Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. |
| 7 | */ |
| 8 | |
| 9 | #ifndef _ASM_IA64_SN_SHUBIO_H |
| 10 | #define _ASM_IA64_SN_SHUBIO_H |
| 11 | |
| 12 | #define HUB_WIDGET_ID_MAX 0xf |
| 13 | #define IIO_NUM_ITTES 7 |
| 14 | #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) |
| 15 | |
| 16 | #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ |
| 17 | /* This register is also accessible from |
| 18 | * Crosstalk at address 0x0. */ |
| 19 | #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ |
| 20 | #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ |
| 21 | #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ |
| 22 | #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ |
| 23 | #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ |
| 24 | #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ |
| 25 | #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ |
| 26 | #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ |
| 27 | #define IIO_ILLR 0x00400130 /* IO LLP Log Register */ |
| 28 | #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ |
| 29 | |
| 30 | #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ |
| 31 | #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ |
| 32 | |
| 33 | #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ |
| 34 | #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ |
| 35 | |
| 36 | #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ |
| 37 | #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ |
| 38 | #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ |
| 39 | #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ |
| 40 | #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ |
| 41 | #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ |
| 42 | #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ |
| 43 | |
| 44 | #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ |
| 45 | #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ |
| 46 | #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ |
| 47 | #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ |
| 48 | #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ |
| 49 | #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ |
| 50 | #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ |
| 51 | #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ |
| 52 | #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ |
| 53 | |
| 54 | #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ |
| 55 | #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ |
| 56 | #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ |
| 57 | #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ |
| 58 | #define IIO_IBCR 0x00400200 /* IO BTE Control Register */ |
| 59 | |
| 60 | #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ |
| 61 | #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ |
| 62 | |
| 63 | #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ |
| 64 | |
| 65 | #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ |
| 66 | #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ |
| 67 | |
| 68 | |
| 69 | #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ |
| 70 | #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ |
| 71 | |
| 72 | #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ |
| 73 | #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ |
| 74 | #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ |
| 75 | #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ |
| 76 | #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ |
| 77 | |
| 78 | #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ |
| 79 | |
| 80 | #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ |
| 81 | #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ |
| 82 | #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ |
| 83 | #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ |
| 84 | #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ |
| 85 | #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ |
| 86 | #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ |
| 87 | #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ |
| 88 | |
| 89 | #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ |
| 90 | #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ |
| 91 | #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ |
| 92 | #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ |
| 93 | #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ |
| 94 | #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ |
| 95 | #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ |
| 96 | #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ |
| 97 | |
| 98 | #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ |
| 99 | #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ |
| 100 | #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ |
| 101 | #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ |
| 102 | #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ |
| 103 | #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ |
| 104 | #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ |
| 105 | #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ |
| 106 | |
| 107 | #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ |
| 108 | #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ |
| 109 | #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ |
| 110 | #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ |
| 111 | #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ |
| 112 | |
| 113 | #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ |
| 114 | #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ |
| 115 | #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ |
| 116 | #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ |
| 117 | #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ |
| 118 | |
| 119 | #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ |
| 120 | #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ |
| 121 | #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ |
| 122 | #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ |
| 123 | #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ |
| 124 | |
| 125 | #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ |
| 126 | #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ |
| 127 | #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ |
| 128 | #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ |
| 129 | #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ |
| 130 | |
| 131 | #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ |
| 132 | #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ |
| 133 | #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ |
| 134 | #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ |
| 135 | #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ |
| 136 | |
| 137 | #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ |
| 138 | #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ |
| 139 | #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ |
| 140 | #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ |
| 141 | #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ |
| 142 | |
| 143 | #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ |
| 144 | #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ |
| 145 | #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ |
| 146 | #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ |
| 147 | #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ |
| 148 | |
| 149 | #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ |
| 150 | #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ |
| 151 | #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ |
| 152 | #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ |
| 153 | #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ |
| 154 | |
| 155 | #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ |
| 156 | #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ |
| 157 | #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ |
| 158 | #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ |
| 159 | #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ |
| 160 | |
| 161 | #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ |
| 162 | #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ |
| 163 | #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ |
| 164 | #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ |
| 165 | #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ |
| 166 | |
| 167 | #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ |
| 168 | #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ |
| 169 | #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ |
| 170 | #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ |
| 171 | #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ |
| 172 | |
| 173 | #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ |
| 174 | #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ |
| 175 | #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ |
| 176 | #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ |
| 177 | #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ |
| 178 | |
| 179 | #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ |
| 180 | #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ |
| 181 | #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ |
| 182 | #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ |
| 183 | #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ |
| 184 | |
| 185 | #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ |
| 186 | #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ |
| 187 | #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ |
| 188 | #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ |
| 189 | #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ |
| 190 | |
| 191 | #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ |
| 192 | #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ |
| 193 | #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ |
| 194 | #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ |
| 195 | #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ |
| 196 | |
| 197 | #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ |
| 198 | #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ |
| 199 | #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ |
| 200 | |
| 201 | #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ |
| 202 | |
| 203 | #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ |
| 204 | #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ |
| 205 | #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ |
| 206 | #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ |
| 207 | #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ |
| 208 | #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ |
| 209 | #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ |
| 210 | #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ |
| 211 | #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ |
| 212 | #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ |
| 213 | #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ |
| 214 | #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ |
| 215 | |
| 216 | #define IIO_IPCR 0x00430000 /* IO Performance Control */ |
| 217 | #define IIO_IPPR 0x00430008 /* IO Performance Profiling */ |
| 218 | |
| 219 | |
| 220 | /************************************************************************ |
| 221 | * * |
| 222 | * Description: This register echoes some information from the * |
| 223 | * LB_REV_ID register. It is available through Crosstalk as described * |
| 224 | * above. The REV_NUM and MFG_NUM fields receive their values from * |
| 225 | * the REVISION and MANUFACTURER fields in the LB_REV_ID register. * |
| 226 | * The PART_NUM field's value is the Crosstalk device ID number that * |
| 227 | * Steve Miller assigned to the SHub chip. * |
| 228 | * * |
| 229 | ************************************************************************/ |
| 230 | |
| 231 | typedef union ii_wid_u { |
| 232 | uint64_t ii_wid_regval; |
| 233 | struct { |
| 234 | uint64_t w_rsvd_1 : 1; |
| 235 | uint64_t w_mfg_num : 11; |
| 236 | uint64_t w_part_num : 16; |
| 237 | uint64_t w_rev_num : 4; |
| 238 | uint64_t w_rsvd : 32; |
| 239 | } ii_wid_fld_s; |
| 240 | } ii_wid_u_t; |
| 241 | |
| 242 | |
| 243 | /************************************************************************ |
| 244 | * * |
| 245 | * The fields in this register are set upon detection of an error * |
| 246 | * and cleared by various mechanisms, as explained in the * |
| 247 | * description. * |
| 248 | * * |
| 249 | ************************************************************************/ |
| 250 | |
| 251 | typedef union ii_wstat_u { |
| 252 | uint64_t ii_wstat_regval; |
| 253 | struct { |
| 254 | uint64_t w_pending : 4; |
| 255 | uint64_t w_xt_crd_to : 1; |
| 256 | uint64_t w_xt_tail_to : 1; |
| 257 | uint64_t w_rsvd_3 : 3; |
| 258 | uint64_t w_tx_mx_rty : 1; |
| 259 | uint64_t w_rsvd_2 : 6; |
| 260 | uint64_t w_llp_tx_cnt : 8; |
| 261 | uint64_t w_rsvd_1 : 8; |
| 262 | uint64_t w_crazy : 1; |
| 263 | uint64_t w_rsvd : 31; |
| 264 | } ii_wstat_fld_s; |
| 265 | } ii_wstat_u_t; |
| 266 | |
| 267 | |
| 268 | /************************************************************************ |
| 269 | * * |
| 270 | * Description: This is a read-write enabled register. It controls * |
| 271 | * various aspects of the Crosstalk flow control. * |
| 272 | * * |
| 273 | ************************************************************************/ |
| 274 | |
| 275 | typedef union ii_wcr_u { |
| 276 | uint64_t ii_wcr_regval; |
| 277 | struct { |
| 278 | uint64_t w_wid : 4; |
| 279 | uint64_t w_tag : 1; |
| 280 | uint64_t w_rsvd_1 : 8; |
| 281 | uint64_t w_dst_crd : 3; |
| 282 | uint64_t w_f_bad_pkt : 1; |
| 283 | uint64_t w_dir_con : 1; |
| 284 | uint64_t w_e_thresh : 5; |
| 285 | uint64_t w_rsvd : 41; |
| 286 | } ii_wcr_fld_s; |
| 287 | } ii_wcr_u_t; |
| 288 | |
| 289 | |
| 290 | /************************************************************************ |
| 291 | * * |
| 292 | * Description: This register's value is a bit vector that guards * |
| 293 | * access to local registers within the II as well as to external * |
| 294 | * Crosstalk widgets. Each bit in the register corresponds to a * |
| 295 | * particular region in the system; a region consists of one, two or * |
| 296 | * four nodes (depending on the value of the REGION_SIZE field in the * |
| 297 | * LB_REV_ID register, which is documented in Section 8.3.1.1). The * |
| 298 | * protection provided by this register applies to PIO read * |
| 299 | * operations as well as PIO write operations. The II will perform a * |
| 300 | * PIO read or write request only if the bit for the requestor's * |
| 301 | * region is set; otherwise, the II will not perform the requested * |
| 302 | * operation and will return an error response. When a PIO read or * |
| 303 | * write request targets an external Crosstalk widget, then not only * |
| 304 | * must the bit for the requestor's region be set in the ILAPR, but * |
| 305 | * also the target widget's bit in the IOWA register must be set in * |
| 306 | * order for the II to perform the requested operation; otherwise, * |
| 307 | * the II will return an error response. Hence, the protection * |
| 308 | * provided by the IOWA register supplements the protection provided * |
| 309 | * by the ILAPR for requests that target external Crosstalk widgets. * |
| 310 | * This register itself can be accessed only by the nodes whose * |
| 311 | * region ID bits are enabled in this same register. It can also be * |
| 312 | * accessed through the IAlias space by the local processors. * |
| 313 | * The reset value of this register allows access by all nodes. * |
| 314 | * * |
| 315 | ************************************************************************/ |
| 316 | |
| 317 | typedef union ii_ilapr_u { |
| 318 | uint64_t ii_ilapr_regval; |
| 319 | struct { |
| 320 | uint64_t i_region : 64; |
| 321 | } ii_ilapr_fld_s; |
| 322 | } ii_ilapr_u_t; |
| 323 | |
| 324 | |
| 325 | |
| 326 | |
| 327 | /************************************************************************ |
| 328 | * * |
| 329 | * Description: A write to this register of the 64-bit value * |
| 330 | * "SGIrules" in ASCII, will cause the bit in the ILAPR register * |
| 331 | * corresponding to the region of the requestor to be set (allow * |
| 332 | * access). A write of any other value will be ignored. Access * |
| 333 | * protection for this register is "SGIrules". * |
| 334 | * This register can also be accessed through the IAlias space. * |
| 335 | * However, this access will not change the access permissions in the * |
| 336 | * ILAPR. * |
| 337 | * * |
| 338 | ************************************************************************/ |
| 339 | |
| 340 | typedef union ii_ilapo_u { |
| 341 | uint64_t ii_ilapo_regval; |
| 342 | struct { |
| 343 | uint64_t i_io_ovrride : 64; |
| 344 | } ii_ilapo_fld_s; |
| 345 | } ii_ilapo_u_t; |
| 346 | |
| 347 | |
| 348 | |
| 349 | /************************************************************************ |
| 350 | * * |
| 351 | * This register qualifies all the PIO and Graphics writes launched * |
| 352 | * from the SHUB towards a widget. * |
| 353 | * * |
| 354 | ************************************************************************/ |
| 355 | |
| 356 | typedef union ii_iowa_u { |
| 357 | uint64_t ii_iowa_regval; |
| 358 | struct { |
| 359 | uint64_t i_w0_oac : 1; |
| 360 | uint64_t i_rsvd_1 : 7; |
| 361 | uint64_t i_wx_oac : 8; |
| 362 | uint64_t i_rsvd : 48; |
| 363 | } ii_iowa_fld_s; |
| 364 | } ii_iowa_u_t; |
| 365 | |
| 366 | |
| 367 | /************************************************************************ |
| 368 | * * |
| 369 | * Description: This register qualifies all the requests launched * |
| 370 | * from a widget towards the Shub. This register is intended to be * |
| 371 | * used by software in case of misbehaving widgets. * |
| 372 | * * |
| 373 | * * |
| 374 | ************************************************************************/ |
| 375 | |
| 376 | typedef union ii_iiwa_u { |
| 377 | uint64_t ii_iiwa_regval; |
| 378 | struct { |
| 379 | uint64_t i_w0_iac : 1; |
| 380 | uint64_t i_rsvd_1 : 7; |
| 381 | uint64_t i_wx_iac : 8; |
| 382 | uint64_t i_rsvd : 48; |
| 383 | } ii_iiwa_fld_s; |
| 384 | } ii_iiwa_u_t; |
| 385 | |
| 386 | |
| 387 | |
| 388 | /************************************************************************ |
| 389 | * * |
| 390 | * Description: This register qualifies all the operations launched * |
| 391 | * from a widget towards the SHub. It allows individual access * |
| 392 | * control for up to 8 devices per widget. A device refers to * |
| 393 | * individual DMA master hosted by a widget. * |
| 394 | * The bits in each field of this register are cleared by the Shub * |
| 395 | * upon detection of an error which requires the device to be * |
| 396 | * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric * |
| 397 | * Crosstalk). Whether or not a device has access rights to this * |
| 398 | * Shub is determined by an AND of the device enable bit in the * |
