | } |
| 924 | |
Andi Kleen | a8ab26f | 2005-04-16 15:25:19 -0700 | [diff] [blame] | 925 | /* |
| 926 | * Decide after all CPUs are booted what mode gettimeofday should use. |
| 927 | */ |
| 928 | void __init time_init_gtod(void) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 929 | { |
| 930 | char *timetype; |
| 931 | |
| 932 | /* |
| 933 | * AMD systems with more than one CPU don't have fully synchronized |
| 934 | * TSCs. Always use HPET gettimeofday for these, although it is slower. |
| 935 | * Intel SMP systems usually have synchronized TSCs, so use always |
| 936 | * the TSC. |
| 937 | * |
| 938 | * Exceptions: |
| 939 | * IBM Summit2 checked by oem_force_hpet_timer(). |
| 940 | * AMD dual core may also not need HPET. Check me. |
| 941 | * |
| 942 | * Can be turned off with "notsc". |
| 943 | */ |
| 944 | if (num_online_cpus() > 1 && |
| 945 | boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| 946 | notsc = 1; |
| 947 | /* Some systems will want to disable TSC and use HPET. */ |
| 948 | if (oem_force_hpet_timer()) |
| 949 | notsc = 1; |
| 950 | if (vxtime.hpet_address && notsc) { |
| 951 | timetype = "HPET"; |
| 952 | vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick; |
| 953 | vxtime.mode = VXTIME_HPET; |
| 954 | do_gettimeoffset = do_gettimeoffset_hpet; |
| 955 | } else { |
| 956 | timetype = vxtime.hpet_address ? "HPET/TSC" : "PIT/TSC"; |
| 957 | vxtime.mode = VXTIME_TSC; |
| 958 | } |
| 959 | |
| 960 | printk(KERN_INFO "time.c: Using %s based timekeeping.\n", timetype); |
| 961 | } |
| 962 | |
| 963 | __setup("report_lost_ticks", time_setup); |
| 964 | |
| 965 | static long clock_cmos_diff; |
| 966 | static unsigned long sleep_start; |
| 967 | |
Pavel Machek | 0b9c33a | 2005-04-16 15:25:31 -0700 | [diff] [blame] | 968 | static int timer_suspend(struct sys_device *dev, pm_message_t state) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 969 | { |
| 970 | /* |
| 971 | * Estimate time zone so that set_time can update the clock |
| 972 | */ |
| 973 | long cmos_time = get_cmos_time(); |
| 974 | |
| 975 | clock_cmos_diff = -cmos_time; |
| 976 | clock_cmos_diff += get_seconds(); |
| 977 | sleep_start = cmos_time; |
| 978 | return 0; |
| 979 | } |
| 980 | |
| 981 | static int timer_resume(struct sys_device *dev) |
| 982 | { |
| 983 | unsigned long flags; |
| 984 | unsigned long sec; |
| 985 | unsigned long ctime = get_cmos_time(); |
| 986 | unsigned long sleep_length = (ctime - sleep_start) * HZ; |
| 987 | |
| 988 | if (vxtime.hpet_address) |
| 989 | hpet_reenable(); |
| 990 | else |
| 991 | i8254_timer_resume(); |
| 992 | |
| 993 | sec = ctime + clock_cmos_diff; |
| 994 | write_seqlock_irqsave(&xtime_lock,flags); |
| 995 | xtime.tv_sec = sec; |
| 996 | xtime.tv_nsec = 0; |
| 997 | write_sequnlock_irqrestore(&xtime_lock,flags); |
| 998 | jiffies += sleep_length; |
| 999 | wall_jiffies += sleep_length; |
| 1000 | return 0; |
| 1001 | } |
| 1002 | |
| 1003 | static struct sysdev_class timer_sysclass = { |
| 1004 | .resume = timer_resume, |
| 1005 | .suspend = timer_suspend, |
| 1006 | set_kset_name("timer"), |
| 1007 | }; |
| 1008 | |
| 1009 | |
| 1010 | /* XXX this driverfs stuff should probably go elsewhere later -john */ |
| 1011 | static struct sys_device device_timer = { |
| 1012 | .id = 0, |
| 1013 | .cls = &timer_sysclass, |
| 1014 | }; |
| 1015 | |
| 1016 | static int time_init_device(void) |
| 1017 | { |
| 1018 | int error = sysdev_class_register(&timer_sysclass); |
| 1019 | if (!error) |
| 1020 | error = sysdev_register(&device_timer); |
| 1021 | return error; |
| 1022 | } |
| 1023 | |
| 1024 | device_initcall(time_init_device); |
| 1025 | |
| 1026 | #ifdef CONFIG_HPET_EMULATE_RTC |
| 1027 | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET |
| 1028 | * is enabled, we support RTC interrupt functionality in software. |
| 1029 | * RTC has 3 kinds of interrupts: |