| 399 | * appropriate field of this register and the corresponding bit in * |
| 400 | * the Wx_IAC field (for the widget which this device belongs to). * |
| 401 | * The bits in this field are set by writing a 1 to them. Incoming * |
| 402 | * replies from Crosstalk are not subject to this access control * |
| 403 | * mechanism. * |
| 404 | * * |
| 405 | ************************************************************************/ |
| 406 | |
| 407 | typedef union ii_iidem_u { |
| 408 | uint64_t ii_iidem_regval; |
| 409 | struct { |
| 410 | uint64_t i_w8_dxs : 8; |
| 411 | uint64_t i_w9_dxs : 8; |
| 412 | uint64_t i_wa_dxs : 8; |
| 413 | uint64_t i_wb_dxs : 8; |
| 414 | uint64_t i_wc_dxs : 8; |
| 415 | uint64_t i_wd_dxs : 8; |
| 416 | uint64_t i_we_dxs : 8; |
| 417 | uint64_t i_wf_dxs : 8; |
| 418 | } ii_iidem_fld_s; |
| 419 | } ii_iidem_u_t; |
| 420 | |
| 421 | |
| 422 | /************************************************************************ |
| 423 | * * |
| 424 | * This register contains the various programmable fields necessary * |
| 425 | * for controlling and observing the LLP signals. * |
| 426 | * * |
| 427 | ************************************************************************/ |
| 428 | |
| 429 | typedef union ii_ilcsr_u { |
| 430 | uint64_t ii_ilcsr_regval; |
| 431 | struct { |
| 432 | uint64_t i_nullto : 6; |
| 433 | uint64_t i_rsvd_4 : 2; |
| 434 | uint64_t i_wrmrst : 1; |
| 435 | uint64_t i_rsvd_3 : 1; |
| 436 | uint64_t i_llp_en : 1; |
| 437 | uint64_t i_bm8 : 1; |
| 438 | uint64_t i_llp_stat : 2; |
| 439 | uint64_t i_remote_power : 1; |
| 440 | uint64_t i_rsvd_2 : 1; |
| 441 | uint64_t i_maxrtry : 10; |
| 442 | uint64_t i_d_avail_sel : 2; |
| 443 | uint64_t i_rsvd_1 : 4; |
| 444 | uint64_t i_maxbrst : 10; |
| 445 | uint64_t i_rsvd : 22; |
| 446 | |
| 447 | } ii_ilcsr_fld_s; |
| 448 | } ii_ilcsr_u_t; |
| 449 | |
| 450 | |
| 451 | /************************************************************************ |
| 452 | * * |
| 453 | * This is simply a status registers that monitors the LLP error * |
| 454 | * rate. * |
| 455 | * * |
| 456 | ************************************************************************/ |
| 457 | |
| 458 | typedef union ii_illr_u { |
| 459 | uint64_t ii_illr_regval; |
| 460 | struct { |
| 461 | uint64_t i_sn_cnt : 16; |
| 462 | uint64_t i_cb_cnt : 16; |
| 463 | uint64_t i_rsvd : 32; |
| 464 | } ii_illr_fld_s; |
| 465 | } ii_illr_u_t; |
| 466 | |
| 467 | |
| 468 | /************************************************************************ |
| 469 | * * |
| 470 | * Description: All II-detected non-BTE error interrupts are * |
| 471 | * specified via this register. * |
| 472 | * NOTE: The PI interrupt register address is hardcoded in the II. If * |
| 473 | * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI * |
| 474 | * packet) to address offset 0x0180_0090 within the local register * |
| 475 | * address space of PI0 on the node specified by the NODE field. If * |
| 476 | * PI_ID==1, then the II sends the interrupt request to address * |
| 477 | * offset 0x01A0_0090 within the local register address space of PI1 * |
| 478 | * on the node specified by the NODE field. * |
| 479 | * * |
| 480 | ************************************************************************/ |
| 481 | |
| 482 | typedef union ii_iidsr_u { |
| 483 | uint64_t ii_iidsr_regval; |
| 484 | struct { |
| 485 | uint64_t i_level : 8; |
| 486 | uint64_t i_pi_id : 1; |
| 487 | uint64_t i_node : 11; |
| 488 | uint64_t i_rsvd_3 : 4; |
| 489 | uint64_t i_enable : 1; |
| 490 | uint64_t i_rsvd_2 : 3; |
| 491 | uint64_t i_int_sent : 2; |
| 492 | uint64_t i_rsvd_1 : 2; |
| 493 | uint64_t i_pi0_forward_int : 1; |
| 494 | uint64_t i_pi1_forward_int : 1; |
| 495 | uint64_t i_rsvd : 30; |
| 496 | } ii_iidsr_fld_s; |
| 497 | } ii_iidsr_u_t; |
| 498 | |
| 499 | |
| 500 | |
| 501 | /************************************************************************ |
| 502 | * * |
| 503 | * There are two instances of this register. This register is used * |
| 504 | * for matching up the incoming responses from the graphics widget to * |
| 505 | * the processor that initiated the graphics operation. The * |
| 506 | * write-responses are converted to graphics credits and returned to * |
| 507 | * the processor so that the processor interface can manage the flow * |
| 508 | * control. * |
| 509 | * * |
| 510 | ************************************************************************/ |
| 511 | |
| 512 | typedef union ii_igfx0_u { |
| 513 | uint64_t ii_igfx0_regval; |
| 514 | struct { |
| 515 | uint64_t i_w_num : 4; |
| 516 | uint64_t i_pi_id : 1; |
| 517 | uint64_t i_n_num : 12; |
| 518 | uint64_t i_p_num : 1; |
| 519 | uint64_t i_rsvd : 46; |
| 520 | } ii_igfx0_fld_s; |
| 521 | } ii_igfx0_u_t; |
| 522 | |
| 523 | |
| 524 | /************************************************************************ |
| 525 | * * |
| 526 | * There are two instances of this register. This register is used * |
| 527 | * for matching up the incoming responses from the graphics widget to * |
| 528 | * the processor that initiated the graphics operation. The * |
| 529 | * write-responses are converted to graphics credits and returned to * |
| 530 | * the processor so that the processor interface can manage the flow * |
| 531 | * control. * |
| 532 | * * |
| 533 | ************************************************************************/ |
| 534 | |
| 535 | typedef union ii_igfx1_u { |
| 536 | uint64_t ii_igfx1_regval; |
| 537 | struct { |
| 538 | uint64_t i_w_num : 4; |
| 539 | uint64_t i_pi_id : 1; |
| 540 | uint64_t i_n_num : 12; |
| 541 | uint64_t i_p_num : 1; |
| 542 | uint64_t i_rsvd : 46; |
| 543 | } ii_igfx1_fld_s; |
| 544 | } ii_igfx1_u_t; |
| 545 | |
| 546 | |
| 547 | /************************************************************************ |
| 548 | * * |
| 549 | * There are two instances of this registers. These registers are * |
| 550 | * used as scratch registers for software use. * |
| 551 | * * |
| 552 | ************************************************************************/ |
| 553 | |
| 554 | typedef union ii_iscr0_u { |
| 555 | uint64_t ii_iscr0_regval; |
| 556 | struct { |
| 557 | uint64_t i_scratch : 64; |
| 558 | } ii_iscr0_fld_s; |
| 559 | } ii_iscr0_u_t; |
| 560 | |
| 561 | |
| 562 | |
| 563 | /************************************************************************ |
| 564 | * * |
| 565 | * There are two instances of this registers. These registers are * |
| 566 | * used as scratch registers for software use. * |
| 567 | * * |
| 568 | ************************************************************************/ |
| 569 | |
| 570 | typedef union ii_iscr1_u { |
| 571 | uint64_t ii_iscr1_regval; |
| 572 | struct { |
| 573 | uint64_t i_scratch : 64; |
| 574 | } ii_iscr1_fld_s; |
| 575 | } ii_iscr1_u_t; |
| 576 | |
| 577 | |
| 578 | /************************************************************************ |
| 579 | * * |
| 580 | * Description: There are seven instances of translation table entry * |
| 581 | * registers. Each register maps a Shub Big Window to a 48-bit * |
| 582 | * address on Crosstalk. * |
| 583 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 584 | * number) are used to select one of these 7 registers. The Widget * |
| 585 | * number field is then derived from the W_NUM field for synthesizing * |
| 586 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 587 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 588 | * are padded with zeros. Although the maximum Crosstalk space * |
| 589 | * addressable by the SHub is thus the lower 16 GBytes per widget * |
| 590 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 591 | * space can be accessed. * |
| 592 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 593 | * Window number) are used to select one of these 7 registers. The * |
| 594 | * Widget number field is then derived from the W_NUM field for * |
| 595 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 596 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 597 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 598 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 599 | * Crosstalk space addressable by the Shub is thus the lower * |
| 600 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 601 | * of this space can be accessed. * |
| 602 | * * |
| 603 | ************************************************************************/ |
| 604 | |
| 605 | typedef union ii_itte1_u { |
| 606 | uint64_t ii_itte1_regval; |
| 607 | struct { |
| 608 | uint64_t i_offset : 5; |
| 609 | uint64_t i_rsvd_1 : 3; |
| 610 | uint64_t i_w_num : 4; |
| 611 | uint64_t i_iosp : 1; |
| 612 | uint64_t i_rsvd : 51; |
| 613 | } ii_itte1_fld_s; |
| 614 | } ii_itte1_u_t; |
| 615 | |
| 616 | |
| 617 | /************************************************************************ |
| 618 | * * |
| 619 | * Description: There are seven instances of translation table entry * |
| 620 | * registers. Each register maps a Shub Big Window to a 48-bit * |
| 621 | * address on Crosstalk. * |
| 622 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 623 | * number) are used to select one of these 7 registers. The Widget * |
| 624 | * number field is then derived from the W_NUM field for synthesizing * |
| 625 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 626 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 627 | * are padded with zeros. Although the maximum Crosstalk space * |
| 628 | * addressable by the Shub is thus the lower 16 GBytes per widget * |
| 629 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 630 | * space can be accessed. * |
| 631 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 632 | * Window number) are used to select one of these 7 registers. The * |
| 633 | * Widget number field is then derived from the W_NUM field for * |
| 634 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 635 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 636 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 637 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 638 | * Crosstalk space addressable by the Shub is thus the lower * |
| 639 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 640 | * of this space can be accessed. * |
| 641 | * * |
| 642 | ************************************************************************/ |
| 643 | |
| 644 | typedef union ii_itte2_u { |
| 645 | uint64_t ii_itte2_regval; |
| 646 | struct { |
| 647 | uint64_t i_offset : 5; |
| 648 | uint64_t i_rsvd_1 : 3; |
| 649 | uint64_t i_w_num : 4; |
| 650 | uint64_t i_iosp : 1; |
| 651 | uint64_t i_rsvd : 51; |
| 652 | } ii_itte2_fld_s; |
| 653 | } ii_itte2_u_t; |
| 654 | |
| 655 | |
| 656 | /************************************************************************ |
| 657 | * * |
| 658 | * Description: There are seven instances of translation table entry * |
| 659 | * registers. Each register maps a Shub Big Window to a 48-bit * |
| 660 | * address on Crosstalk. * |
| 661 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 662 | * number) are used to select one of these 7 registers. The Widget * |
| 663 | * number field is then derived from the W_NUM field for synthesizing * |
| 664 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 665 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 666 | * are padded with zeros. Although the maximum Crosstalk space * |
| 667 | * addressable by the Shub is thus the lower 16 GBytes per widget * |
| 668 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 669 | * space can be accessed. * |
| 670 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 671 | * Window number) are used to select one of these 7 registers. The * |
| 672 | * Widget number field is then derived from the W_NUM field for * |
| 673 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 674 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 675 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 676 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 677 | * Crosstalk space addressable by the SHub is thus the lower * |
| 678 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 679 | * of this space can be accessed. * |
| 680 | * * |
| 681 | ************************************************************************/ |
| 682 | |
| 683 | typedef union ii_itte3_u { |
| 684 | uint64_t ii_itte3_regval; |
| 685 | struct { |
| 686 | uint64_t i_offset : 5; |
| 687 | uint64_t i_rsvd_1 : 3; |
| 688 | uint64_t i_w_num : 4; |
| 689 | uint64_t i_iosp : 1; |
| 690 | uint64_t i_rsvd : 51; |
| 691 | } ii_itte3_fld_s; |
| 692 | } ii_itte3_u_t; |
| 693 | |
| 694 | |
| 695 | /************************************************************************ |
| 696 | * * |
| 697 | * Description: There are seven instances of translation table entry * |
| 698 | * registers. Each register maps a SHub Big Window to a 48-bit * |
| 699 | * address on Crosstalk. * |
| 700 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 701 | * number) are used to select one of these 7 registers. The Widget * |
| 702 | * number field is then derived from the W_NUM field for synthesizing * |
| 703 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 704 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 705 | * are padded with zeros. Although the maximum Crosstalk space * |
| 706 | * addressable by the SHub is thus the lower 16 GBytes per widget * |
| 707 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 708 | * space can be accessed. * |
| 709 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 710 | * Window number) are used to select one of these 7 registers. The * |
| 711 | * Widget number field is then derived from the W_NUM field for * |
| 712 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 713 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 714 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 715 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 716 | * Crosstalk space addressable by the SHub is thus the lower * |
| 717 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 718 | * of this space can be accessed. * |
| 719 | * * |
| 720 | ************************************************************************/ |
| 721 | |
| 722 | typedef union ii_itte4_u { |
| 723 | uint64_t ii_itte4_regval; |
| 724 | struct { |
| 725 | uint64_t i_offset : 5; |
| 726 | uint64_t i_rsvd_1 : 3; |
| 727 | uint64_t i_w_num : 4; |
| 728 | uint64_t i_iosp : 1; |
| 729 | uint64_t i_rsvd : 51; |
| 730 | } ii_itte4_fld_s; |
| 731 | } ii_itte4_u_t; |
| 732 | |
| 733 | |
| 734 | /************************************************************************ |
| 735 | * * |
| 736 | * Description: There are seven instances of translation table entry * |
| 737 | * registers. Each register maps a SHub Big Window to a 48-bit * |
| 738 | * address on Crosstalk. * |
| 739 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 740 | * number) are used to select one of these 7 registers. The Widget * |
| 741 | * number field is then derived from the W_NUM field for synthesizing * |
| 742 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 743 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 744 | * are padded with zeros. Although the maximum Crosstalk space * |
| 745 | * addressable by the Shub is thus the lower 16 GBytes per widget * |
| 746 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 747 | * space can be accessed. * |
| 748 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 749 | * Window number) are used to select one of these 7 registers. The * |
| 750 | * Widget number field is then derived from the W_NUM field for * |
| 751 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 752 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 753 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 754 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 755 | * Crosstalk space addressable by the Shub is thus the lower * |
| 756 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 757 | * of this space can be accessed. * |
| 758 | * * |
| 759 | ************************************************************************/ |
| 760 | |
| 761 | typedef union ii_itte5_u { |
| 762 | uint64_t ii_itte5_regval; |
| 763 | struct { |
| 764 | uint64_t i_offset : 5; |
| 765 | uint64_t i_rsvd_1 : 3; |
| 766 | uint64_t i_w_num : 4; |
| 767 | uint64_t i_iosp : 1; |
| 768 | uint64_t i_rsvd : 51; |
| 769 | } ii_itte5_fld_s; |
| 770 | } ii_itte5_u_t; |
| 771 | |
| 772 | |
| 773 | /************************************************************************ |
| 774 | * * |
| 775 | * Description: There are seven instances of translation table entry * |
| 776 | * registers. Each register maps a Shub Big Window to a 48-bit * |
| 777 | * address on Crosstalk. * |
| 778 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 779 | * number) are used to select one of these 7 registers. The Widget * |
| 780 | * number field is then derived from the W_NUM field for synthesizing * |
| 781 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 782 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 783 | * are padded with zeros. Although the maximum Crosstalk space * |
| 784 | * addressable by the Shub is thus the lower 16 GBytes per widget * |
| 785 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 786 | * space can be accessed. * |
| 787 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 788 | * Window number) are used to select one of these 7 registers. The * |
| 789 | * Widget number field is then derived from the W_NUM field for * |
| 790 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 791 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 792 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 793 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 794 | * Crosstalk space addressable by the Shub is thus the lower * |
| 795 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 796 | * of this space can be accessed. * |
| 797 | * * |
| 798 | ************************************************************************/ |
| 799 | |
| 800 | typedef union ii_itte6_u { |
| 801 | uint64_t ii_itte6_regval; |
| 802 | struct { |
| 803 | uint64_t i_offset : 5; |
| 804 | uint64_t i_rsvd_1 : 3; |
| 805 | uint64_t i_w_num : 4; |
| 806 | uint64_t i_iosp : 1; |
| 807 | uint64_t i_rsvd : 51; |
| 808 | } ii_itte6_fld_s; |
| 809 | } ii_itte6_u_t; |
| 810 | |
| 811 | |
| 812 | /************************************************************************ |
| 813 | * * |
| 814 | * Description: There are seven instances of translation table entry * |
| 815 | * registers. Each register maps a Shub Big Window to a 48-bit * |
| 816 | * address on Crosstalk. * |
| 817 | * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * |
| 818 | * number) are used to select one of these 7 registers. The Widget * |
| 819 | * number field is then derived from the W_NUM field for synthesizing * |
| 820 | * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * |
| 821 | * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * |
| 822 | * are padded with zeros. Although the maximum Crosstalk space * |
| 823 | * addressable by the Shub is thus the lower 16 GBytes per widget * |
| 824 | * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this * |
| 825 | * space can be accessed. * |
| 826 | * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * |
| 827 | * Window number) are used to select one of these 7 registers. The * |
| 828 | * Widget number field is then derived from the W_NUM field for * |
| 829 | * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * |
| 830 | * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * |
| 831 | * field is used as Crosstalk[47], and remainder of the Crosstalk * |
| 832 | * address bits (Crosstalk[46:34]) are always zero. While the maximum * |
| 833 | * Crosstalk space addressable by the SHub is thus the lower * |
| 834 | * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * |
| 835 | * of this space can be accessed. * |
| 836 | * * |
| 837 | ************************************************************************/ |
| 838 | |
| 839 | typedef union ii_itte7_u { |
| 840 | uint64_t ii_itte7_regval; |
| 841 | struct { |
| 842 | uint64_t i_offset : 5; |
| 843 | uint64_t i_rsvd_1 : 3; |
| 844 | uint64_t i_w_num : 4; |
| 845 | uint64_t i_iosp : 1; |
| 846 | uint64_t i_rsvd : 51; |
| 847 | } ii_itte7_fld_s; |
| 848 | } ii_itte7_u_t; |
| 849 | |
| 850 | |
| 851 | /************************************************************************ |
| 852 | * * |
| 853 | * Description: There are 9 instances of this register, one per * |
| 854 | * actual widget in this implementation of SHub and Crossbow. * |
| 855 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 856 | * refers to Crossbow's internal space. * |
| 857 | * This register contains the state elements per widget that are * |
| 858 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 859 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 860 | * description of this register * |
| 861 | * The SPUR_WR bit requires some explanation. When this register is * |
| 862 | * written, the new value of the C field is captured in an internal * |
| 863 | * register so the hardware can remember what the programmer wrote * |
| 864 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 865 | * increments above this stored value, which indicates that there * |
| 866 | * have been more responses received than requests sent. The SPUR_WR * |
| 867 | * bit cannot be cleared until a value is written to the IPRBx * |
| 868 | * register; the write will correct the C field and capture its new * |
| 869 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 870 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 871 | * . * |
| 872 | * * |
| 873 | ************************************************************************/ |
| 874 | |
| 875 | typedef union ii_iprb0_u { |
| 876 | uint64_t ii_iprb0_regval; |
| 877 | struct { |
| 878 | uint64_t i_c : 8; |
| 879 | uint64_t i_na : 14; |
| 880 | uint64_t i_rsvd_2 : 2; |
| 881 | uint64_t i_nb : 14; |
| 882 | uint64_t i_rsvd_1 : 2; |
| 883 | uint64_t i_m : 2; |
| 884 | uint64_t i_f : 1; |
| 885 | uint64_t i_of_cnt : 5; |
| 886 | uint64_t i_error : 1; |
| 887 | uint64_t i_rd_to : 1; |
| 888 | uint64_t i_spur_wr : 1; |
| 889 | uint64_t i_spur_rd : 1; |
| 890 | uint64_t i_rsvd : 11; |
| 891 | uint64_t i_mult_err : 1; |
| 892 | } ii_iprb0_fld_s; |
| 893 | } ii_iprb0_u_t; |
| 894 | |
| 895 | |
| 896 | /************************************************************************ |
| 897 | * * |
| 898 | * Description: There are 9 instances of this register, one per * |
| 899 | * actual widget in this implementation of SHub and Crossbow. * |
| 900 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 901 | * refers to Crossbow's internal space. * |
| 902 | * This register contains the state elements per widget that are * |
| 903 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 904 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 905 | * description of this register * |
| 906 | * The SPUR_WR bit requires some explanation. When this register is * |
| 907 | * written, the new value of the C field is captured in an internal * |
| 908 | * register so the hardware can remember what the programmer wrote * |
| 909 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 910 | * increments above this stored value, which indicates that there * |
| 911 | * have been more responses received than requests sent. The SPUR_WR * |
| 912 | * bit cannot be cleared until a value is written to the IPRBx * |
| 913 | * register; the write will correct the C field and capture its new * |
| 914 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 915 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 916 | * . * |
| 917 | * * |
| 918 | ************************************************************************/ |
| 919 | |
| 920 | typedef union ii_iprb8_u { |
| 921 | uint64_t ii_iprb8_regval; |
| 922 | struct { |
| 923 | uint64_t i_c : 8; |
| 924 | uint64_t i_na : 14; |
| 925 | uint64_t i_rsvd_2 : 2; |
| 926 | uint64_t i_nb : 14; |
| 927 | uint64_t i_rsvd_1 : 2; |
| 928 | uint64_t i_m : 2; |
| 929 | uint64_t i_f : 1; |
| 930 | uint64_t i_of_cnt : 5; |
| 931 | uint64_t i_error : 1; |
| 932 | uint64_t i_rd_to : 1; |
| 933 | uint64_t i_spur_wr : 1; |
| 934 | uint64_t i_spur_rd : 1; |
| 935 | uint64_t i_rsvd : 11; |
| 936 | uint64_t i_mult_err : 1; |
| 937 | } ii_iprb8_fld_s; |
| 938 | } ii_iprb8_u_t; |
| 939 | |
| 940 | |
| 941 | /************************************************************************ |
| 942 | * * |
| 943 | * Description: There are 9 instances of this register, one per * |
| 944 | * actual widget in this implementation of SHub and Crossbow. * |
| 945 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 946 | * refers to Crossbow's internal space. * |
| 947 | * This register contains the state elements per widget that are * |
| 948 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 949 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 950 | * description of this register * |
| 951 | * The SPUR_WR bit requires some explanation. When this register is * |
| 952 | * written, the new value of the C field is captured in an internal * |
| 953 | * register so the hardware can remember what the programmer wrote * |
| 954 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 955 | * increments above this stored value, which indicates that there * |
| 956 | * have been more responses received than requests sent. The SPUR_WR * |
| 957 | * bit cannot be cleared until a value is written to the IPRBx * |
| 958 | * register; the write will correct the C field and capture its new * |
| 959 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 960 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 961 | * . * |
| 962 | * * |
| 963 | ************************************************************************/ |
| 964 | |
| 965 | typedef union ii_iprb9_u { |
| 966 | uint64_t ii_iprb9_regval; |
| 967 | struct { |
| 968 | uint64_t i_c : 8; |
| 969 | uint64_t i_na : 14; |
| 970 | uint64_t i_rsvd_2 : 2; |
| 971 | uint64_t i_nb : 14; |
| 972 | uint64_t i_rsvd_1 : 2; |
| 973 | uint64_t i_m : 2; |
| 974 | uint64_t i_f : 1; |
| 975 | uint64_t i_of_cnt : 5; |
| 976 | uint64_t i_error : 1; |
| 977 | uint64_t i_rd_to : 1; |
| 978 | uint64_t i_spur_wr : 1; |
| 979 | uint64_t i_spur_rd : 1; |
| 980 | uint64_t i_rsvd : 11; |
| 981 | uint64_t i_mult_err : 1; |
| 982 | } ii_iprb9_fld_s; |
| 983 | } ii_iprb9_u_t; |
| 984 | |
| 985 | |
| 986 | /************************************************************************ |
| 987 | * * |
| 988 | * Description: There are 9 instances of this register, one per * |
| 989 | * actual widget in this implementation of SHub and Crossbow. * |
| 990 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 991 | * refers to Crossbow's internal space. * |
| 992 | * This register contains the state elements per widget that are * |
| 993 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 994 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 995 | * description of this register * |
| 996 | * The SPUR_WR bit requires some explanation. When this register is * |
| 997 | * written, the new value of the C field is captured in an internal * |
| 998 | * register so the hardware can remember what the programmer wrote * |
| 999 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 1000 | * increments above this stored value, which indicates that there * |
| 1001 | * have been more responses received than requests sent. The SPUR_WR * |
| 1002 | * bit cannot be cleared until a value is written to the IPRBx * |
| 1003 | * register; the write will correct the C field and capture its new * |
| 1004 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 1005 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 1006 | * * |
| 1007 | * * |
| 1008 | ************************************************************************/ |
| 1009 | |
| 1010 | typedef union ii_iprba_u { |
| 1011 | uint64_t ii_iprba_regval; |
| 1012 | struct { |
| 1013 | uint64_t i_c : 8; |
| 1014 | uint64_t i_na : 14; |
| 1015 | uint64_t i_rsvd_2 : 2; |
| 1016 | uint64_t i_nb : 14; |
| 1017 | uint64_t i_rsvd_1 : 2; |
| 1018 | uint64_t i_m : 2; |
| 1019 | uint64_t i_f : 1; |
| 1020 | uint64_t i_of_cnt : 5; |
| 1021 | uint64_t i_error : 1; |
| 1022 | uint64_t i_rd_to : 1; |
| 1023 | uint64_t i_spur_wr : 1; |
| 1024 | uint64_t i_spur_rd : 1; |
| 1025 | uint64_t i_rsvd : 11; |
| 1026 | uint64_t i_mult_err : 1; |
| 1027 | } ii_iprba_fld_s; |
| 1028 | } ii_iprba_u_t; |
| 1029 | |
| 1030 | |
| 1031 | /************************************************************************ |
| 1032 | * * |
| 1033 | * Description: There are 9 instances of this register, one per * |
| 1034 | * actual widget in this implementation of SHub and Crossbow. * |
| 1035 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 1036 | * refers to Crossbow's internal space. * |
| 1037 | * This register contains the state elements per widget that are * |
| 1038 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 1039 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 1040 | * description of this register * |
| 1041 | * The SPUR_WR bit requires some explanation. When this register is * |
| 1042 | * written, the new value of the C field is captured in an internal * |
| 1043 | * register so the hardware can remember what the programmer wrote * |
| 1044 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 1045 | * increments above this stored value, which indicates that there * |
| 1046 | * have been more responses received than requests sent. The SPUR_WR * |
| 1047 | * bit cannot be cleared until a value is written to the IPRBx * |
| 1048 | * register; the write will correct the C field and capture its new * |
| 1049 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 1050 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 1051 | * . * |
| 1052 | * * |
| 1053 | ************************************************************************/ |
| 1054 | |
| 1055 | typedef union ii_iprbb_u { |
| 1056 | uint64_t ii_iprbb_regval; |
| 1057 | struct { |
| 1058 | uint64_t i_c : 8; |
| 1059 | uint64_t i_na : 14; |
| 1060 | uint64_t i_rsvd_2 : 2; |
| 1061 | uint64_t i_nb : 14; |
| 1062 | uint64_t i_rsvd_1 : 2; |
| 1063 | uint64_t i_m : 2; |
| 1064 | uint64_t i_f : 1; |
| 1065 | uint64_t i_of_cnt : 5; |
| 1066 | uint64_t i_error : 1; |
| 1067 | uint64_t i_rd_to : 1; |
| 1068 | uint64_t i_spur_wr : 1; |
| 1069 | uint64_t i_spur_rd : 1; |
| 1070 | uint64_t i_rsvd : 11; |
| 1071 | uint64_t i_mult_err : 1; |
| 1072 | } ii_iprbb_fld_s; |
| 1073 | } ii_iprbb_u_t; |
| 1074 | |
| 1075 | |
| 1076 | /************************************************************************ |
| 1077 | * * |
| 1078 | * Description: There are 9 instances of this register, one per * |
| 1079 | * actual widget in this implementation of SHub and Crossbow. * |
| 1080 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 1081 | * refers to Crossbow's internal space. * |
| 1082 | * This register contains the state elements per widget that are * |
| 1083 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 1084 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 1085 | * description of this register * |
| 1086 | * The SPUR_WR bit requires some explanation. When this register is * |
| 1087 | * written, the new value of the C field is captured in an internal * |
| 1088 | * register so the hardware can remember what the programmer wrote * |
| 1089 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 1090 | * increments above this stored value, which indicates that there * |
| 1091 | * have been more responses received than requests sent. The SPUR_WR * |
| 1092 | * bit cannot be cleared until a value is written to the IPRBx * |
| 1093 | * register; the write will correct the C field and capture its new * |
| 1094 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 1095 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 1096 | * . * |
| 1097 | * * |
| 1098 | ************************************************************************/ |
| 1099 | |
| 1100 | typedef union ii_iprbc_u { |
| 1101 | uint64_t ii_iprbc_regval; |
| 1102 | struct { |
| 1103 | uint64_t i_c : 8; |
| 1104 | uint64_t i_na : 14; |
| 1105 | uint64_t i_rsvd_2 : 2; |
| 1106 | uint64_t i_nb : 14; |
| 1107 | uint64_t i_rsvd_1 : 2; |
| 1108 | uint64_t i_m : 2; |
| 1109 | uint64_t i_f : 1; |
| 1110 | uint64_t i_of_cnt : 5; |
| 1111 | uint64_t i_error : 1; |
| 1112 | uint64_t i_rd_to : 1; |
| 1113 | uint64_t i_spur_wr : 1; |
| 1114 | uint64_t i_spur_rd : 1; |
| 1115 | uint64_t i_rsvd : 11; |
| 1116 | uint64_t i_mult_err : 1; |
| 1117 | } ii_iprbc_fld_s; |
| 1118 | } ii_iprbc_u_t; |
| 1119 | |
| 1120 | |
| 1121 | /************************************************************************ |
| 1122 | * * |
| 1123 | * Description: There are 9 instances of this register, one per * |
| 1124 | * actual widget in this implementation of SHub and Crossbow. * |
| 1125 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 1126 | * refers to Crossbow's internal space. * |
| 1127 | * This register contains the state elements per widget that are * |
| 1128 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 1129 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 1130 | * description of this register * |
| 1131 | * The SPUR_WR bit requires some explanation. When this register is * |
| 1132 | * written, the new value of the C field is captured in an internal * |
| 1133 | * register so the hardware can remember what the programmer wrote * |
| 1134 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 1135 | * increments above this stored value, which indicates that there * |
| 1136 | * have been more responses received than requests sent. The SPUR_WR * |
| 1137 | * bit cannot be cleared until a value is written to the IPRBx * |
| 1138 | * register; the write will correct the C field and capture its new * |
| 1139 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 1140 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 1141 | * . * |
| 1142 | * * |
| 1143 | ************************************************************************/ |
| 1144 | |
| 1145 | typedef union ii_iprbd_u { |
| 1146 | uint64_t ii_iprbd_regval; |
| 1147 | struct { |
| 1148 | uint64_t i_c : 8; |
| 1149 | uint64_t i_na : 14; |
| 1150 | uint64_t i_rsvd_2 : 2; |
| 1151 | uint64_t i_nb : 14; |
| 1152 | uint64_t i_rsvd_1 : 2; |
| 1153 | uint64_t i_m : 2; |
| 1154 | uint64_t i_f : 1; |
| 1155 | uint64_t i_of_cnt : 5; |
| 1156 | uint64_t i_error : 1; |
| 1157 | uint64_t i_rd_to : 1; |
| 1158 | uint64_t i_spur_wr : 1; |
| 1159 | uint64_t i_spur_rd : 1; |
| 1160 | uint64_t i_rsvd : 11; |
| 1161 | uint64_t i_mult_err : 1; |
| 1162 | } ii_iprbd_fld_s; |
| 1163 | } ii_iprbd_u_t; |
| 1164 | |
| 1165 | |
| 1166 | /************************************************************************ |
| 1167 | * * |
| 1168 | * Description: There are 9 instances of this register, one per * |
| 1169 | * actual widget in this implementation of SHub and Crossbow. * |
| 1170 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 1171 | * refers to Crossbow's internal space. * |
| 1172 | * This register contains the state elements per widget that are * |
| 1173 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 1174 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 1175 | * description of this register * |
| 1176 | * The SPUR_WR bit requires some explanation. When this register is * |
| 1177 | * written, the new value of the C field is captured in an internal * |
| 1178 | * register so the hardware can remember what the programmer wrote * |
| 1179 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 1180 | * increments above this stored value, which indicates that there * |
| 1181 | * have been more responses received than requests sent. The SPUR_WR * |
| 1182 | * bit cannot be cleared until a value is written to the IPRBx * |
| 1183 | * register; the write will correct the C field and capture its new * |
| 1184 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 1185 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 1186 | * . * |
| 1187 | * * |
| 1188 | ************************************************************************/ |
| 1189 | |
| 1190 | typedef union ii_iprbe_u { |
| 1191 | uint64_t ii_iprbe_regval; |
| 1192 | struct { |
| 1193 | uint64_t i_c : 8; |
| 1194 | uint64_t i_na : 14; |
| 1195 | uint64_t i_rsvd_2 : 2; |
| 1196 | uint64_t i_nb : 14; |
| 1197 | uint64_t i_rsvd_1 : 2; |
| 1198 | uint64_t i_m : 2; |
| 1199 | uint64_t i_f : 1; |
| 1200 | uint64_t i_of_cnt : 5; |
| 1201 | uint64_t i_error : 1; |
| 1202 | uint64_t i_rd_to : 1; |
| 1203 | uint64_t i_spur_wr : 1; |
| 1204 | uint64_t i_spur_rd : 1; |
| 1205 | uint64_t i_rsvd : 11; |
| 1206 | uint64_t i_mult_err : 1; |
| 1207 | } ii_iprbe_fld_s; |
| 1208 | } ii_iprbe_u_t; |
| 1209 | |
| 1210 | |
| 1211 | /************************************************************************ |
| 1212 | * * |
| 1213 | * Description: There are 9 instances of this register, one per * |
| 1214 | * actual widget in this implementation of Shub and Crossbow. * |
| 1215 | * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * |
| 1216 | * refers to Crossbow's internal space. * |
| 1217 | * This register contains the state elements per widget that are * |
| 1218 | * necessary to manage the PIO flow control on Crosstalk and on the * |
| 1219 | * Router Network. See the PIO Flow Control chapter for a complete * |
| 1220 | * description of this register * |
| 1221 | * The SPUR_WR bit requires some explanation. When this register is * |
| 1222 | * written, the new value of the C field is captured in an internal * |
| 1223 | * register so the hardware can remember what the programmer wrote * |
| 1224 | * into the credit counter. The SPUR_WR bit sets whenever the C field * |
| 1225 | * increments above this stored value, which indicates that there * |
| 1226 | * have been more responses received than requests sent. The SPUR_WR * |
| 1227 | * bit cannot be cleared until a value is written to the IPRBx * |
| 1228 | * register; the write will correct the C field and capture its new * |
| 1229 | * value in the internal register. Even if IECLR[E_PRB_x] is set, the * |
| 1230 | * SPUR_WR bit will persist if IPRBx hasn't yet been written. * |
| 1231 | * . * |
| 1232 | * * |
| 1233 | ************************************************************************/ |
| 1234 | |
| 1235 | typedef union ii_iprbf_u { |
| 1236 | uint64_t ii_iprbf_regval; |
| 1237 | struct { |