| 1030 | * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock |
| 1031 | * is updated |
| 1032 | * 2) Alarm Interrupt - generate an interrupt at a specific time of day |
| 1033 | * 3) Periodic Interrupt - generate periodic interrupt, with frequencies |
| 1034 | * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) |
| 1035 | * (1) and (2) above are implemented using polling at a frequency of |
| 1036 | * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt |
| 1037 | * overhead. (DEFAULT_RTC_INT_FREQ) |
| 1038 | * For (3), we use interrupts at 64Hz or user specified periodic |
| 1039 | * frequency, whichever is higher. |
| 1040 | */ |
| 1041 | #include <linux/rtc.h> |
| 1042 | |
| 1043 | extern irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| 1044 | |
| 1045 | #define DEFAULT_RTC_INT_FREQ 64 |
| 1046 | #define RTC_NUM_INTS 1 |
| 1047 | |
| 1048 | static unsigned long UIE_on; |
| 1049 | static unsigned long prev_update_sec; |
| 1050 | |
| 1051 | static unsigned long AIE_on; |
| 1052 | static struct rtc_time alarm_time; |
| 1053 | |
| 1054 | static unsigned long PIE_on; |
| 1055 | static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; |
| 1056 | static unsigned long PIE_count; |
| 1057 | |
| 1058 | static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ |
| 1059 | |
| 1060 | int is_hpet_enabled(void) |
| 1061 | { |
| 1062 | return vxtime.hpet_address != 0; |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * Timer 1 for RTC, we do not use periodic interrupt feature, |
| 1067 | * even if HPET supports periodic interrupts on Timer 1. |
| 1068 | * The reason being, to set up a periodic interrupt in HPET, we need to |
| 1069 | * stop the main counter. And if we do that everytime someone diables/enables |
| 1070 | * RTC, we will have adverse effect on main kernel timer running on Timer 0. |
| 1071 | * So, for the time being, simulate the periodic interrupt in software. |
| 1072 | * |
| 1073 | * hpet_rtc_timer_init() is called for the first time and during subsequent |
| 1074 | * interuppts reinit happens through hpet_rtc_timer_reinit(). |
| 1075 | */ |
| 1076 | int hpet_rtc_timer_init(void) |
| 1077 | { |
| 1078 | unsigned int cfg, cnt; |
| 1079 | unsigned long flags; |
| 1080 | |
| 1081 | if (!is_hpet_enabled()) |
| 1082 | return 0; |
| 1083 | /* |
| 1084 | * Set the counter 1 and enable the interrupts. |
| 1085 | */ |
| 1086 | if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| 1087 | hpet_rtc_int_freq = PIE_freq; |
| 1088 | else |
| 1089 | hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| 1090 | |
| 1091 | local_irq_save(flags); |
| 1092 | cnt = hpet_readl(HPET_COUNTER); |
| 1093 | cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); |
| 1094 | hpet_writel(cnt, HPET_T1_CMP); |
| 1095 | local_irq_restore(flags); |
| 1096 | |
| 1097 | cfg = hpet_readl(HPET_T1_CFG); |
| 1098 | cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT; |
| 1099 | hpet_writel(cfg, HPET_T1_CFG); |
| 1100 | |
| 1101 | return 1; |
| 1102 | } |
| 1103 | |
| 1104 | static void hpet_rtc_timer_reinit(void) |
| 1105 | { |
| 1106 | unsigned int cfg, cnt; |
| 1107 | |
| 1108 | if (!(PIE_on | AIE_on | UIE_on)) |
| 1109 | return; |
| 1110 | |
| 1111 | if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| 1112 | hpet_rtc_int_freq = PIE_freq; |
| 1113 | else |
| 1114 | hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| 1115 | |
| 1116 | /* It is more accurate to use the comparator value than current count.*/ |
| 1117 | cnt = hpet_readl(HPET_T1_CMP); |
| 1118 | cnt += hpet_tick*HZ/hpet_rtc_int_freq; |
| 1119 | hpet_writel(cnt, HPET_T1_CMP); |
| 1120 | |
| 1121 | cfg = hpet_readl(HPET_T1_CFG); |
| 1122 | cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT; |
| 1123 | hpet_writel(cfg, HPET_T1_CFG); |
| 1124 | |
| 1125 | return; |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * The functions below are called from rtc driver. |