| 1238 | uint64_t i_c : 8; |
| 1239 | uint64_t i_na : 14; |
| 1240 | uint64_t i_rsvd_2 : 2; |
| 1241 | uint64_t i_nb : 14; |
| 1242 | uint64_t i_rsvd_1 : 2; |
| 1243 | uint64_t i_m : 2; |
| 1244 | uint64_t i_f : 1; |
| 1245 | uint64_t i_of_cnt : 5; |
| 1246 | uint64_t i_error : 1; |
| 1247 | uint64_t i_rd_to : 1; |
| 1248 | uint64_t i_spur_wr : 1; |
| 1249 | uint64_t i_spur_rd : 1; |
| 1250 | uint64_t i_rsvd : 11; |
| 1251 | uint64_t i_mult_err : 1; |
| 1252 | } ii_iprbe_fld_s; |
| 1253 | } ii_iprbf_u_t; |
| 1254 | |
| 1255 | |
| 1256 | /************************************************************************ |
| 1257 | * * |
| 1258 | * This register specifies the timeout value to use for monitoring * |
| 1259 | * Crosstalk credits which are used outbound to Crosstalk. An * |
| 1260 | * internal counter called the Crosstalk Credit Timeout Counter * |
| 1261 | * increments every 128 II clocks. The counter starts counting * |
| 1262 | * anytime the credit count drops below a threshold, and resets to * |
| 1263 | * zero (stops counting) anytime the credit count is at or above the * |
| 1264 | * threshold. The threshold is 1 credit in direct connect mode and 2 * |
| 1265 | * in Crossbow connect mode. When the internal Crosstalk Credit * |
| 1266 | * Timeout Counter reaches the value programmed in this register, a * |
| 1267 | * Crosstalk Credit Timeout has occurred. The internal counter is not * |
| 1268 | * readable from software, and stops counting at its maximum value, * |
| 1269 | * so it cannot cause more than one interrupt. * |
| 1270 | * * |
| 1271 | ************************************************************************/ |
| 1272 | |
| 1273 | typedef union ii_ixcc_u { |
| 1274 | uint64_t ii_ixcc_regval; |
| 1275 | struct { |
| 1276 | uint64_t i_time_out : 26; |
| 1277 | uint64_t i_rsvd : 38; |
| 1278 | } ii_ixcc_fld_s; |
| 1279 | } ii_ixcc_u_t; |
| 1280 | |
| 1281 | |
| 1282 | /************************************************************************ |
| 1283 | * * |
| 1284 | * Description: This register qualifies all the PIO and DMA * |
| 1285 | * operations launched from widget 0 towards the SHub. In * |
| 1286 | * addition, it also qualifies accesses by the BTE streams. * |
| 1287 | * The bits in each field of this register are cleared by the SHub * |
| 1288 | * upon detection of an error which requires widget 0 or the BTE * |
| 1289 | * streams to be terminated. Whether or not widget x has access * |
| 1290 | * rights to this SHub is determined by an AND of the device * |
| 1291 | * enable bit in the appropriate field of this register and bit 0 in * |
| 1292 | * the Wx_IAC field. The bits in this field are set by writing a 1 to * |
| 1293 | * them. Incoming replies from Crosstalk are not subject to this * |
| 1294 | * access control mechanism. * |
| 1295 | * * |
| 1296 | ************************************************************************/ |
| 1297 | |
| 1298 | typedef union ii_imem_u { |
| 1299 | uint64_t ii_imem_regval; |
| 1300 | struct { |
| 1301 | uint64_t i_w0_esd : 1; |
| 1302 | uint64_t i_rsvd_3 : 3; |
| 1303 | uint64_t i_b0_esd : 1; |
| 1304 | uint64_t i_rsvd_2 : 3; |
| 1305 | uint64_t i_b1_esd : 1; |
| 1306 | uint64_t i_rsvd_1 : 3; |
| 1307 | uint64_t i_clr_precise : 1; |
| 1308 | uint64_t i_rsvd : 51; |
| 1309 | } ii_imem_fld_s; |
| 1310 | } ii_imem_u_t; |
| 1311 | |
| 1312 | |
| 1313 | |
| 1314 | /************************************************************************ |
| 1315 | * * |
| 1316 | * Description: This register specifies the timeout value to use for * |
| 1317 | * monitoring Crosstalk tail flits coming into the Shub in the * |
| 1318 | * TAIL_TO field. An internal counter associated with this register * |
| 1319 | * is incremented every 128 II internal clocks (7 bits). The counter * |
| 1320 | * starts counting anytime a header micropacket is received and stops * |
| 1321 | * counting (and resets to zero) any time a micropacket with a Tail * |
| 1322 | * bit is received. Once the counter reaches the threshold value * |
| 1323 | * programmed in this register, it generates an interrupt to the * |
| 1324 | * processor that is programmed into the IIDSR. The counter saturates * |
| 1325 | * (does not roll over) at its maximum value, so it cannot cause * |
| 1326 | * another interrupt until after it is cleared. * |
| 1327 | * The register also contains the Read Response Timeout values. The * |
| 1328 | * Prescalar is 23 bits, and counts II clocks. An internal counter * |
| 1329 | * increments on every II clock and when it reaches the value in the * |
| 1330 | * Prescalar field, all IPRTE registers with their valid bits set * |
| 1331 | * have their Read Response timers bumped. Whenever any of them match * |
| 1332 | * the value in the RRSP_TO field, a Read Response Timeout has * |
| 1333 | * occurred, and error handling occurs as described in the Error * |
| 1334 | * Handling section of this document. * |
| 1335 | * * |
| 1336 | ************************************************************************/ |
| 1337 | |
| 1338 | typedef union ii_ixtt_u { |
| 1339 | uint64_t ii_ixtt_regval; |
| 1340 | struct { |
| 1341 | uint64_t i_tail_to : 26; |
| 1342 | uint64_t i_rsvd_1 : 6; |
| 1343 | uint64_t i_rrsp_ps : 23; |
| 1344 | uint64_t i_rrsp_to : 5; |
| 1345 | uint64_t i_rsvd : 4; |
| 1346 | } ii_ixtt_fld_s; |
| 1347 | } ii_ixtt_u_t; |
| 1348 | |
| 1349 | |
| 1350 | /************************************************************************ |
| 1351 | * * |
| 1352 | * Writing a 1 to the fields of this register clears the appropriate * |
| 1353 | * error bits in other areas of SHub. Note that when the * |
| 1354 | * E_PRB_x bits are used to clear error bits in PRB registers, * |
| 1355 | * SPUR_RD and SPUR_WR may persist, because they require additional * |
| 1356 | * action to clear them. See the IPRBx and IXSS Register * |
| 1357 | * specifications. * |
| 1358 | * * |
| 1359 | ************************************************************************/ |
| 1360 | |
| 1361 | typedef union ii_ieclr_u { |
| 1362 | uint64_t ii_ieclr_regval; |
| 1363 | struct { |
| 1364 | uint64_t i_e_prb_0 : 1; |
| 1365 | uint64_t i_rsvd : 7; |
| 1366 | uint64_t i_e_prb_8 : 1; |
| 1367 | uint64_t i_e_prb_9 : 1; |
| 1368 | uint64_t i_e_prb_a : 1; |
| 1369 | uint64_t i_e_prb_b : 1; |
| 1370 | uint64_t i_e_prb_c : 1; |
| 1371 | uint64_t i_e_prb_d : 1; |
| 1372 | uint64_t i_e_prb_e : 1; |
| 1373 | uint64_t i_e_prb_f : 1; |
| 1374 | uint64_t i_e_crazy : 1; |
| 1375 | uint64_t i_e_bte_0 : 1; |
| 1376 | uint64_t i_e_bte_1 : 1; |
| 1377 | uint64_t i_reserved_1 : 10; |
| 1378 | uint64_t i_spur_rd_hdr : 1; |
| 1379 | uint64_t i_cam_intr_to : 1; |
| 1380 | uint64_t i_cam_overflow : 1; |
| 1381 | uint64_t i_cam_read_miss : 1; |
| 1382 | uint64_t i_ioq_rep_underflow : 1; |
| 1383 | uint64_t i_ioq_req_underflow : 1; |
| 1384 | uint64_t i_ioq_rep_overflow : 1; |
| 1385 | uint64_t i_ioq_req_overflow : 1; |
| 1386 | uint64_t i_iiq_rep_overflow : 1; |
| 1387 | uint64_t i_iiq_req_overflow : 1; |
| 1388 | uint64_t i_ii_xn_rep_cred_overflow : 1; |
| 1389 | uint64_t i_ii_xn_req_cred_overflow : 1; |
| 1390 | uint64_t i_ii_xn_invalid_cmd : 1; |
| 1391 | uint64_t i_xn_ii_invalid_cmd : 1; |
| 1392 | uint64_t i_reserved_2 : 21; |
| 1393 | } ii_ieclr_fld_s; |
| 1394 | } ii_ieclr_u_t; |
| 1395 | |
| 1396 | |
| 1397 | /************************************************************************ |
| 1398 | * * |
| 1399 | * This register controls both BTEs. SOFT_RESET is intended for * |
| 1400 | * recovery after an error. COUNT controls the total number of CRBs * |
| 1401 | * that both BTEs (combined) can use, which affects total BTE * |
| 1402 | * bandwidth. * |
| 1403 | * * |
| 1404 | ************************************************************************/ |
| 1405 | |
| 1406 | typedef union ii_ibcr_u { |
| 1407 | uint64_t ii_ibcr_regval; |
| 1408 | struct { |
| 1409 | uint64_t i_count : 4; |
| 1410 | uint64_t i_rsvd_1 : 4; |
| 1411 | uint64_t i_soft_reset : 1; |
| 1412 | uint64_t i_rsvd : 55; |
| 1413 | } ii_ibcr_fld_s; |
| 1414 | } ii_ibcr_u_t; |
| 1415 | |
| 1416 | |
| 1417 | /************************************************************************ |
| 1418 | * * |
| 1419 | * This register contains the header of a spurious read response * |
| 1420 | * received from Crosstalk. A spurious read response is defined as a * |
| 1421 | * read response received by II from a widget for which (1) the SIDN * |
| 1422 | * has a value between 1 and 7, inclusive (II never sends requests to * |
| 1423 | * these widgets (2) there is no valid IPRTE register which * |
| 1424 | * corresponds to the TNUM, or (3) the widget indicated in SIDN is * |
| 1425 | * not the same as the widget recorded in the IPRTE register * |
| 1426 | * referenced by the TNUM. If this condition is true, and if the * |
| 1427 | * IXSS[VALID] bit is clear, then the header of the spurious read * |
| 1428 | * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The * |
| 1429 | * errant header is thereby captured, and no further spurious read * |
| 1430 | * respones are captured until IXSS[VALID] is cleared by setting the * |
| 1431 | * appropriate bit in IECLR.Everytime a spurious read response is * |
| 1432 | * detected, the SPUR_RD bit of the PRB corresponding to the incoming * |
| 1433 | * message's SIDN field is set. This always happens, regarless of * |
| 1434 | * whether a header is captured. The programmer should check * |
| 1435 | * IXSM[SIDN] to determine which widget sent the spurious response, * |
| 1436 | * because there may be more than one SPUR_RD bit set in the PRB * |
| 1437 | * registers. The widget indicated by IXSM[SIDN] was the first * |
| 1438 | * spurious read response to be received since the last time * |
| 1439 | * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB * |
| 1440 | * will be set. Any SPUR_RD bits in any other PRB registers indicate * |
| 1441 | * spurious messages from other widets which were detected after the * |
| 1442 | * header was captured.. * |
| 1443 | * * |
| 1444 | ************************************************************************/ |
| 1445 | |
| 1446 | typedef union ii_ixsm_u { |
| 1447 | uint64_t ii_ixsm_regval; |
| 1448 | struct { |
| 1449 | uint64_t i_byte_en : 32; |
| 1450 | uint64_t i_reserved : 1; |
| 1451 | uint64_t i_tag : 3; |
| 1452 | uint64_t i_alt_pactyp : 4; |
| 1453 | uint64_t i_bo : 1; |
| 1454 | uint64_t i_error : 1; |
| 1455 | uint64_t i_vbpm : 1; |
| 1456 | uint64_t i_gbr : 1; |
| 1457 | uint64_t i_ds : 2; |
| 1458 | uint64_t i_ct : 1; |
| 1459 | uint64_t i_tnum : 5; |
| 1460 | uint64_t i_pactyp : 4; |
| 1461 | uint64_t i_sidn : 4; |
| 1462 | uint64_t i_didn : 4; |
| 1463 | } ii_ixsm_fld_s; |
| 1464 | } ii_ixsm_u_t; |
| 1465 | |
| 1466 | |
| 1467 | /************************************************************************ |
| 1468 | * * |
| 1469 | * This register contains the sideband bits of a spurious read * |
| 1470 | * response received from Crosstalk. * |
| 1471 | * * |
| 1472 | ************************************************************************/ |
| 1473 | |
| 1474 | typedef union ii_ixss_u { |
| 1475 | uint64_t ii_ixss_regval; |
| 1476 | struct { |
| 1477 | uint64_t i_sideband : 8; |
| 1478 | uint64_t i_rsvd : 55; |
| 1479 | uint64_t i_valid : 1; |
| 1480 | } ii_ixss_fld_s; |
| 1481 | } ii_ixss_u_t; |
| 1482 | |
| 1483 | |
| 1484 | /************************************************************************ |
| 1485 | * * |
| 1486 | * This register enables software to access the II LLP's test port. * |
| 1487 | * Refer to the LLP 2.5 documentation for an explanation of the test * |
| 1488 | * port. Software can write to this register to program the values * |
| 1489 | * for the control fields (TestErrCapture, TestClear, TestFlit, * |
| 1490 | * TestMask and TestSeed). Similarly, software can read from this * |
| 1491 | * register to obtain the values of the test port's status outputs * |
| 1492 | * (TestCBerr, TestValid and TestData). * |
| 1493 | * * |
| 1494 | ************************************************************************/ |
| 1495 | |
| 1496 | typedef union ii_ilct_u { |
| 1497 | uint64_t ii_ilct_regval; |
| 1498 | struct { |
| 1499 | uint64_t i_test_seed : 20; |
| 1500 | uint64_t i_test_mask : 8; |
| 1501 | uint64_t i_test_data : 20; |
| 1502 | uint64_t i_test_valid : 1; |
| 1503 | uint64_t i_test_cberr : 1; |
| 1504 | uint64_t i_test_flit : 3; |
| 1505 | uint64_t i_test_clear : 1; |
| 1506 | uint64_t i_test_err_capture : 1; |
| 1507 | uint64_t i_rsvd : 9; |
| 1508 | } ii_ilct_fld_s; |
| 1509 | } ii_ilct_u_t; |
| 1510 | |
| 1511 | |
| 1512 | /************************************************************************ |
| 1513 | * * |
| 1514 | * If the II detects an illegal incoming Duplonet packet (request or * |
| 1515 | * reply) when VALID==0 in the IIEPH1 register, then it saves the * |
| 1516 | * contents of the packet's header flit in the IIEPH1 and IIEPH2 * |
| 1517 | * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, * |
| 1518 | * and assigns a value to the ERR_TYPE field which indicates the * |
| 1519 | * specific nature of the error. The II recognizes four different * |
| 1520 | * types of errors: short request packets (ERR_TYPE==2), short reply * |
| 1521 | * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long * |
| 1522 | * reply packets (ERR_TYPE==5). The encodings for these types of * |
| 1523 | * errors were chosen to be consistent with the same types of errors * |
| 1524 | * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in * |
| 1525 | * the LB unit). If the II detects an illegal incoming Duplonet * |
| 1526 | * packet when VALID==1 in the IIEPH1 register, then it merely sets * |
| 1527 | * the OVERRUN bit to indicate that a subsequent error has happened, * |
| 1528 | * and does nothing further. * |
| 1529 | * * |
| 1530 | ************************************************************************/ |
| 1531 | |
| 1532 | typedef union ii_iieph1_u { |
| 1533 | uint64_t ii_iieph1_regval; |
| 1534 | struct { |
| 1535 | uint64_t i_command : 7; |
| 1536 | uint64_t i_rsvd_5 : 1; |
| 1537 | uint64_t i_suppl : 14; |
| 1538 | uint64_t i_rsvd_4 : 1; |
| 1539 | uint64_t i_source : 14; |
| 1540 | uint64_t i_rsvd_3 : 1; |
| 1541 | uint64_t i_err_type : 4; |
| 1542 | uint64_t i_rsvd_2 : 4; |
| 1543 | uint64_t i_overrun : 1; |
| 1544 | uint64_t i_rsvd_1 : 3; |
| 1545 | uint64_t i_valid : 1; |
| 1546 | uint64_t i_rsvd : 13; |
| 1547 | } ii_iieph1_fld_s; |
| 1548 | } ii_iieph1_u_t; |
| 1549 | |
| 1550 | |
| 1551 | /************************************************************************ |
| 1552 | * * |
| 1553 | * This register holds the Address field from the header flit of an * |
| 1554 | * incoming erroneous Duplonet packet, along with the tail bit which * |
| 1555 | * accompanied this header flit. This register is essentially an * |
| 1556 | * extension of IIEPH1. Two registers were necessary because the 64 * |
| 1557 | * bits available in only a single register were insufficient to * |
| 1558 | * capture the entire header flit of an erroneous packet. * |
| 1559 | * * |
| 1560 | ************************************************************************/ |
| 1561 | |
| 1562 | typedef union ii_iieph2_u { |
| 1563 | uint64_t ii_iieph2_regval; |
| 1564 | struct { |
| 1565 | uint64_t i_rsvd_0 : 3; |
| 1566 | uint64_t i_address : 47; |
| 1567 | uint64_t i_rsvd_1 : 10; |
| 1568 | uint64_t i_tail : 1; |
| 1569 | uint64_t i_rsvd : 3; |
| 1570 | } ii_iieph2_fld_s; |
| 1571 | } ii_iieph2_u_t; |
| 1572 | |
| 1573 | |
| 1574 | /******************************/ |
| 1575 | |
| 1576 | |
| 1577 | |
| 1578 | /************************************************************************ |
| 1579 | * * |
| 1580 | * This register's value is a bit vector that guards access from SXBs * |
| 1581 | * to local registers within the II as well as to external Crosstalk * |
| 1582 | * widgets * |
| 1583 | * * |
| 1584 | ************************************************************************/ |
| 1585 | |
| 1586 | typedef union ii_islapr_u { |
| 1587 | uint64_t ii_islapr_regval; |
| 1588 | struct { |
| 1589 | uint64_t i_region : 64; |
| 1590 | } ii_islapr_fld_s; |
| 1591 | } ii_islapr_u_t; |
| 1592 | |
| 1593 | |
| 1594 | /************************************************************************ |
| 1595 | * * |
| 1596 | * A write to this register of the 56-bit value "Pup+Bun" will cause * |
| 1597 | * the bit in the ISLAPR register corresponding to the region of the * |
| 1598 | * requestor to be set (access allowed). ( |
| 1599 | * * |
| 1600 | ************************************************************************/ |
| 1601 | |
| 1602 | typedef union ii_islapo_u { |
| 1603 | uint64_t ii_islapo_regval; |
| 1604 | struct { |
| 1605 | uint64_t i_io_sbx_ovrride : 56; |
| 1606 | uint64_t i_rsvd : 8; |
| 1607 | } ii_islapo_fld_s; |
| 1608 | } ii_islapo_u_t; |
| 1609 | |
| 1610 | /************************************************************************ |
| 1611 | * * |
| 1612 | * Determines how long the wrapper will wait aftr an interrupt is * |
| 1613 | * initially issued from the II before it times out the outstanding * |
| 1614 | * interrupt and drops it from the interrupt queue. * |
| 1615 | * * |
| 1616 | ************************************************************************/ |
| 1617 | |
| 1618 | typedef union ii_iwi_u { |
| 1619 | uint64_t ii_iwi_regval; |
| 1620 | struct { |
| 1621 | uint64_t i_prescale : 24; |
| 1622 | uint64_t i_rsvd : 8; |
| 1623 | uint64_t i_timeout : 8; |
| 1624 | uint64_t i_rsvd1 : 8; |
| 1625 | uint64_t i_intrpt_retry_period : 8; |
| 1626 | uint64_t i_rsvd2 : 8; |
| 1627 | } ii_iwi_fld_s; |
| 1628 | } ii_iwi_u_t; |
| 1629 | |
| 1630 | /************************************************************************ |
| 1631 | * * |
| 1632 | * Log errors which have occurred in the II wrapper. The errors are * |
| 1633 | * cleared by writing to the IECLR register. * |
| 1634 | * * |
| 1635 | ************************************************************************/ |
| 1636 | |
| 1637 | typedef union ii_iwel_u { |
| 1638 | uint64_t ii_iwel_regval; |
| 1639 | struct { |
| 1640 | uint64_t i_intr_timed_out : 1; |
| 1641 | uint64_t i_rsvd : 7; |
| 1642 | uint64_t i_cam_overflow : 1; |
| 1643 | uint64_t i_cam_read_miss : 1; |
| 1644 | uint64_t i_rsvd1 : 2; |
| 1645 | uint64_t i_ioq_rep_underflow : 1; |
| 1646 | uint64_t i_ioq_req_underflow : 1; |
| 1647 | uint64_t i_ioq_rep_overflow : 1; |
| 1648 | uint64_t i_ioq_req_overflow : 1; |
| 1649 | uint64_t i_iiq_rep_overflow : 1; |
| 1650 | uint64_t i_iiq_req_overflow : 1; |
| 1651 | uint64_t i_rsvd2 : 6; |
| 1652 | uint64_t i_ii_xn_rep_cred_over_under: 1; |
| 1653 | uint64_t i_ii_xn_req_cred_over_under: 1; |
| 1654 | uint64_t i_rsvd3 : 6; |
| 1655 | uint64_t i_ii_xn_invalid_cmd : 1; |
| 1656 | uint64_t i_xn_ii_invalid_cmd : 1; |
| 1657 | uint64_t i_rsvd4 : 30; |
| 1658 | } ii_iwel_fld_s; |
| 1659 | } ii_iwel_u_t; |
| 1660 | |
| 1661 | /************************************************************************ |
| 1662 | * * |
| 1663 | * Controls the II wrapper. * |
| 1664 | * * |
| 1665 | ************************************************************************/ |
| 1666 | |
| 1667 | typedef union ii_iwc_u { |
| 1668 | uint64_t ii_iwc_regval; |
| 1669 | struct { |
| 1670 | uint64_t i_dma_byte_swap : 1; |
| 1671 | uint64_t i_rsvd : 3; |
| 1672 | uint64_t i_cam_read_lines_reset : 1; |
| 1673 | uint64_t i_rsvd1 : 3; |
| 1674 | uint64_t i_ii_xn_cred_over_under_log: 1; |
| 1675 | uint64_t i_rsvd2 : 19; |
| 1676 | uint64_t i_xn_rep_iq_depth : 5; |
| 1677 | uint64_t i_rsvd3 : 3; |
| 1678 | uint64_t i_xn_req_iq_depth : 5; |
| 1679 | uint64_t i_rsvd4 : 3; |
| 1680 | uint64_t i_iiq_depth : 6; |
| 1681 | uint64_t i_rsvd5 : 12; |
| 1682 | uint64_t i_force_rep_cred : 1; |
| 1683 | uint64_t i_force_req_cred : 1; |
| 1684 | } ii_iwc_fld_s; |
| 1685 | } ii_iwc_u_t; |
| 1686 | |
| 1687 | /************************************************************************ |
| 1688 | * * |
| 1689 | * Status in the II wrapper. * |
| 1690 | * * |
| 1691 | ************************************************************************/ |
| 1692 | |
| 1693 | typedef union ii_iws_u { |
| 1694 | uint64_t ii_iws_regval; |
| 1695 | struct { |
| 1696 | uint64_t i_xn_rep_iq_credits : 5; |
| 1697 | uint64_t i_rsvd : 3; |
| 1698 | uint64_t i_xn_req_iq_credits : 5; |
| 1699 | uint64_t i_rsvd1 : 51; |
| 1700 | } ii_iws_fld_s; |
| 1701 | } ii_iws_u_t; |
| 1702 | |
| 1703 | /************************************************************************ |
| 1704 | * * |
| 1705 | * Masks errors in the IWEL register. * |
| 1706 | * * |
| 1707 | ************************************************************************/ |
| 1708 | |
| 1709 | typedef union ii_iweim_u { |
| 1710 | uint64_t ii_iweim_regval; |
| 1711 | struct { |
| 1712 | uint64_t i_intr_timed_out : 1; |
| 1713 | uint64_t i_rsvd : 7; |
| 1714 | uint64_t i_cam_overflow : 1; |
| 1715 | uint64_t i_cam_read_miss : 1; |
| 1716 | uint64_t i_rsvd1 : 2; |
| 1717 | uint64_t i_ioq_rep_underflow : 1; |
| 1718 | uint64_t i_ioq_req_underflow : 1; |
| 1719 | uint64_t i_ioq_rep_overflow : 1; |
| 1720 | uint64_t i_ioq_req_overflow : 1; |
| 1721 | uint64_t i_iiq_rep_overflow : 1; |
| 1722 | uint64_t i_iiq_req_overflow : 1; |
| 1723 | uint64_t i_rsvd2 : 6; |
| 1724 | uint64_t i_ii_xn_rep_cred_overflow : 1; |
| 1725 | uint64_t i_ii_xn_req_cred_overflow : 1; |
| 1726 | uint64_t i_rsvd3 : 6; |
| 1727 | uint64_t i_ii_xn_invalid_cmd : 1; |
| 1728 | uint64_t i_xn_ii_invalid_cmd : 1; |
| 1729 | uint64_t i_rsvd4 : 30; |
| 1730 | } ii_iweim_fld_s; |
| 1731 | } ii_iweim_u_t; |
| 1732 | |
| 1733 | |
| 1734 | /************************************************************************ |
| 1735 | * * |
| 1736 | * A write to this register causes a particular field in the * |
| 1737 | * corresponding widget's PRB entry to be adjusted up or down by 1. * |
| 1738 | * This counter should be used when recovering from error and reset * |
| 1739 | * conditions. Note that software would be capable of causing * |
| 1740 | * inadvertent overflow or underflow of these counters. * |
| 1741 | * * |
| 1742 | ************************************************************************/ |
| 1743 | |
| 1744 | typedef union ii_ipca_u { |
| 1745 | uint64_t ii_ipca_regval; |
| 1746 | struct { |
| 1747 | uint64_t i_wid : 4; |
| 1748 | uint64_t i_adjust : 1; |
| 1749 | uint64_t i_rsvd_1 : 3; |
| 1750 | uint64_t i_field : 2; |
| 1751 | uint64_t i_rsvd : 54; |
| 1752 | } ii_ipca_fld_s; |
| 1753 | } ii_ipca_u_t; |
| 1754 | |
| 1755 | |
| 1756 | /************************************************************************ |
| 1757 | * * |
| 1758 | * There are 8 instances of this register. This register contains * |
| 1759 | * the information that the II has to remember once it has launched a * |
| 1760 | * PIO Read operation. The contents are used to form the correct * |
| 1761 | * Router Network packet and direct the Crosstalk reply to the * |
| 1762 | * appropriate processor. * |
| 1763 | * * |
| 1764 | ************************************************************************/ |
| 1765 | |
| 1766 | |
| 1767 | typedef union ii_iprte0a_u { |
| 1768 | uint64_t ii_iprte0a_regval; |
| 1769 | struct { |
| 1770 | uint64_t i_rsvd_1 : 54; |
| 1771 | uint64_t i_widget : 4; |
| 1772 | uint64_t i_to_cnt : 5; |
| 1773 | uint64_t i_vld : 1; |
| 1774 | } ii_iprte0a_fld_s; |
| 1775 | } ii_iprte0a_u_t; |
| 1776 | |
| 1777 | |
| 1778 | /************************************************************************ |
| 1779 | * * |
| 1780 | * There are 8 instances of this register. This register contains * |
| 1781 | * the information that the II has to remember once it has launched a * |
| 1782 | * PIO Read operation. The contents are used to form the correct * |
| 1783 | * Router Network packet and direct the Crosstalk reply to the * |
| 1784 | * appropriate processor. * |
| 1785 | * * |
| 1786 | ************************************************************************/ |
| 1787 | |
| 1788 | typedef union ii_iprte1a_u { |
| 1789 | uint64_t ii_iprte1a_regval; |
| 1790 | struct { |
| 1791 | uint64_t i_rsvd_1 : 54; |
| 1792 | uint64_t i_widget : 4; |
| 1793 | uint64_t i_to_cnt : 5; |
| 1794 | uint64_t i_vld : 1; |
| 1795 | } ii_iprte1a_fld_s; |
| 1796 | } ii_iprte1a_u_t; |
| 1797 | |
| 1798 | |
| 1799 | /************************************************************************ |
| 1800 | * * |
| 1801 | * There are 8 instances of this register. This register contains * |
| 1802 | * the information that the II has to remember once it has launched a * |
| 1803 | * PIO Read operation. The contents are used to form the correct * |
| 1804 | * Router Network packet and direct the Crosstalk reply to the * |
| 1805 | * appropriate processor. * |
| 1806 | * * |
| 1807 | ************************************************************************/ |
| 1808 | |
| 1809 | typedef union ii_iprte2a_u { |
| 1810 | uint64_t ii_iprte2a_regval; |
| 1811 | struct { |
| 1812 | uint64_t i_rsvd_1 : 54; |
| 1813 | uint64_t i_widget : 4; |
| 1814 | uint64_t i_to_cnt : 5; |
| 1815 | uint64_t i_vld : 1; |
| 1816 | } ii_iprte2a_fld_s; |
| 1817 | } ii_iprte2a_u_t; |
| 1818 | |
| 1819 | |
| 1820 | /************************************************************************ |
| 1821 | * * |
| 1822 | * There are 8 instances of this register. This register contains * |
| 1823 | * the information that the II has to remember once it has launched a * |
| 1824 | * PIO Read operation. The contents are used to form the correct * |
| 1825 | * Router Network packet and direct the Crosstalk reply to the * |
| 1826 | * appropriate processor. * |
| 1827 | * * |
| 1828 | ************************************************************************/ |
| 1829 | |
| 1830 | typedef union ii_iprte3a_u { |
| 1831 | uint64_t ii_iprte3a_regval; |
| 1832 | struct { |
| 1833 | uint64_t i_rsvd_1 : 54; |
| 1834 | uint64_t i_widget : 4; |
| 1835 | uint64_t i_to_cnt : 5; |
| 1836 | uint64_t i_vld : 1; |
| 1837 | } ii_iprte3a_fld_s; |
| 1838 | } ii_iprte3a_u_t; |
| 1839 | |
| 1840 | |
| 1841 | /************************************************************************ |
| 1842 | * * |
| 1843 | * There are 8 instances of this register. This register contains * |
| 1844 | * the information that the II has to remember once it has launched a * |
| 1845 | * PIO Read operation. The contents are used to form the correct * |
| 1846 | * Router Network packet and direct the Crosstalk reply to the * |
| 1847 | * appropriate processor. * |
| 1848 | * * |
| 1849 | ************************************************************************/ |
| 1850 | |
| 1851 | typedef union ii_iprte4a_u { |
| 1852 | uint64_t ii_iprte4a_regval; |
| 1853 | struct { |
| 1854 | uint64_t i_rsvd_1 : 54; |
| 1855 | uint64_t i_widget : 4; |
| 1856 | uint64_t i_to_cnt : 5; |
| 1857 | uint64_t i_vld : 1; |
| 1858 | } ii_iprte4a_fld_s; |
| 1859 | } ii_iprte4a_u_t; |
| 1860 | |
| 1861 | |
| 1862 | /************************************************************************ |
| 1863 | * * |
| 1864 | * There are 8 instances of this register. This register contains * |
| 1865 | * the information that the II has to remember once it has launched a * |
| 1866 | * PIO Read operation. The contents are used to form the correct * |
| 1867 | * Router Network packet and direct the Crosstalk reply to the * |
| 1868 | * appropriate processor. * |
| 1869 | * * |
| 1870 | ************************************************************************/ |
| 1871 | |
| 1872 | typedef union ii_iprte5a_u { |
| 1873 | uint64_t ii_iprte5a_regval; |
| 1874 | struct { |
| 1875 | uint64_t i_rsvd_1 : 54; |
| 1876 | uint64_t i_widget : 4; |
| 1877 | uint64_t i_to_cnt : 5; |
| 1878 | uint64_t i_vld : 1; |
| 1879 | } ii_iprte5a_fld_s; |
| 1880 | } ii_iprte5a_u_t; |
| 1881 | |
| 1882 | |
| 1883 | /************************************************************************ |
| 1884 | * * |
| 1885 | * There are 8 instances of this register. This register contains * |
| 1886 | * the information that the II has to remember once it has launched a * |
| 1887 | * PIO Read operation. The contents are used to form the correct * |
| 1888 | * Router Network packet and direct the Crosstalk reply to the * |
| 1889 | * appropriate processor. * |
| 1890 | * * |
| 1891 | ************************************************************************/ |
| 1892 | |
| 1893 | typedef union ii_iprte6a_u { |
| 1894 | uint64_t ii_iprte6a_regval; |
| 1895 | struct { |
| 1896 | uint64_t i_rsvd_1 : 54; |
| 1897 | uint64_t i_widget : 4; |
| 1898 | uint64_t i_to_cnt : 5; |
| 1899 | uint64_t i_vld : 1; |
| 1900 | } ii_iprte6a_fld_s; |
| 1901 | } ii_iprte6a_u_t; |
| 1902 | |
| 1903 | |
| 1904 | /************************************************************************ |
| 1905 | * * |
| 1906 | * There are 8 instances of this register. This register contains * |
| 1907 | * the information that the II has to remember once it has launched a * |
| 1908 | * PIO Read operation. The contents are used to form the correct * |
| 1909 | * Router Network packet and direct the Crosstalk reply to the * |
| 1910 | * appropriate processor. * |
| 1911 | * * |
| 1912 | ************************************************************************/ |
| 1913 | |
| 1914 | typedef union ii_iprte7a_u { |
| 1915 | uint64_t ii_iprte7a_regval; |
| 1916 | struct { |
| 1917 | uint64_t i_rsvd_1 : 54; |
| 1918 | uint64_t i_widget : 4; |
| 1919 | uint64_t i_to_cnt : 5; |
| 1920 | uint64_t i_vld : 1; |
| 1921 | } ii_iprtea7_fld_s; |
| 1922 | } ii_iprte7a_u_t; |
| 1923 | |
| 1924 | |
| 1925 | |
| 1926 | /************************************************************************ |
| 1927 | * * |
| 1928 | * There are 8 instances of this register. This register contains * |
| 1929 | * the information that the II has to remember once it has launched a * |
| 1930 | * PIO Read operation. The contents are used to form the correct * |
| 1931 | * Router Network packet and direct the Crosstalk reply to the * |
| 1932 | * appropriate processor. * |
| 1933 | * * |
| 1934 | ************************************************************************/ |
| 1935 | |
| 1936 | |
| 1937 | typedef union ii_iprte0b_u { |
| 1938 | uint64_t ii_iprte0b_regval; |
| 1939 | struct { |
| 1940 | uint64_t i_rsvd_1 : 3; |
| 1941 | uint64_t i_address : 47; |
| 1942 | uint64_t i_init : 3; |
| 1943 | uint64_t i_source : 11; |
| 1944 | } ii_iprte0b_fld_s; |
| 1945 | } ii_iprte0b_u_t; |
| 1946 | |
| 1947 | |
| 1948 | /************************************************************************ |
| 1949 | * * |
| 1950 | * There are 8 instances of this register. This register contains * |
| 1951 | * the information that the II has to remember once it has launched a * |
| 1952 | * PIO Read operation. The contents are used to form the correct * |
| 1953 | * Router Network packet and direct the Crosstalk reply to the * |
| 1954 | * appropriate processor. * |
| 1955 | * * |
| 1956 | ************************************************************************/ |
| 1957 | |
| 1958 | typedef union ii_iprte1b_u { |
| 1959 | uint64_t ii_iprte1b_regval; |
| 1960 | struct { |
| 1961 | uint64_t i_rsvd_1 : 3; |
| 1962 | uint64_t i_address : 47; |
| 1963 | uint64_t i_init : 3; |
| 1964 | uint64_t i_source : 11; |
| 1965 | } ii_iprte1b_fld_s; |
| 1966 | } ii_iprte1b_u_t; |
| 1967 | |
| 1968 | |
| 1969 | /************************************************************************ |
| 1970 | * * |
| 1971 | * There are 8 instances of this register. This register contains * |
| 1972 | * the information that the II has to remember once it has launched a * |
| 1973 | * PIO Read operation. The contents are used to form the correct * |
| 1974 | * Router Network packet and direct the Crosstalk reply to the * |
| 1975 | * appropriate processor. * |
| 1976 | * * |
| 1977 | ************************************************************************/ |
| 1978 | |
| 1979 | typedef union ii_iprte2b_u { |
| 1980 | uint64_t ii_iprte2b_regval; |
| 1981 | struct { |
| 1982 | uint64_t i_rsvd_1 : 3; |
| 1983 | uint64_t i_address : 47; |
| 1984 | uint64_t i_init : 3; |
| 1985 | uint64_t i_source : 11; |
| 1986 | } ii_iprte2b_fld_s; |
| 1987 | } ii_iprte2b_u_t; |
| 1988 | |
| 1989 | |
| 1990 | /************************************************************************ |
| 1991 | * * |
| 1992 | * There are 8 instances of this register. This register contains * |
| 1993 | * the information that the II has to remember once it has launched a * |
| 1994 | * PIO Read operation. The contents are used to form the correct * |
| 1995 | * Router Network packet and direct the Crosstalk reply to the * |
| 1996 | * appropriate processor. * |
| 1997 | * * |
| 1998 | ************************************************************************/ |
| 1999 | |
| 2000 | typedef union ii_iprte3b_u { |
| 2001 | uint64_t ii_iprte3b_regval; |
| 2002 | struct { |
| 2003 | uint64_t i_rsvd_1 : 3; |
| 2004 | uint64_t i_address : 47; |
| 2005 | uint64_t i_init : 3; |
| 2006 | uint64_t i_source : 11; |
| 2007 | } ii_iprte3b_fld_s; |
| 2008 | } ii_iprte3b_u_t; |
| 2009 | |
| 2010 | |
| 2011 | /************************************************************************ |
| 2012 | * * |
| 2013 | * There are 8 instances of this register. This register contains * |
| 2014 | * the information that the II has to remember once it has launched a * |
| 2015 | * PIO Read operation. The contents are used to form the correct * |
| 2016 | * Router Network packet and direct the Crosstalk reply to the * |
| 2017 | * appropriate processor. * |
| 2018 | * * |
| 2019 | ************************************************************************/ |
| 2020 | |
| 2021 | typedef union ii_iprte4b_u { |
| 2022 | uint64_t ii_iprte4b_regval; |
| 2023 | struct { |
| 2024 | uint64_t i_rsvd_1 : 3; |
| 2025 | uint64_t i_address : 47; |
| 2026 | uint64_t i_init : 3; |
| 2027 | uint64_t i_source : 11; |
| 2028 | } ii_iprte4b_fld_s; |
| 2029 | } ii_iprte4b_u_t; |
| 2030 | |
| 2031 | |
| 2032 | /************************************************************************ |
| 2033 | * * |
| 2034 | * There are 8 instances of this register. This register contains * |
| 2035 | * the information that the II has to remember once it has launched a * |
| 2036 | * PIO Read operation. The contents are used to form the correct * |
| 2037 | * Router Network packet and direct the Crosstalk reply to the * |
| 2038 | * appropriate processor. * |
| 2039 | * * |
| 2040 | ************************************************************************/ |
| 2041 | |
| 2042 | typedef union ii_iprte5b_u { |
| 2043 | uint64_t ii_iprte5b_regval; |
| 2044 | struct { |
| 2045 | uint64_t i_rsvd_1 : 3; |
| 2046 | uint64_t i_address : 47; |
| 2047 | uint64_t i_init : 3; |
| 2048 | uint64_t i_source : 11; |
| 2049 | } ii_iprte5b_fld_s; |
| 2050 | } ii_iprte5b_u_t; |
| 2051 | |
| 2052 | |
| 2053 | /************************************************************************ |
| 2054 | * * |
| 2055 | * There are 8 instances of this register. This register contains * |
| 2056 | * the information that the II has to remember once it has launched a * |
| 2057 | * PIO Read operation. The contents are used to form the correct * |
| 2058 | * Router Network packet and direct the Crosstalk reply to the * |
| 2059 | * appropriate processor. * |
| 2060 | * * |
| 2061 | ************************************************************************/ |
| 2062 | |
| 2063 | typedef union ii_iprte6b_u { |
| 2064 | uint64_t ii_iprte6b_regval; |
| 2065 | struct { |
| 2066 | uint64_t i_rsvd_1 : 3; |
| 2067 | uint64_t i_address : 47; |
| 2068 | uint64_t i_init : 3; |
| 2069 | uint64_t i_source : 11; |
| 2070 | |
| 2071 | } ii_iprte6b_fld_s; |
| 2072 | } ii_iprte6b_u_t; |
| 2073 | |
| 2074 | |
| 2075 | /************************************************************************ |
| 2076 | * * |
| 2077 | * There are 8 instances of this register. This register contains * |
| 2078 | * the information that the II has to remember once it has launched a * |
| 2079 | * PIO Read operation. The contents are used to form the correct * |
| 2080 | * Router Network packet and direct the Crosstalk reply to the * |
| 2081 | * appropriate processor. * |
| 2082 | * * |
| 2083 | ************************************************************************/ |
| 2084 | |
| 2085 | typedef union ii_iprte7b_u { |
| 2086 | uint64_t ii_iprte7b_regval; |
| 2087 | struct { |
| 2088 | uint64_t i_rsvd_1 : 3; |
| 2089 | uint64_t i_address : 47; |
| 2090 | uint64_t i_init : 3; |
| 2091 | uint64_t i_source : 11; |
| 2092 | } ii_iprte7b_fld_s; |
| 2093 | } ii_iprte7b_u_t; |
| 2094 | |
| 2095 | |
| 2096 | /************************************************************************ |
| 2097 | * * |
| 2098 | * Description: SHub II contains a feature which did not exist in * |
| 2099 | * the Hub which automatically cleans up after a Read Response * |
| 2100 | * timeout, including deallocation of the IPRTE and recovery of IBuf * |
| 2101 | * space. The inclusion of this register in SHub is for backward * |
| 2102 | * compatibility * |
| 2103 | * A write to this register causes an entry from the table of * |
| 2104 | * outstanding PIO Read Requests to be freed and returned to the * |
| 2105 | * stack of free entries. This register is used in handling the * |
| 2106 | * timeout errors that result in a PIO Reply never returning from * |
| 2107 | * Crosstalk. * |
| 2108 | * Note that this register does not affect the contents of the IPRTE * |
| 2109 | * registers. The Valid bits in those registers have to be * |
| 2110 | * specifically turned off by software. * |
| 2111 | * * |
| 2112 | ************************************************************************/ |
| 2113 | |
| 2114 | typedef union ii_ipdr_u { |
| 2115 | uint64_t ii_ipdr_regval; |
| 2116 | struct { |
| 2117 | uint64_t i_te : 3; |
| 2118 | uint64_t i_rsvd_1 : 1; |
| 2119 | uint64_t i_pnd : 1; |
| 2120 | uint64_t i_init_rpcnt : 1; |
| 2121 | uint64_t i_rsvd : 58; |
| 2122 | } ii_ipdr_fld_s; |
| 2123 | } ii_ipdr_u_t; |
| 2124 | |
| 2125 | |
| 2126 | /************************************************************************ |
| 2127 | * * |
| 2128 | * A write to this register causes a CRB entry to be returned to the * |
| 2129 | * queue of free CRBs. The entry should have previously been cleared * |
| 2130 | * (mark bit) via backdoor access to the pertinent CRB entry. This * |
| 2131 | * register is used in the last step of handling the errors that are * |
| 2132 | * captured and marked in CRB entries. Briefly: 1) first error for * |
| 2133 | * DMA write from a particular device, and first error for a * |