| 1130 | * Return 0 if HPET is not being used. |
| 1131 | * Otherwise do the necessary changes and return 1. |
| 1132 | */ |
| 1133 | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) |
| 1134 | { |
| 1135 | if (!is_hpet_enabled()) |
| 1136 | return 0; |
| 1137 | |
| 1138 | if (bit_mask & RTC_UIE) |
| 1139 | UIE_on = 0; |
| 1140 | if (bit_mask & RTC_PIE) |
| 1141 | PIE_on = 0; |
| 1142 | if (bit_mask & RTC_AIE) |
| 1143 | AIE_on = 0; |
| 1144 | |
| 1145 | return 1; |
| 1146 | } |
| 1147 | |
| 1148 | int hpet_set_rtc_irq_bit(unsigned long bit_mask) |
| 1149 | { |
| 1150 | int timer_init_reqd = 0; |
| 1151 | |
| 1152 | if (!is_hpet_enabled()) |
| 1153 | return 0; |
| 1154 | |
| 1155 | if (!(PIE_on | AIE_on | UIE_on)) |
| 1156 | timer_init_reqd = 1; |
| 1157 | |
| 1158 | if (bit_mask & RTC_UIE) { |
| 1159 | UIE_on = 1; |
| 1160 | } |
| 1161 | if (bit_mask & RTC_PIE) { |
| 1162 | PIE_on = 1; |
| 1163 | PIE_count = 0; |
| 1164 | } |
| 1165 | if (bit_mask & RTC_AIE) { |
| 1166 | AIE_on = 1; |
| 1167 | } |
| 1168 | |
| 1169 | if (timer_init_reqd) |
| 1170 | hpet_rtc_timer_init(); |
| 1171 | |
| 1172 | return 1; |
| 1173 | } |
| 1174 | |
| 1175 | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) |
| 1176 | { |
| 1177 | if (!is_hpet_enabled()) |
| 1178 | return 0; |
| 1179 | |
| 1180 | alarm_time.tm_hour = hrs; |
| 1181 | alarm_time.tm_min = min; |
| 1182 | alarm_time.tm_sec = sec; |
| 1183 | |
| 1184 | return 1; |
| 1185 | } |
| 1186 | |
| 1187 | int hpet_set_periodic_freq(unsigned long freq) |
| 1188 | { |
| 1189 | if (!is_hpet_enabled()) |
| 1190 | return 0; |
| 1191 | |
| 1192 | PIE_freq = freq; |
| 1193 | PIE_count = 0; |
| 1194 | |
| 1195 | return 1; |
| 1196 | } |
| 1197 | |
| 1198 | int hpet_rtc_dropped_irq(void) |
| 1199 | { |
| 1200 | if (!is_hpet_enabled()) |
| 1201 | return 0; |
| 1202 | |
| 1203 | return 1; |
| 1204 | } |
| 1205 | |
| 1206 | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 1207 | { |
| 1208 | struct rtc_time curr_time; |
| 1209 | unsigned long rtc_int_flag = 0; |
| 1210 | int call_rtc_interrupt = 0; |
| 1211 | |
| 1212 | hpet_rtc_timer_reinit(); |
| 1213 | |
| 1214 | if (UIE_on | AIE_on) { |
| 1215 | rtc_get_rtc_time(&curr_time); |
| 1216 | } |
| 1217 | if (UIE_on) { |
| 1218 | if (curr_time.tm_sec != prev_update_sec) { |
| 1219 | /* Set update int info, call real rtc int routine */ |
| 1220 | call_rtc_interrupt = 1; |
| 1221 | rtc_int_flag = RTC_UF; |
| 1222 | prev_update_sec = curr_time.tm_sec; |
| 1223 | } |
| 1224 | } |
| 1225 | if (PIE_on) { |
| 1226 | PIE_count++; |
| 1227 | if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { |
| 1228 | /* Set periodic int info, call real rtc int routine */ |
| 1229 | call_rtc_interrupt = 1; |
| 1230 | rtc_int_flag |= RTC_PF; |
| 1231 | PIE_count = 0; |
| 1232 | } |
| 1233 | } |
| 1234 | if (AIE_on) { |
| 1235 | if ((curr_time.tm_sec == alarm_time.tm_sec) && |
| 1236 | (curr_time.tm_min == alarm_time.tm_min) && |
| 1237 | (curr_time.tm_hour == alarm_time.tm_hour)) { |
| 1238 | /* Set alarm int info, call real rtc int routine */ |
| 1239 | call_rtc_interrupt = 1; |
| 1240 | rtc_int_flag |= RTC_AF; |
| 1241 | } |
| 1242 | } |
| 1243 | if (call_rtc_interrupt) { |
| 1244 | rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); |
| 1245 | rtc_interrupt(rtc_int_flag, dev_id, regs); |
| 1246 | } |
| 1247 | return IRQ_HANDLED; |
| 1248 | } |
| 1249 | #endif |
| 1250 | |
| 1251 | |
| 1252 | |
| 1253 | static int __init nohpet_setup(char *s) |
| 1254 | { |
| 1255 | nohpet = 1; |
| 1256 | return 0; |
| 1257 | } |
| 1258 | |
| 1259 | __setup("nohpet", nohpet_setup); |
| 1260 | |
| 1261 | |
| 1262 | static int __init notsc_setup(char *s) |
| 1263 | { |
| 1264 | notsc = 1; |
| 1265 | return 0; |
| 1266 | } |
| 1267 | |
| 1268 | __setup("notsc", notsc_setup); |
| 1269 | |
| 1270 | |