| 2134 | * particular BTE stream, lead to a marked CRB entry, and processor * |
| 2135 | * interrupt, 2) software reads the error information captured in the * |
| 2136 | * CRB entry, and presumably takes some corrective action, 3) * |
| 2137 | * software clears the mark bit, and finally 4) software writes to * |
| 2138 | * the ICDR register to return the CRB entry to the list of free CRB * |
| 2139 | * entries. * |
| 2140 | * * |
| 2141 | ************************************************************************/ |
| 2142 | |
| 2143 | typedef union ii_icdr_u { |
| 2144 | uint64_t ii_icdr_regval; |
| 2145 | struct { |
| 2146 | uint64_t i_crb_num : 4; |
| 2147 | uint64_t i_pnd : 1; |
| 2148 | uint64_t i_rsvd : 59; |
| 2149 | } ii_icdr_fld_s; |
| 2150 | } ii_icdr_u_t; |
| 2151 | |
| 2152 | |
| 2153 | /************************************************************************ |
| 2154 | * * |
| 2155 | * This register provides debug access to two FIFOs inside of II. * |
| 2156 | * Both IOQ_MAX* fields of this register contain the instantaneous * |
| 2157 | * depth (in units of the number of available entries) of the * |
| 2158 | * associated IOQ FIFO. A read of this register will return the * |
| 2159 | * number of free entries on each FIFO at the time of the read. So * |
| 2160 | * when a FIFO is idle, the associated field contains the maximum * |
| 2161 | * depth of the FIFO. This register is writable for debug reasons * |
| 2162 | * and is intended to be written with the maximum desired FIFO depth * |
| 2163 | * while the FIFO is idle. Software must assure that II is idle when * |
| 2164 | * this register is written. If there are any active entries in any * |
| 2165 | * of these FIFOs when this register is written, the results are * |
| 2166 | * undefined. * |
| 2167 | * * |
| 2168 | ************************************************************************/ |
| 2169 | |
| 2170 | typedef union ii_ifdr_u { |
| 2171 | uint64_t ii_ifdr_regval; |
| 2172 | struct { |
| 2173 | uint64_t i_ioq_max_rq : 7; |
| 2174 | uint64_t i_set_ioq_rq : 1; |
| 2175 | uint64_t i_ioq_max_rp : 7; |
| 2176 | uint64_t i_set_ioq_rp : 1; |
| 2177 | uint64_t i_rsvd : 48; |
| 2178 | } ii_ifdr_fld_s; |
| 2179 | } ii_ifdr_u_t; |
| 2180 | |
| 2181 | |
| 2182 | /************************************************************************ |
| 2183 | * * |
| 2184 | * This register allows the II to become sluggish in removing * |
| 2185 | * messages from its inbound queue (IIQ). This will cause messages to * |
| 2186 | * back up in either virtual channel. Disabling the "molasses" mode * |
| 2187 | * subsequently allows the II to be tested under stress. In the * |
| 2188 | * sluggish ("Molasses") mode, the localized effects of congestion * |
| 2189 | * can be observed. * |
| 2190 | * * |
| 2191 | ************************************************************************/ |
| 2192 | |
| 2193 | typedef union ii_iiap_u { |
| 2194 | uint64_t ii_iiap_regval; |
| 2195 | struct { |
| 2196 | uint64_t i_rq_mls : 6; |
| 2197 | uint64_t i_rsvd_1 : 2; |
| 2198 | uint64_t i_rp_mls : 6; |
| 2199 | uint64_t i_rsvd : 50; |
| 2200 | } ii_iiap_fld_s; |
| 2201 | } ii_iiap_u_t; |
| 2202 | |
| 2203 | |
| 2204 | /************************************************************************ |
| 2205 | * * |
| 2206 | * This register allows several parameters of CRB operation to be * |
| 2207 | * set. Note that writing to this register can have catastrophic side * |
| 2208 | * effects, if the CRB is not quiescent, i.e. if the CRB is * |
| 2209 | * processing protocol messages when the write occurs. * |
| 2210 | * * |
| 2211 | ************************************************************************/ |
| 2212 | |
| 2213 | typedef union ii_icmr_u { |
| 2214 | uint64_t ii_icmr_regval; |
| 2215 | struct { |
| 2216 | uint64_t i_sp_msg : 1; |
| 2217 | uint64_t i_rd_hdr : 1; |
| 2218 | uint64_t i_rsvd_4 : 2; |
| 2219 | uint64_t i_c_cnt : 4; |
| 2220 | uint64_t i_rsvd_3 : 4; |
| 2221 | uint64_t i_clr_rqpd : 1; |
| 2222 | uint64_t i_clr_rppd : 1; |
| 2223 | uint64_t i_rsvd_2 : 2; |
| 2224 | uint64_t i_fc_cnt : 4; |
| 2225 | uint64_t i_crb_vld : 15; |
| 2226 | uint64_t i_crb_mark : 15; |
| 2227 | uint64_t i_rsvd_1 : 2; |
| 2228 | uint64_t i_precise : 1; |
| 2229 | uint64_t i_rsvd : 11; |
| 2230 | } ii_icmr_fld_s; |
| 2231 | } ii_icmr_u_t; |
| 2232 | |
| 2233 | |
| 2234 | /************************************************************************ |
| 2235 | * * |
| 2236 | * This register allows control of the table portion of the CRB * |
| 2237 | * logic via software. Control operations from this register have * |
| 2238 | * priority over all incoming Crosstalk or BTE requests. * |
| 2239 | * * |
| 2240 | ************************************************************************/ |
| 2241 | |
| 2242 | typedef union ii_iccr_u { |
| 2243 | uint64_t ii_iccr_regval; |
| 2244 | struct { |
| 2245 | uint64_t i_crb_num : 4; |
| 2246 | uint64_t i_rsvd_1 : 4; |
| 2247 | uint64_t i_cmd : 8; |
| 2248 | uint64_t i_pending : 1; |
| 2249 | uint64_t i_rsvd : 47; |
| 2250 | } ii_iccr_fld_s; |
| 2251 | } ii_iccr_u_t; |
| 2252 | |
| 2253 | |
| 2254 | /************************************************************************ |
| 2255 | * * |
| 2256 | * This register allows the maximum timeout value to be programmed. * |
| 2257 | * * |
| 2258 | ************************************************************************/ |
| 2259 | |
| 2260 | typedef union ii_icto_u { |
| 2261 | uint64_t ii_icto_regval; |
| 2262 | struct { |
| 2263 | uint64_t i_timeout : 8; |
| 2264 | uint64_t i_rsvd : 56; |
| 2265 | } ii_icto_fld_s; |
| 2266 | } ii_icto_u_t; |
| 2267 | |
| 2268 | |
| 2269 | /************************************************************************ |
| 2270 | * * |
| 2271 | * This register allows the timeout prescalar to be programmed. An * |
| 2272 | * internal counter is associated with this register. When the * |
| 2273 | * internal counter reaches the value of the PRESCALE field, the * |
| 2274 | * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] * |
| 2275 | * field). The internal counter resets to zero, and then continues * |
| 2276 | * counting. * |
| 2277 | * * |
| 2278 | ************************************************************************/ |
| 2279 | |
| 2280 | typedef union ii_ictp_u { |
| 2281 | uint64_t ii_ictp_regval; |
| 2282 | struct { |
| 2283 | uint64_t i_prescale : 24; |
| 2284 | uint64_t i_rsvd : 40; |
| 2285 | } ii_ictp_fld_s; |
| 2286 | } ii_ictp_u_t; |
| 2287 | |
| 2288 | |
| 2289 | /************************************************************************ |
| 2290 | * * |
| 2291 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * |
| 2292 | * used for Crosstalk operations (both cacheline and partial * |
| 2293 | * operations) or BTE/IO. Because the CRB entries are very wide, five * |
| 2294 | * registers (_A to _E) are required to read and write each entry. * |
| 2295 | * The CRB Entry registers can be conceptualized as rows and columns * |
| 2296 | * (illustrated in the table above). Each row contains the 4 * |
| 2297 | * registers required for a single CRB Entry. The first doubleword * |
| 2298 | * (column) for each entry is labeled A, and the second doubleword * |
| 2299 | * (higher address) is labeled B, the third doubleword is labeled C, * |
| 2300 | * the fourth doubleword is labeled D and the fifth doubleword is * |
| 2301 | * labeled E. All CRB entries have their addresses on a quarter * |
| 2302 | * cacheline aligned boundary. * |
| 2303 | * Upon reset, only the following fields are initialized: valid * |
| 2304 | * (VLD), priority count, timeout, timeout valid, and context valid. * |
| 2305 | * All other bits should be cleared by software before use (after * |
| 2306 | * recovering any potential error state from before the reset). * |
| 2307 | * The following four tables summarize the format for the four * |
| 2308 | * registers that are used for each ICRB# Entry. * |
| 2309 | * * |
| 2310 | ************************************************************************/ |
| 2311 | |
| 2312 | typedef union ii_icrb0_a_u { |
| 2313 | uint64_t ii_icrb0_a_regval; |
| 2314 | struct { |
| 2315 | uint64_t ia_iow : 1; |
| 2316 | uint64_t ia_vld : 1; |
| 2317 | uint64_t ia_addr : 47; |
| 2318 | uint64_t ia_tnum : 5; |
| 2319 | uint64_t ia_sidn : 4; |
| 2320 | uint64_t ia_rsvd : 6; |
| 2321 | } ii_icrb0_a_fld_s; |
| 2322 | } ii_icrb0_a_u_t; |
| 2323 | |
| 2324 | |
| 2325 | /************************************************************************ |
| 2326 | * * |
| 2327 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * |
| 2328 | * used for Crosstalk operations (both cacheline and partial * |
| 2329 | * operations) or BTE/IO. Because the CRB entries are very wide, five * |
| 2330 | * registers (_A to _E) are required to read and write each entry. * |
| 2331 | * * |
| 2332 | ************************************************************************/ |
| 2333 | |
| 2334 | typedef union ii_icrb0_b_u { |
| 2335 | uint64_t ii_icrb0_b_regval; |
| 2336 | struct { |
| 2337 | uint64_t ib_xt_err : 1; |
| 2338 | uint64_t ib_mark : 1; |
| 2339 | uint64_t ib_ln_uce : 1; |
| 2340 | uint64_t ib_errcode : 3; |
| 2341 | uint64_t ib_error : 1; |
| 2342 | uint64_t ib_stall__bte_1 : 1; |
| 2343 | uint64_t ib_stall__bte_0 : 1; |
| 2344 | uint64_t ib_stall__intr : 1; |
| 2345 | uint64_t ib_stall_ib : 1; |
| 2346 | uint64_t ib_intvn : 1; |
| 2347 | uint64_t ib_wb : 1; |
| 2348 | uint64_t ib_hold : 1; |
| 2349 | uint64_t ib_ack : 1; |
| 2350 | uint64_t ib_resp : 1; |
| 2351 | uint64_t ib_ack_cnt : 11; |
| 2352 | uint64_t ib_rsvd : 7; |
| 2353 | uint64_t ib_exc : 5; |
| 2354 | uint64_t ib_init : 3; |
| 2355 | uint64_t ib_imsg : 8; |
| 2356 | uint64_t ib_imsgtype : 2; |
| 2357 | uint64_t ib_use_old : 1; |
| 2358 | uint64_t ib_rsvd_1 : 11; |
| 2359 | } ii_icrb0_b_fld_s; |
| 2360 | } ii_icrb0_b_u_t; |
| 2361 | |
| 2362 | |
| 2363 | /************************************************************************ |
| 2364 | * * |
| 2365 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * |
| 2366 | * used for Crosstalk operations (both cacheline and partial * |
| 2367 | * operations) or BTE/IO. Because the CRB entries are very wide, five * |
| 2368 | * registers (_A to _E) are required to read and write each entry. * |
| 2369 | * * |
| 2370 | ************************************************************************/ |
| 2371 | |
| 2372 | typedef union ii_icrb0_c_u { |
| 2373 | uint64_t ii_icrb0_c_regval; |
| 2374 | struct { |
| 2375 | uint64_t ic_source : 15; |
| 2376 | uint64_t ic_size : 2; |
| 2377 | uint64_t ic_ct : 1; |
| 2378 | uint64_t ic_bte_num : 1; |
| 2379 | uint64_t ic_gbr : 1; |
| 2380 | uint64_t ic_resprqd : 1; |
| 2381 | uint64_t ic_bo : 1; |
| 2382 | uint64_t ic_suppl : 15; |
| 2383 | uint64_t ic_rsvd : 27; |
| 2384 | } ii_icrb0_c_fld_s; |
| 2385 | } ii_icrb0_c_u_t; |
| 2386 | |
| 2387 | |
| 2388 | /************************************************************************ |
| 2389 | * * |
| 2390 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * |
| 2391 | * used for Crosstalk operations (both cacheline and partial * |
| 2392 | * operations) or BTE/IO. Because the CRB entries are very wide, five * |
| 2393 | * registers (_A to _E) are required to read and write each entry. * |
| 2394 | * * |
| 2395 | ************************************************************************/ |
| 2396 | |
| 2397 | typedef union ii_icrb0_d_u { |
| 2398 | uint64_t ii_icrb0_d_regval; |
| 2399 | struct { |
| 2400 | uint64_t id_pa_be : 43; |
| 2401 | uint64_t id_bte_op : 1; |
| 2402 | uint64_t id_pr_psc : 4; |
| 2403 | uint64_t id_pr_cnt : 4; |
| 2404 | uint64_t id_sleep : 1; |
| 2405 | uint64_t id_rsvd : 11; |
| 2406 | } ii_icrb0_d_fld_s; |
| 2407 | } ii_icrb0_d_u_t; |
| 2408 | |
| 2409 | |
| 2410 | /************************************************************************ |
| 2411 | * * |
| 2412 | * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * |
| 2413 | * used for Crosstalk operations (both cacheline and partial * |
| 2414 | * operations) or BTE/IO. Because the CRB entries are very wide, five * |
| 2415 | * registers (_A to _E) are required to read and write each entry. * |
| 2416 | * * |
| 2417 | ************************************************************************/ |
| 2418 | |
| 2419 | typedef union ii_icrb0_e_u { |
| 2420 | uint64_t ii_icrb0_e_regval; |
| 2421 | struct { |
| 2422 | uint64_t ie_timeout : 8; |
| 2423 | uint64_t ie_context : 15; |
| 2424 | uint64_t ie_rsvd : 1; |
| 2425 | uint64_t ie_tvld : 1; |
| 2426 | uint64_t ie_cvld : 1; |
| 2427 | uint64_t ie_rsvd_0 : 38; |
| 2428 | } ii_icrb0_e_fld_s; |
| 2429 | } ii_icrb0_e_u_t; |
| 2430 | |
| 2431 | |
| 2432 | /************************************************************************ |
| 2433 | * * |
| 2434 | * This register contains the lower 64 bits of the header of the * |
| 2435 | * spurious message captured by II. Valid when the SP_MSG bit in ICMR * |
| 2436 | * register is set. * |
| 2437 | * * |
| 2438 | ************************************************************************/ |
| 2439 | |
| 2440 | typedef union ii_icsml_u { |
| 2441 | uint64_t ii_icsml_regval; |
| 2442 | struct { |
| 2443 | uint64_t i_tt_addr : 47; |
| 2444 | uint64_t i_newsuppl_ex : 14; |
| 2445 | uint64_t i_reserved : 2; |
| 2446 | uint64_t i_overflow : 1; |
| 2447 | } ii_icsml_fld_s; |
| 2448 | } ii_icsml_u_t; |
| 2449 | |
| 2450 | |
| 2451 | /************************************************************************ |
| 2452 | * * |
| 2453 | * This register contains the middle 64 bits of the header of the * |
| 2454 | * spurious message captured by II. Valid when the SP_MSG bit in ICMR * |
| 2455 | * register is set. * |
| 2456 | * * |
| 2457 | ************************************************************************/ |
| 2458 | |
| 2459 | typedef union ii_icsmm_u { |
| 2460 | uint64_t ii_icsmm_regval; |
| 2461 | struct { |
| 2462 | uint64_t i_tt_ack_cnt : 11; |
| 2463 | uint64_t i_reserved : 53; |
| 2464 | } ii_icsmm_fld_s; |
| 2465 | } ii_icsmm_u_t; |
| 2466 | |
| 2467 | |
| 2468 | /************************************************************************ |
| 2469 | * * |
| 2470 | * This register contains the microscopic state, all the inputs to * |
| 2471 | * the protocol table, captured with the spurious message. Valid when * |
| 2472 | * the SP_MSG bit in the ICMR register is set. * |
| 2473 | * * |
| 2474 | ************************************************************************/ |
| 2475 | |
| 2476 | typedef union ii_icsmh_u { |
| 2477 | uint64_t ii_icsmh_regval; |
| 2478 | struct { |
| 2479 | uint64_t i_tt_vld : 1; |
| 2480 | uint64_t i_xerr : 1; |
| 2481 | uint64_t i_ft_cwact_o : 1; |
| 2482 | uint64_t i_ft_wact_o : 1; |
| 2483 | uint64_t i_ft_active_o : 1; |
| 2484 | uint64_t i_sync : 1; |
| 2485 | uint64_t i_mnusg : 1; |
| 2486 | uint64_t i_mnusz : 1; |
| 2487 | uint64_t i_plusz : 1; |
| 2488 | uint64_t i_plusg : 1; |
| 2489 | uint64_t i_tt_exc : 5; |
| 2490 | uint64_t i_tt_wb : 1; |
| 2491 | uint64_t i_tt_hold : 1; |
| 2492 | uint64_t i_tt_ack : 1; |
| 2493 | uint64_t i_tt_resp : 1; |
| 2494 | uint64_t i_tt_intvn : 1; |
| 2495 | uint64_t i_g_stall_bte1 : 1; |
| 2496 | uint64_t i_g_stall_bte0 : 1; |
| 2497 | uint64_t i_g_stall_il : 1; |
| 2498 | uint64_t i_g_stall_ib : 1; |
| 2499 | uint64_t i_tt_imsg : 8; |
| 2500 | uint64_t i_tt_imsgtype : 2; |
| 2501 | uint64_t i_tt_use_old : 1; |
| 2502 | uint64_t i_tt_respreqd : 1; |
| 2503 | uint64_t i_tt_bte_num : 1; |
| 2504 | uint64_t i_cbn : 1; |
| 2505 | uint64_t i_match : 1; |
| 2506 | uint64_t i_rpcnt_lt_34 : 1; |
| 2507 | uint64_t i_rpcnt_ge_34 : 1; |
| 2508 | uint64_t i_rpcnt_lt_18 : 1; |
| 2509 | uint64_t i_rpcnt_ge_18 : 1; |
| 2510 | uint64_t i_rpcnt_lt_2 : 1; |
| 2511 | uint64_t i_rpcnt_ge_2 : 1; |
| 2512 | uint64_t i_rqcnt_lt_18 : 1; |
| 2513 | uint64_t i_rqcnt_ge_18 : 1; |
| 2514 | uint64_t i_rqcnt_lt_2 : 1; |
| 2515 | uint64_t i_rqcnt_ge_2 : 1; |
| 2516 | uint64_t i_tt_device : 7; |
| 2517 | uint64_t i_tt_init : 3; |
| 2518 | uint64_t i_reserved : 5; |
| 2519 | } ii_icsmh_fld_s; |
| 2520 | } ii_icsmh_u_t; |
| 2521 | |
| 2522 | |
| 2523 | /************************************************************************ |
| 2524 | * * |
| 2525 | * The Shub DEBUG unit provides a 3-bit selection signal to the * |
| 2526 | * II core and a 3-bit selection signal to the fsbclk domain in the II * |
| 2527 | * wrapper. * |
| 2528 | * * |
| 2529 | ************************************************************************/ |
| 2530 | |
| 2531 | typedef union ii_idbss_u { |
| 2532 | uint64_t ii_idbss_regval; |
| 2533 | struct { |
| 2534 | uint64_t i_iioclk_core_submenu : 3; |
| 2535 | uint64_t i_rsvd : 5; |
| 2536 | uint64_t i_fsbclk_wrapper_submenu : 3; |
| 2537 | uint64_t i_rsvd_1 : 5; |
| 2538 | uint64_t i_iioclk_menu : 5; |
| 2539 | uint64_t i_rsvd_2 : 43; |
| 2540 | } ii_idbss_fld_s; |
| 2541 | } ii_idbss_u_t; |
| 2542 | |
| 2543 | |
| 2544 | /************************************************************************ |
| 2545 | * * |
| 2546 | * Description: This register is used to set up the length for a * |
| 2547 | * transfer and then to monitor the progress of that transfer. This * |
| 2548 | * register needs to be initialized before a transfer is started. A * |
| 2549 | * legitimate write to this register will set the Busy bit, clear the * |
| 2550 | * Error bit, and initialize the length to the value desired. * |
| 2551 | * While the transfer is in progress, hardware will decrement the * |
| 2552 | * length field with each successful block that is copied. Once the * |
| 2553 | * transfer completes, hardware will clear the Busy bit. The length * |
| 2554 | * field will also contain the number of cache lines left to be * |
| 2555 | * transferred. * |
| 2556 | * * |
| 2557 | ************************************************************************/ |
| 2558 | |
| 2559 | typedef union ii_ibls0_u { |
| 2560 | uint64_t ii_ibls0_regval; |
| 2561 | struct { |
| 2562 | uint64_t i_length : 16; |
| 2563 | uint64_t i_error : 1; |
| 2564 | uint64_t i_rsvd_1 : 3; |
| 2565 | uint64_t i_busy : 1; |
| 2566 | uint64_t i_rsvd : 43; |
| 2567 | } ii_ibls0_fld_s; |
| 2568 | } ii_ibls0_u_t; |
| 2569 | |
| 2570 | |
| 2571 | /************************************************************************ |
| 2572 | * * |
| 2573 | * This register should be loaded before a transfer is started. The * |
| 2574 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * |
| 2575 | * address as described in Section 1.3, Figure2 and Figure3. Since * |
| 2576 | * the bottom 7 bits of the address are always taken to be zero, BTE * |
| 2577 | * transfers are always cacheline-aligned. * |
| 2578 | * * |
| 2579 | ************************************************************************/ |
| 2580 | |
| 2581 | typedef union ii_ibsa0_u { |
| 2582 | uint64_t ii_ibsa0_regval; |
| 2583 | struct { |
| 2584 | uint64_t i_rsvd_1 : 7; |
| 2585 | uint64_t i_addr : 42; |
| 2586 | uint64_t i_rsvd : 15; |
| 2587 | } ii_ibsa0_fld_s; |
| 2588 | } ii_ibsa0_u_t; |
| 2589 | |
| 2590 | |
| 2591 | /************************************************************************ |
| 2592 | * * |
| 2593 | * This register should be loaded before a transfer is started. The * |
| 2594 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * |
| 2595 | * address as described in Section 1.3, Figure2 and Figure3. Since * |
| 2596 | * the bottom 7 bits of the address are always taken to be zero, BTE * |
| 2597 | * transfers are always cacheline-aligned. * |
| 2598 | * * |
| 2599 | ************************************************************************/ |
| 2600 | |
| 2601 | typedef union ii_ibda0_u { |
| 2602 | uint64_t ii_ibda0_regval; |
| 2603 | struct { |
| 2604 | uint64_t i_rsvd_1 : 7; |
| 2605 | uint64_t i_addr : 42; |
| 2606 | uint64_t i_rsvd : 15; |
| 2607 | } ii_ibda0_fld_s; |
| 2608 | } ii_ibda0_u_t; |
| 2609 | |
| 2610 | |
| 2611 | /************************************************************************ |
| 2612 | * * |
| 2613 | * Writing to this register sets up the attributes of the transfer * |
| 2614 | * and initiates the transfer operation. Reading this register has * |
| 2615 | * the side effect of terminating any transfer in progress. Note: * |
| 2616 | * stopping a transfer midstream could have an adverse impact on the * |
| 2617 | * other BTE. If a BTE stream has to be stopped (due to error * |
| 2618 | * handling for example), both BTE streams should be stopped and * |
| 2619 | * their transfers discarded. * |
| 2620 | * * |
| 2621 | ************************************************************************/ |
| 2622 | |
| 2623 | typedef union ii_ibct0_u { |
| 2624 | uint64_t ii_ibct0_regval; |
| 2625 | struct { |
| 2626 | uint64_t i_zerofill : 1; |
| 2627 | uint64_t i_rsvd_2 : 3; |
| 2628 | uint64_t i_notify : 1; |
| 2629 | uint64_t i_rsvd_1 : 3; |
| 2630 | uint64_t i_poison : 1; |
| 2631 | uint64_t i_rsvd : 55; |
| 2632 | } ii_ibct0_fld_s; |
| 2633 | } ii_ibct0_u_t; |
| 2634 | |
| 2635 | |
| 2636 | /************************************************************************ |
| 2637 | * * |
| 2638 | * This register contains the address to which the WINV is sent. * |
| 2639 | * This address has to be cache line aligned. * |
| 2640 | * * |
| 2641 | ************************************************************************/ |
| 2642 | |
| 2643 | typedef union ii_ibna0_u { |
| 2644 | uint64_t ii_ibna0_regval; |
| 2645 | struct { |
| 2646 | uint64_t i_rsvd_1 : 7; |
| 2647 | uint64_t i_addr : 42; |
| 2648 | uint64_t i_rsvd : 15; |
| 2649 | } ii_ibna0_fld_s; |
| 2650 | } ii_ibna0_u_t; |
| 2651 | |
| 2652 | |
| 2653 | /************************************************************************ |
| 2654 | * * |
| 2655 | * This register contains the programmable level as well as the node * |
| 2656 | * ID and PI unit of the processor to which the interrupt will be * |
| 2657 | * sent. * |
| 2658 | * * |
| 2659 | ************************************************************************/ |
| 2660 | |
| 2661 | typedef union ii_ibia0_u { |
| 2662 | uint64_t ii_ibia0_regval; |
| 2663 | struct { |
| 2664 | uint64_t i_rsvd_2 : 1; |
| 2665 | uint64_t i_node_id : 11; |
| 2666 | uint64_t i_rsvd_1 : 4; |
| 2667 | uint64_t i_level : 7; |
| 2668 | uint64_t i_rsvd : 41; |
| 2669 | } ii_ibia0_fld_s; |
| 2670 | } ii_ibia0_u_t; |
| 2671 | |
| 2672 | |
| 2673 | /************************************************************************ |
| 2674 | * * |
| 2675 | * Description: This register is used to set up the length for a * |
| 2676 | * transfer and then to monitor the progress of that transfer. This * |
| 2677 | * register needs to be initialized before a transfer is started. A * |
| 2678 | * legitimate write to this register will set the Busy bit, clear the * |
| 2679 | * Error bit, and initialize the length to the value desired. * |
| 2680 | * While the transfer is in progress, hardware will decrement the * |
| 2681 | * length field with each successful block that is copied. Once the * |
| 2682 | * transfer completes, hardware will clear the Busy bit. The length * |
| 2683 | * field will also contain the number of cache lines left to be * |
| 2684 | * transferred. * |
| 2685 | * * |
| 2686 | ************************************************************************/ |
| 2687 | |
| 2688 | typedef union ii_ibls1_u { |
| 2689 | uint64_t ii_ibls1_regval; |
| 2690 | struct { |
| 2691 | uint64_t i_length : 16; |
| 2692 | uint64_t i_error : 1; |
| 2693 | uint64_t i_rsvd_1 : 3; |
| 2694 | uint64_t i_busy : 1; |
| 2695 | uint64_t i_rsvd : 43; |
| 2696 | } ii_ibls1_fld_s; |
| 2697 | } ii_ibls1_u_t; |
| 2698 | |
| 2699 | |
| 2700 | /************************************************************************ |
| 2701 | * * |
| 2702 | * This register should be loaded before a transfer is started. The * |
| 2703 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * |
| 2704 | * address as described in Section 1.3, Figure2 and Figure3. Since * |
| 2705 | * the bottom 7 bits of the address are always taken to be zero, BTE * |
| 2706 | * transfers are always cacheline-aligned. * |
| 2707 | * * |
| 2708 | ************************************************************************/ |
| 2709 | |
| 2710 | typedef union ii_ibsa1_u { |
| 2711 | uint64_t ii_ibsa1_regval; |
| 2712 | struct { |
| 2713 | uint64_t i_rsvd_1 : 7; |
| 2714 | uint64_t i_addr : 33; |
| 2715 | uint64_t i_rsvd : 24; |
| 2716 | } ii_ibsa1_fld_s; |
| 2717 | } ii_ibsa1_u_t; |
| 2718 | |
| 2719 | |
| 2720 | /************************************************************************ |
| 2721 | * * |
| 2722 | * This register should be loaded before a transfer is started. The * |
| 2723 | * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * |
| 2724 | * address as described in Section 1.3, Figure2 and Figure3. Since * |
| 2725 | * the bottom 7 bits of the address are always taken to be zero, BTE * |
| 2726 | * transfers are always cacheline-aligned. * |
| 2727 | * * |
| 2728 | ************************************************************************/ |
| 2729 | |
| 2730 | typedef union ii_ibda1_u { |
| 2731 | uint64_t ii_ibda1_regval; |
| 2732 | struct { |
| 2733 | uint64_t i_rsvd_1 : 7; |
| 2734 | uint64_t i_addr : 33; |
| 2735 | uint64_t i_rsvd : 24; |
| 2736 | } ii_ibda1_fld_s; |
| 2737 | } ii_ibda1_u_t; |
| 2738 | |
| 2739 | |
| 2740 | /************************************************************************ |
| 2741 | * * |
| 2742 | * Writing to this register sets up the attributes of the transfer * |
| 2743 | * and initiates the transfer operation. Reading this register has * |
| 2744 | * the side effect of terminating any transfer in progress. Note: * |
| 2745 | * stopping a transfer midstream could have an adverse impact on the * |
| 2746 | * other BTE. If a BTE stream has to be stopped (due to error * |
| 2747 | * handling for example), both BTE streams should be stopped and * |
| 2748 | * their transfers discarded. * |
| 2749 | * * |
| 2750 | ************************************************************************/ |
| 2751 | |
| 2752 | typedef union ii_ibct1_u { |
| 2753 | uint64_t ii_ibct1_regval; |
| 2754 | struct { |
| 2755 | uint64_t i_zerofill : 1; |
| 2756 | uint64_t i_rsvd_2 : 3; |
| 2757 | uint64_t i_notify : 1; |
| 2758 | uint64_t i_rsvd_1 : 3; |
| 2759 | uint64_t i_poison : 1; |
| 2760 | uint64_t i_rsvd : 55; |
| 2761 | } ii_ibct1_fld_s; |
| 2762 | } ii_ibct1_u_t; |
| 2763 | |
| 2764 | |
| 2765 | /************************************************************************ |
| 2766 | * * |
| 2767 | * This register contains the address to which the WINV is sent. * |
| 2768 | * This address has to be cache line aligned. * |
| 2769 | * * |
| 2770 | ************************************************************************/ |
| 2771 | |
| 2772 | typedef union ii_ibna1_u { |
| 2773 | uint64_t ii_ibna1_regval; |
| 2774 | struct { |
| 2775 | uint64_t i_rsvd_1 : 7; |
| 2776 | uint64_t i_addr : 33; |
| 2777 | uint64_t i_rsvd : 24; |
| 2778 | } ii_ibna1_fld_s; |
| 2779 | } ii_ibna1_u_t; |
| 2780 | |
| 2781 | |
| 2782 | /************************************************************************ |
| 2783 | * * |
| 2784 | * This register contains the programmable level as well as the node * |
| 2785 | * ID and PI unit of the processor to which the interrupt will be * |
| 2786 | * sent. * |
| 2787 | * * |
| 2788 | ************************************************************************/ |
| 2789 | |
| 2790 | typedef union ii_ibia1_u { |
| 2791 | uint64_t ii_ibia1_regval; |
| 2792 | struct { |
| 2793 | uint64_t i_pi_id : 1; |
| 2794 | uint64_t i_node_id : 8; |
| 2795 | uint64_t i_rsvd_1 : 7; |
| 2796 | uint64_t i_level : 7; |
| 2797 | uint64_t i_rsvd : 41; |
| 2798 | } ii_ibia1_fld_s; |
| 2799 | } ii_ibia1_u_t; |
| 2800 | |
| 2801 | |
| 2802 | /************************************************************************ |
| 2803 | * * |
| 2804 | * This register defines the resources that feed information into * |
| 2805 | * the two performance counters located in the IO Performance * |
| 2806 | * Profiling Register. There are 17 different quantities that can be * |
| 2807 | * measured. Given these 17 different options, the two performance * |
| 2808 | * counters have 15 of them in common; menu selections 0 through 0xE * |
| 2809 | * are identical for each performance counter. As for the other two * |
| 2810 | * options, one is available from one performance counter and the * |
| 2811 | * other is available from the other performance counter. Hence, the * |
| 2812 | * II supports all 17*16=272 possible combinations of quantities to * |
| 2813 | * measure. * |
| 2814 | * * |
| 2815 | ************************************************************************/ |
| 2816 | |
| 2817 | typedef union ii_ipcr_u { |
| 2818 | uint64_t ii_ipcr_regval; |
| 2819 | struct { |
| 2820 | uint64_t i_ippr0_c : 4; |
| 2821 | uint64_t i_ippr1_c : 4; |
| 2822 | uint64_t i_icct : 8; |
| 2823 | uint64_t i_rsvd : 48; |
| 2824 | } ii_ipcr_fld_s; |
| 2825 | } ii_ipcr_u_t; |
| 2826 | |
| 2827 | |
| 2828 | /************************************************************************ |
| 2829 | * * |
| 2830 | * * |
| 2831 | * * |
| 2832 | ************************************************************************/ |
| 2833 | |
| 2834 | typedef union ii_ippr_u { |
| 2835 | uint64_t ii_ippr_regval; |
| 2836 | struct { |
| 2837 | uint64_t i_ippr0 : 32; |
| 2838 | uint64_t i_ippr1 : 32; |
| 2839 | } ii_ippr_fld_s; |
| 2840 | } ii_ippr_u_t; |
| 2841 | |
| 2842 | |
| 2843 | |
| 2844 | /************************************************************************** |
| 2845 | * * |
| 2846 | * The following defines which were not formed into structures are * |
| 2847 | * probably indentical to another register, and the name of the * |
| 2848 | * register is provided against each of these registers. This * |
| 2849 | * information needs to be checked carefully * |
| 2850 | * * |
| 2851 | * IIO_ICRB1_A IIO_ICRB0_A * |
| 2852 | * IIO_ICRB1_B IIO_ICRB0_B * |
| 2853 | * IIO_ICRB1_C IIO_ICRB0_C * |
| 2854 | * IIO_ICRB1_D IIO_ICRB0_D * |
| 2855 | * IIO_ICRB1_E IIO_ICRB0_E * |
| 2856 | * IIO_ICRB2_A IIO_ICRB0_A * |
| 2857 | * IIO_ICRB2_B IIO_ICRB0_B * |
| 2858 | * IIO_ICRB2_C IIO_ICRB0_C * |
| 2859 | * IIO_ICRB2_D IIO_ICRB0_D * |
| 2860 | * IIO_ICRB2_E IIO_ICRB0_E * |
| 2861 | * IIO_ICRB3_A IIO_ICRB0_A * |
| 2862 | * IIO_ICRB3_B IIO_ICRB0_B * |
| 2863 | * IIO_ICRB3_C IIO_ICRB0_C * |
| 2864 | * IIO_ICRB3_D IIO_ICRB0_D * |
| 2865 | * IIO_ICRB3_E IIO_ICRB0_E * |
| 2866 | * IIO_ICRB4_A IIO_ICRB0_A * |
| 2867 | * IIO_ICRB4_B IIO_ICRB0_B * |
| 2868 | * IIO_ICRB4_C IIO_ICRB0_C * |
| 2869 | * IIO_ICRB4_D IIO_ICRB0_D * |
| 2870 | * IIO_ICRB4_E IIO_ICRB0_E * |
| 2871 | * IIO_ICRB5_A IIO_ICRB0_A * |
| 2872 | * IIO_ICRB5_B IIO_ICRB0_B * |
| 2873 | * IIO_ICRB5_C IIO_ICRB0_C * |
| 2874 | * IIO_ICRB5_D IIO_ICRB0_D * |
| 2875 | * IIO_ICRB5_E IIO_ICRB0_E * |
| 2876 | * IIO_ICRB6_A IIO_ICRB0_A * |
| 2877 | * IIO_ICRB6_B IIO_ICRB0_B * |
| 2878 | * IIO_ICRB6_C IIO_ICRB0_C * |
| 2879 | * IIO_ICRB6_D IIO_ICRB0_D * |
| 2880 | * IIO_ICRB6_E IIO_ICRB0_E * |
| 2881 | * IIO_ICRB7_A IIO_ICRB0_A * |
| 2882 | * IIO_ICRB7_B IIO_ICRB0_B * |
| 2883 | * IIO_ICRB7_C IIO_ICRB0_C * |
| 2884 | * IIO_ICRB7_D IIO_ICRB0_D * |
| 2885 | * IIO_ICRB7_E IIO_ICRB0_E * |
| 2886 | * IIO_ICRB8_A IIO_ICRB0_A * |
| 2887 | * IIO_ICRB8_B IIO_ICRB0_B * |
| 2888 | * IIO_ICRB8_C IIO_ICRB0_C * |
| 2889 | * IIO_ICRB8_D IIO_ICRB0_D * |
| 2890 | * IIO_ICRB8_E IIO_ICRB0_E * |
| 2891 | * IIO_ICRB9_A IIO_ICRB0_A * |
| 2892 | * IIO_ICRB9_B IIO_ICRB0_B * |
| 2893 | * IIO_ICRB9_C IIO_ICRB0_C * |
| 2894 | * IIO_ICRB9_D IIO_ICRB0_D * |
| 2895 | * IIO_ICRB9_E IIO_ICRB0_E * |
| 2896 | * IIO_ICRBA_A IIO_ICRB0_A * |
| 2897 | * IIO_ICRBA_B IIO_ICRB0_B * |
| 2898 | * IIO_ICRBA_C IIO_ICRB0_C * |
| 2899 | * IIO_ICRBA_D IIO_ICRB0_D * |
| 2900 | * IIO_ICRBA_E IIO_ICRB0_E * |
| 2901 | * IIO_ICRBB_A IIO_ICRB0_A * |
| 2902 | * IIO_ICRBB_B IIO_ICRB0_B * |
| 2903 | * IIO_ICRBB_C IIO_ICRB0_C * |
| 2904 | * IIO_ICRBB_D IIO_ICRB0_D * |
| 2905 | * IIO_ICRBB_E IIO_ICRB0_E * |
| 2906 | * IIO_ICRBC_A IIO_ICRB0_A * |
| 2907 | * IIO_ICRBC_B IIO_ICRB0_B * |
| 2908 | * IIO_ICRBC_C IIO_ICRB0_C * |
| 2909 | * IIO_ICRBC_D IIO_ICRB0_D * |
| 2910 | * IIO_ICRBC_E IIO_ICRB0_E * |
| 2911 | * IIO_ICRBD_A IIO_ICRB0_A * |
| 2912 | * IIO_ICRBD_B IIO_ICRB0_B * |
| 2913 | * IIO_ICRBD_C IIO_ICRB0_C * |
| 2914 | * IIO_ICRBD_D IIO_ICRB0_D * |
| 2915 | * IIO_ICRBD_E IIO_ICRB0_E * |
| 2916 | * IIO_ICRBE_A IIO_ICRB0_A * |
| 2917 | * IIO_ICRBE_B IIO_ICRB0_B * |
| 2918 | * IIO_ICRBE_C IIO_ICRB0_C * |
| 2919 | * IIO_ICRBE_D IIO_ICRB0_D * |
| 2920 | * IIO_ICRBE_E IIO_ICRB0_E * |
| 2921 | * * |
| 2922 | **************************************************************************/ |
| 2923 | |
| 2924 | |
| 2925 | /* |
| 2926 | * Slightly friendlier names for some common registers. |
| 2927 | */ |
| 2928 | #define IIO_WIDGET IIO_WID /* Widget identification */ |
| 2929 | #define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ |
| 2930 | #define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ |
| 2931 | #define IIO_PROTECT IIO_ILAPR /* IO interface protection */ |
| 2932 | #define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ |
| 2933 | #define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ |
| 2934 | #define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ |
| 2935 | #define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ |
| 2936 | #define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ |
| 2937 | #define IIO_LLP_LOG IIO_ILLR /* LLP log */ |
| 2938 | #define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/ |
| 2939 | #define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ |
| 2940 | #define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ |
| 2941 | #define IIO_IGFX_0 IIO_IGFX0 |
| 2942 | #define IIO_IGFX_1 IIO_IGFX1 |
| 2943 | #define IIO_IBCT_0 IIO_IBCT0 |
| 2944 | #define IIO_IBCT_1 IIO_IBCT1 |
| 2945 | #define IIO_IBLS_0 IIO_IBLS0 |
| 2946 | #define IIO_IBLS_1 IIO_IBLS1 |
| 2947 | #define IIO_IBSA_0 IIO_IBSA0 |
| 2948 | #define IIO_IBSA_1 IIO_IBSA1 |
| 2949 | #define IIO_IBDA_0 IIO_IBDA0 |
| 2950 | #define IIO_IBDA_1 IIO_IBDA1 |
| 2951 | #define IIO_IBNA_0 IIO_IBNA0 |
| 2952 | #define IIO_IBNA_1 IIO_IBNA1 |
| 2953 | #define IIO_IBIA_0 IIO_IBIA0 |
| 2954 | #define IIO_IBIA_1 IIO_IBIA1 |
| 2955 | #define IIO_IOPRB_0 IIO_IPRB0 |
| 2956 | |
| 2957 | #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x))) |
| 2958 | #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x))) |
| 2959 | #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */ |
| 2960 | #define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ |
| 2961 | #define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ |
| 2962 | |
| 2963 | #define IIO_NUM_IPRBS (9) |
| 2964 | |
| 2965 | #define IIO_LLP_CSR_IS_UP 0x00002000 |
| 2966 | #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000 |
| 2967 | #define IIO_LLP_CSR_LLP_STAT_SHFT 12 |
| 2968 | |
| 2969 | #define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */ |
| 2970 | #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */ |
| 2971 | |
| 2972 | /* key to IIO_PROTECT_OVRRD */ |
| 2973 | #define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ |
| 2974 | |
| 2975 | /* BTE register names */ |
| 2976 | #define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ |
| 2977 | #define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ |
| 2978 | #define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ |
| 2979 | #define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ |
| 2980 | #define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ |
| 2981 | #define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ |
| 2982 | #define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ |
| 2983 | #define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ |
| 2984 | |
| 2985 | /* BTE register offsets from base */ |
| 2986 | #define BTEOFF_STAT 0 |
| 2987 | #define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) |
| 2988 | #define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) |
| 2989 | #define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) |
| 2990 | #define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) |
| 2991 | #define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) |
| 2992 | |
| 2993 | |
| 2994 | /* names used in shub diags */ |
| 2995 | #define IIO_BASE_BTE0 IIO_IBLS_0 |
| 2996 | #define IIO_BASE_BTE1 IIO_IBLS_1 |
| 2997 | |
| 2998 | /* |
| 2999 | * Macro which takes the widget number, and returns the |
| 3000 | * IO PRB address of that widget. |
| 3001 | * value _x is expected to be a widget number in the range |
| 3002 | * 0, 8 - 0xF |
| 3003 | */ |
| 3004 | #define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ |
| 3005 | (_x) : \ |
| 3006 | (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) |
| 3007 | |
| 3008 | |
| 3009 | /* GFX Flow Control Node/Widget Register */ |
| 3010 | #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */ |
| 3011 | #define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1) |
| 3012 | #define IIO_IGFX_W_NUM_SHIFT 0 |
| 3013 | #define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */ |
| 3014 | #define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1) |
| 3015 | #define IIO_IGFX_PI_NUM_SHIFT 4 |
| 3016 | #define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */ |
| 3017 | #define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1) |
| 3018 | #define IIO_IGFX_N_NUM_SHIFT 5 |
| 3019 | #define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */ |
| 3020 | #define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1) |
| 3021 | #define IIO_IGFX_P_NUM_SHIFT 16 |
| 3022 | #define IIO_IGFX_INIT(widget, pi, node, cpu) (\ |
| 3023 | (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \ |
| 3024 | (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \ |
| 3025 | (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \ |
| 3026 | (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT)) |
| 3027 | |
| 3028 | |
| 3029 | /* Scratch registers (all bits available) */ |
| 3030 | #define IIO_SCRATCH_REG0 IIO_ISCR0 |
| 3031 | #define IIO_SCRATCH_REG1 IIO_ISCR1 |
| 3032 | #define IIO_SCRATCH_MASK 0xffffffffffffffffUL |
| 3033 | |
| 3034 | #define IIO_SCRATCH_BIT0_0 0x0000000000000001UL |
| 3035 | #define IIO_SCRATCH_BIT0_1 0x0000000000000002UL |
| 3036 | #define IIO_SCRATCH_BIT0_2 0x0000000000000004UL |
| 3037 | #define IIO_SCRATCH_BIT0_3 0x0000000000000008UL |
| 3038 | #define IIO_SCRATCH_BIT0_4 0x0000000000000010UL |
| 3039 | #define IIO_SCRATCH_BIT0_5 0x0000000000000020UL |
| 3040 | #define IIO_SCRATCH_BIT0_6 0x0000000000000040UL |
| 3041 | #define IIO_SCRATCH_BIT0_7 0x0000000000000080UL |
| 3042 | #define IIO_SCRATCH_BIT0_8 0x0000000000000100UL |
| 3043 | #define IIO_SCRATCH_BIT0_9 0x0000000000000200UL |
| 3044 | #define IIO_SCRATCH_BIT0_A 0x0000000000000400UL |
| 3045 | |
| 3046 | #define IIO_SCRATCH_BIT1_0 0x0000000000000001UL |
| 3047 | #define IIO_SCRATCH_BIT1_1 0x0000000000000002UL |
| 3048 | /* IO Translation Table Entries */ |
| 3049 | #define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */ |
| 3050 | /* Hw manuals number them 1..7! */ |
| 3051 | /* |
| 3052 | * IIO_IMEM Register fields. |
| 3053 | */ |
| 3054 | #define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */ |
| 3055 | #define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */ |
| 3056 | #define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */ |
| 3057 | |
| 3058 | /* |
| 3059 | * As a permanent workaround for a bug in the PI side of the shub, we've |
| 3060 | * redefined big window 7 as small window 0. |
| 3061 | XXX does this still apply for SN1?? |
| 3062 | */ |
| 3063 | #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) |
| 3064 | |
| 3065 | /* |
| 3066 | * Use the top big window as a surrogate for the first small window |
| 3067 | */ |
| 3068 | #define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW |
| 3069 | |
| 3070 | #define ILCSR_WARM_RESET 0x100 |
| 3071 | |
| 3072 | /* |
| 3073 | * CRB manipulation macros |
| 3074 | * The CRB macros are slightly complicated, since there are up to |
| 3075 | * four registers associated with each CRB entry. |
| 3076 | */ |
| 3077 | #define IIO_NUM_CRBS 15 /* Number of CRBs */ |
| 3078 | #define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */ |
| 3079 | #define IIO_ICRB_OFFSET 8 |
| 3080 | #define IIO_ICRB_0 IIO_ICRB0_A |
| 3081 | #define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */ |
| 3082 | /* XXX - This is now tuneable: |
| 3083 | #define IIO_FIRST_PC_ENTRY 12 |
| 3084 | */ |
| 3085 | |
| 3086 | #define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))) |
| 3087 | #define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)) |
| 3088 | #define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)) |
| 3089 | #define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)) |
| 3090 | #define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)) |
| 3091 | |
| 3092 | #define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7) |
| 3093 | |
| 3094 | /* |
| 3095 | * values for "ecode" field |
| 3096 | */ |
| 3097 | #define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */ |
| 3098 | #define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */ |
| 3099 | #define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access |
| 3100 | * e.g. WINV to a Read only line. */ |
| 3101 | #define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */ |
| 3102 | #define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */ |
| 3103 | #define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */ |
| 3104 | #define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */ |
| 3105 | #define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */ |
| 3106 | |
| 3107 | /* |
| 3108 | * Values for field imsgtype |
| 3109 | */ |
| 3110 | #define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */ |
| 3111 | #define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */ |
| 3112 | #define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */ |
| 3113 | #define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */ |
| 3114 | |
| 3115 | /* |
| 3116 | * values for field initiator. |
| 3117 | */ |
| 3118 | #define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */ |
| 3119 | #define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */ |
| 3120 | #define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */ |
| 3121 | #define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */ |
| 3122 | #define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */ |
| 3123 | |
| 3124 | /* |
| 3125 | * Number of credits Hub widget has while sending req/response to |
| 3126 | * xbow. |
| 3127 | * Value of 3 is required by Xbow 1.1 |
| 3128 | * We may be able to increase this to 4 with Xbow 1.2. |
| 3129 | */ |
| 3130 | #define HUBII_XBOW_CREDIT 3 |
| 3131 | #define HUBII_XBOW_REV2_CREDIT 4 |
| 3132 | |
| 3133 | /* |
| 3134 | * Number of credits that xtalk devices should use when communicating |
| 3135 | * with a SHub (depth of SHub's queue). |
| 3136 | */ |
| 3137 | #define HUB_CREDIT 4 |
| 3138 | |
| 3139 | /* |
| 3140 | * Some IIO_PRB fields |
| 3141 | */ |
| 3142 | #define IIO_PRB_MULTI_ERR (1LL << 63) |
| 3143 | #define IIO_PRB_SPUR_RD (1LL << 51) |
| 3144 | #define IIO_PRB_SPUR_WR (1LL << 50) |
| 3145 | #define IIO_PRB_RD_TO (1LL << 49) |
| 3146 | #define IIO_PRB_ERROR (1LL << 48) |
| 3147 | |
| 3148 | /************************************************************************* |
| 3149 | |
| 3150 | Some of the IIO field masks and shifts are defined here. |
| 3151 | This is in order to maintain compatibility in SN0 and SN1 code |
| 3152 | |
| 3153 | **************************************************************************/ |
| 3154 | |
| 3155 | /* |
| 3156 | * ICMR register fields |
| 3157 | * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not |
| 3158 | * present in SHub) |
| 3159 | */ |
| 3160 | |
| 3161 | #define IIO_ICMR_CRB_VLD_SHFT 20 |
| 3162 | #define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT) |
| 3163 | |
| 3164 | #define IIO_ICMR_FC_CNT_SHFT 16 |
| 3165 | #define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT) |
| 3166 | |
| 3167 | #define IIO_ICMR_C_CNT_SHFT 4 |
| 3168 | #define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT) |
| 3169 | |
| 3170 | #define IIO_ICMR_PRECISE (1UL << 52) |
| 3171 | #define IIO_ICMR_CLR_RPPD (1UL << 13) |
| 3172 | #define IIO_ICMR_CLR_RQPD (1UL << 12) |
| 3173 | |
| 3174 | /* |
| 3175 | * IIO PIO Deallocation register field masks : (IIO_IPDR) |
| 3176 | XXX present but not needed in bedrock? See the manual. |
| 3177 | */ |
| 3178 | #define IIO_IPDR_PND (1 << 4) |
| 3179 | |
| 3180 | /* |
| 3181 | * IIO CRB deallocation register field masks: (IIO_ICDR) |
| 3182 | */ |
| 3183 | #define IIO_ICDR_PND (1 << 4) |
| 3184 | |
| 3185 | /* |
| 3186 | * IO BTE Length/Status (IIO_IBLS) register bit field definitions |
| 3187 | */ |
| 3188 | #define IBLS_BUSY (0x1UL << 20) |
| 3189 | #define IBLS_ERROR_SHFT 16 |
| 3190 | #define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT) |
| 3191 | #define IBLS_LENGTH_MASK 0xffff |
| 3192 | |
| 3193 | /* |
| 3194 | * IO BTE Control/Terminate register (IBCT) register bit field definitions |
| 3195 | */ |
| 3196 | #define IBCT_POISON (0x1UL << 8) |
| 3197 | #define IBCT_NOTIFY (0x1UL << 4) |
| 3198 | #define IBCT_ZFIL_MODE (0x1UL << 0) |
| 3199 | |
| 3200 | /* |
| 3201 | * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2) |
| 3202 | */ |
| 3203 | #define IIEPH1_VALID (1UL << 44) |
| 3204 | #define IIEPH1_OVERRUN (1UL << 40) |
| 3205 | #define IIEPH1_ERR_TYPE_SHFT 32 |
| 3206 | #define IIEPH1_ERR_TYPE_MASK 0xf |
| 3207 | #define IIEPH1_SOURCE_SHFT 20 |
| 3208 | #define IIEPH1_SOURCE_MASK 11 |
| 3209 | #define IIEPH1_SUPPL_SHFT 8 |
| 3210 | #define IIEPH1_SUPPL_MASK 11 |
| 3211 | #define IIEPH1_CMD_SHFT 0 |
| 3212 | #define IIEPH1_CMD_MASK 7 |
| 3213 | |
| 3214 | #define IIEPH2_TAIL (1UL << 40) |
| 3215 | #define IIEPH2_ADDRESS_SHFT 0 |
| 3216 | #define IIEPH2_ADDRESS_MASK 38 |
| 3217 | |
| 3218 | #define IIEPH1_ERR_SHORT_REQ 2 |
| 3219 | #define IIEPH1_ERR_SHORT_REPLY 3 |
| 3220 | #define IIEPH1_ERR_LONG_REQ 4 |
| 3221 | #define IIEPH1_ERR_LONG_REPLY 5 |
| 3222 | |
| 3223 | /* |
| 3224 | * IO Error Clear register bit field definitions |
| 3225 | */ |
| 3226 | #define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */ |
| 3227 | #define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */ |
| 3228 | #define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */ |
| 3229 | #define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */ |
| 3230 | #define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */ |
| 3231 | #define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */ |
| 3232 | #define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */ |
| 3233 | #define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */ |
| 3234 | #define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */ |
| 3235 | #define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */ |
| 3236 | #define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */ |
| 3237 | #define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */ |
| 3238 | #define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */ |
| 3239 | #define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */ |
| 3240 | #define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */ |
| 3241 | |
| 3242 | /* |
| 3243 | * IIO CRB control register Fields: IIO_ICCR |
| 3244 | */ |
| 3245 | #define IIO_ICCR_PENDING (0x10000) |
| 3246 | #define IIO_ICCR_CMD_MASK (0xFF) |
| 3247 | #define IIO_ICCR_CMD_SHFT (7) |
| 3248 | #define IIO_ICCR_CMD_NOP (0x0) /* No Op */ |
| 3249 | #define IIO_ICCR_CMD_WAKE (0x100) /* Reactivate CRB entry and process */ |
| 3250 | #define IIO_ICCR_CMD_TIMEOUT (0x200) /* Make CRB timeout & mark invalid */ |
| 3251 | #define IIO_ICCR_CMD_EJECT (0x400) /* Contents of entry written to memory |
| 3252 | * via a WB |
| 3253 | */ |
| 3254 | #define IIO_ICCR_CMD_FLUSH (0x800) |
| 3255 | |
| 3256 | /* |
| 3257 | * |
| 3258 | * CRB Register description. |
| 3259 | * |
| 3260 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING |
| 3261 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING |
| 3262 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING |
| 3263 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING |
| 3264 | * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING |
| 3265 | * |
| 3266 | * Many of the fields in CRB are status bits used by hardware |
| 3267 | * for implementation of the protocol. It's very dangerous to |
| 3268 | * mess around with the CRB registers. |
| 3269 | * |
| 3270 | * It's OK to read the CRB registers and try to make sense out of the |
| 3271 | * fields in CRB. |
| 3272 | * |
| 3273 | * Updating CRB requires all activities in Hub IIO to be quiesced. |
| 3274 | * otherwise, a write to CRB could corrupt other CRB entries. |
| 3275 | * CRBs are here only as a back door peek to shub IIO's status. |
| 3276 | * Quiescing implies no dmas no PIOs |
| 3277 | * either directly from the cpu or from sn0net. |
| 3278 | * this is not something that can be done easily. So, AVOID updating |
| 3279 | * CRBs. |
| 3280 | */ |
| 3281 | |
| 3282 | /* |
| 3283 | * Easy access macros for CRBs, all 5 registers (A-E) |
| 3284 | */ |
| 3285 | typedef ii_icrb0_a_u_t icrba_t; |
| 3286 | #define a_sidn ii_icrb0_a_fld_s.ia_sidn |
| 3287 | #define a_tnum ii_icrb0_a_fld_s.ia_tnum |
| 3288 | #define a_addr ii_icrb0_a_fld_s.ia_addr |
| 3289 | #define a_valid ii_icrb0_a_fld_s.ia_vld |
| 3290 | #define a_iow ii_icrb0_a_fld_s.ia_iow |
| 3291 | #define a_regvalue ii_icrb0_a_regval |
| 3292 | |
| 3293 | typedef ii_icrb0_b_u_t icrbb_t; |
| 3294 | #define b_use_old ii_icrb0_b_fld_s.ib_use_old |
| 3295 | #define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype |
| 3296 | #define b_imsg ii_icrb0_b_fld_s.ib_imsg |
| 3297 | #define b_initiator ii_icrb0_b_fld_s.ib_init |
| 3298 | #define b_exc ii_icrb0_b_fld_s.ib_exc |
| 3299 | #define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt |
| 3300 | #define b_resp ii_icrb0_b_fld_s.ib_resp |
| 3301 | #define b_ack ii_icrb0_b_fld_s.ib_ack |
| 3302 | #define b_hold ii_icrb0_b_fld_s.ib_hold |
| 3303 | #define b_wb ii_icrb0_b_fld_s.ib_wb |
| 3304 | #define b_intvn ii_icrb0_b_fld_s.ib_intvn |
| 3305 | #define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib |
| 3306 | #define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr |
| 3307 | #define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0 |
| 3308 | #define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1 |
| 3309 | #define b_error ii_icrb0_b_fld_s.ib_error |
| 3310 | #define b_ecode ii_icrb0_b_fld_s.ib_errcode |
| 3311 | #define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce |
| 3312 | #define b_mark ii_icrb0_b_fld_s.ib_mark |
| 3313 | #define b_xerr ii_icrb0_b_fld_s.ib_xt_err |
| 3314 | #define b_regvalue ii_icrb0_b_regval |
| 3315 | |
| 3316 | typedef ii_icrb0_c_u_t icrbc_t; |
| 3317 | #define c_suppl ii_icrb0_c_fld_s.ic_suppl |
| 3318 | #define c_barrop ii_icrb0_c_fld_s.ic_bo |
| 3319 | #define c_doresp ii_icrb0_c_fld_s.ic_resprqd |
| 3320 | #define c_gbr ii_icrb0_c_fld_s.ic_gbr |
| 3321 | #define c_btenum ii_icrb0_c_fld_s.ic_bte_num |
| 3322 | #define c_cohtrans ii_icrb0_c_fld_s.ic_ct |
| 3323 | #define c_xtsize ii_icrb0_c_fld_s.ic_size |
| 3324 | #define c_source ii_icrb0_c_fld_s.ic_source |
| 3325 | #define c_regvalue ii_icrb0_c_regval |
| 3326 | |
| 3327 | |
| 3328 | typedef ii_icrb0_d_u_t icrbd_t; |
| 3329 | #define d_sleep ii_icrb0_d_fld_s.id_sleep |
| 3330 | #define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt |
| 3331 | #define d_pripsc ii_icrb0_d_fld_s.id_pr_psc |
| 3332 | #define d_bteop ii_icrb0_d_fld_s.id_bte_op |
| 3333 | #define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ |
| 3334 | #define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ |
| 3335 | #define d_regvalue ii_icrb0_d_regval |
| 3336 | |
| 3337 | typedef ii_icrb0_e_u_t icrbe_t; |
| 3338 | #define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld |
| 3339 | #define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld |
| 3340 | #define icrbe_context ii_icrb0_e_fld_s.ie_context |
| 3341 | #define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout |
| 3342 | #define e_regvalue ii_icrb0_e_regval |
| 3343 | |
| 3344 | |
| 3345 | /* Number of widgets supported by shub */ |
| 3346 | #define HUB_NUM_WIDGET 9 |
| 3347 | #define HUB_WIDGET_ID_MIN 0x8 |
| 3348 | #define HUB_WIDGET_ID_MAX 0xf |
| 3349 | |
| 3350 | #define HUB_WIDGET_PART_NUM 0xc120 |
| 3351 | #define MAX_HUBS_PER_XBOW 2 |
| 3352 | |
| 3353 | /* A few more #defines for backwards compatibility */ |
| 3354 | #define iprb_t ii_iprb0_u_t |
| 3355 | #define iprb_regval ii_iprb0_regval |
| 3356 | #define iprb_mult_err ii_iprb0_fld_s.i_mult_err |
| 3357 | #define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd |
| 3358 | #define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr |
| 3359 | #define iprb_rd_to ii_iprb0_fld_s.i_rd_to |
| 3360 | #define iprb_ovflow ii_iprb0_fld_s.i_of_cnt |
| 3361 | #define iprb_error ii_iprb0_fld_s.i_error |
| 3362 | #define iprb_ff ii_iprb0_fld_s.i_f |
| 3363 | #define iprb_mode ii_iprb0_fld_s.i_m |
| 3364 | #define iprb_bnakctr ii_iprb0_fld_s.i_nb |
| 3365 | #define iprb_anakctr ii_iprb0_fld_s.i_na |
| 3366 | #define iprb_xtalkctr ii_iprb0_fld_s.i_c |
| 3367 | |
| 3368 | #define LNK_STAT_WORKING 0x2 /* LLP is working */ |
| 3369 | |
| 3370 | #define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */ |
| 3371 | #define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */ |
| 3372 | #define IIO_WSTAT_TXRETRY_MASK (0x7F) /* should be 0xFF?? */ |
| 3373 | #define IIO_WSTAT_TXRETRY_SHFT (16) |
| 3374 | #define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \ |
| 3375 | IIO_WSTAT_TXRETRY_MASK) |
| 3376 | |
| 3377 | /* Number of II perf. counters we can multiplex at once */ |
| 3378 | |
| 3379 | #define IO_PERF_SETS 32 |
| 3380 | |
| 3381 | /* Bit for the widget in inbound access register */ |
| 3382 | #define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) |
| 3383 | /* Bit for the widget in outbound access register */ |
| 3384 | #define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) |
| 3385 | |
| 3386 | /* NOTE: The following define assumes that we are going to get |
| 3387 | * widget numbers from 8 thru F and the device numbers within |
| 3388 | * widget from 0 thru 7. |
| 3389 | */ |
| 3390 | #define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) |
| 3391 | |
| 3392 | /* IO Interrupt Destination Register */ |
| 3393 | #define IIO_IIDSR_SENT_SHIFT 28 |
| 3394 | #define IIO_IIDSR_SENT_MASK 0x30000000 |
| 3395 | #define IIO_IIDSR_ENB_SHIFT 24 |
| 3396 | #define IIO_IIDSR_ENB_MASK 0x01000000 |
| 3397 | #define IIO_IIDSR_NODE_SHIFT 9 |
| 3398 | #define IIO_IIDSR_NODE_MASK 0x000ff700 |
| 3399 | #define IIO_IIDSR_PI_ID_SHIFT 8 |
| 3400 | #define IIO_IIDSR_PI_ID_MASK 0x00000100 |
| 3401 | #define IIO_IIDSR_LVL_SHIFT 0 |
| 3402 | #define IIO_IIDSR_LVL_MASK 0x000000ff |
| 3403 | |
| 3404 | /* Xtalk timeout threshhold register (IIO_IXTT) */ |
| 3405 | #define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ |
| 3406 | #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT) |
| 3407 | #define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ |
| 3408 | #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT) |
| 3409 | #define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ |
| 3410 | #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT) |
| 3411 | |
| 3412 | /* |
| 3413 | * The IO LLP control status register and widget control register |
| 3414 | */ |
| 3415 | |
| 3416 | typedef union hubii_wcr_u { |
| 3417 | uint64_t wcr_reg_value; |
| 3418 | struct { |
| 3419 | uint64_t wcr_widget_id: 4, /* LLP crossbar credit */ |
| 3420 | wcr_tag_mode: 1, /* Tag mode */ |
| 3421 | wcr_rsvd1: 8, /* Reserved */ |
| 3422 | wcr_xbar_crd: 3, /* LLP crossbar credit */ |
| 3423 | wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */ |
| 3424 | wcr_dir_con: 1, /* widget direct connect */ |
| 3425 | wcr_e_thresh: 5, /* elasticity threshold */ |
| 3426 | wcr_rsvd: 41; /* unused */ |
| 3427 | } wcr_fields_s; |
| 3428 | } hubii_wcr_t; |
| 3429 | |
| 3430 | #define iwcr_dir_con wcr_fields_s.wcr_dir_con |
| 3431 | |
| 3432 | /* The structures below are defined to extract and modify the ii |
| 3433 | performance registers */ |
| 3434 | |
| 3435 | /* io_perf_sel allows the caller to specify what tests will be |
| 3436 | performed */ |
| 3437 | |
| 3438 | typedef union io_perf_sel { |
| 3439 | uint64_t perf_sel_reg; |
| 3440 | struct { |
| 3441 | uint64_t perf_ippr0 : 4, |
| 3442 | perf_ippr1 : 4, |
| 3443 | perf_icct : 8, |
| 3444 | perf_rsvd : 48; |
| 3445 | } perf_sel_bits; |
| 3446 | } io_perf_sel_t; |
| 3447 | |
| 3448 | /* io_perf_cnt is to extract the count from the shub registers. Due to |
| 3449 | hardware problems there is only one counter, not two. */ |
| 3450 | |
| 3451 | typedef union io_perf_cnt { |
| 3452 | uint64_t perf_cnt; |
| 3453 | struct { |
| 3454 | uint64_t perf_cnt : 20, |
| 3455 | perf_rsvd2 : 12, |
| 3456 | perf_rsvd1 : 32; |
| 3457 | } perf_cnt_bits; |
| 3458 | |
| 3459 | } io_perf_cnt_t; |
| 3460 | |
| 3461 | typedef union iprte_a { |
| 3462 | uint64_t entry; |
| 3463 | struct { |
| 3464 | uint64_t i_rsvd_1 : 3; |
| 3465 | uint64_t i_addr : 38; |
| 3466 | uint64_t i_init : 3; |
| 3467 | uint64_t i_source : 8; |
| 3468 | uint64_t i_rsvd : 2; |
| 3469 | uint64_t i_widget : 4; |
| 3470 | uint64_t i_to_cnt : 5; |
| 3471 | uint64_t i_vld : 1; |
| 3472 | } iprte_fields; |
| 3473 | } iprte_a_t; |
| 3474 | |
| 3475 | #endif /* _ASM_IA64_SN_SHUBIO_H */ |
| 3476 | |