Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* Stand alone funtions for QSpan Tundra support. |
| 2 | */ |
| 3 | #include <linux/types.h> |
| 4 | #include <linux/pci.h> |
| 5 | #include <asm/mpc8xx.h> |
| 6 | |
| 7 | extern void puthex(unsigned long val); |
| 8 | extern void puts(const char *); |
| 9 | |
| 10 | /* To map PCI devices, you first write 0xffffffff into the device |
| 11 | * base address registers. When the register is read back, the |
| 12 | * number of most significant '1' bits describes the amount of address |
| 13 | * space needed for mapping. If the most significant bit is not set, |
| 14 | * either the device does not use that address register, or it has |
| 15 | * a fixed address that we can't change. After the address is assigned, |
| 16 | * the command register has to be written to enable the card. |
| 17 | */ |
| 18 | typedef struct { |
| 19 | u_char pci_bus; |
| 20 | u_char pci_devfn; |
| 21 | ushort pci_command; |
| 22 | uint pci_addrs[6]; |
| 23 | } pci_map_t; |
| 24 | |
| 25 | /* We should probably dynamically allocate these structures. |
| 26 | */ |
| 27 | #define MAX_PCI_DEVS 32 |
| 28 | int pci_dev_cnt; |
| 29 | pci_map_t pci_map[MAX_PCI_DEVS]; |
| 30 | |
| 31 | void pci_conf_write(int bus, int device, int func, int reg, uint writeval); |
| 32 | void pci_conf_read(int bus, int device, int func, int reg, void *readval); |
| 33 | void probe_addresses(int bus, int devfn); |
| 34 | void map_pci_addrs(void); |
| 35 | |
| 36 | extern int |
| 37 | qs_pci_read_config_byte(unsigned char bus, unsigned char dev_fn, |
| 38 | unsigned char offset, unsigned char *val); |
| 39 | extern int |
| 40 | qs_pci_read_config_word(unsigned char bus, unsigned char dev_fn, |
| 41 | unsigned char offset, unsigned short *val); |
| 42 | extern int |
| 43 | qs_pci_read_config_dword(unsigned char bus, unsigned char dev_fn, |
| 44 | unsigned char offset, unsigned int *val); |
| 45 | extern int |
| 46 | qs_pci_write_config_byte(unsigned char bus, unsigned char dev_fn, |
| 47 | unsigned char offset, unsigned char val); |
| 48 | extern int |
| 49 | qs_pci_write_config_word(unsigned char bus, unsigned char dev_fn, |
| 50 | unsigned char offset, unsigned short val); |
| 51 | extern int |
| 52 | qs_pci_write_config_dword(unsigned char bus, unsigned char dev_fn, |
| 53 | unsigned char offset, unsigned int val); |
| 54 | |
| 55 | |
| 56 | /* This is a really stripped version of PCI bus scan. All we are |
| 57 | * looking for are devices that exist. |
| 58 | */ |
| 59 | void |
| 60 | pci_scanner(int addr_probe) |
| 61 | { |
| 62 | unsigned int devfn, l, class, bus_number; |
| 63 | unsigned char hdr_type, is_multi; |
| 64 | |
| 65 | is_multi = 0; |
| 66 | bus_number = 0; |
| 67 | for (devfn = 0; devfn < 0xff; ++devfn) { |
| 68 | /* The device numbers are comprised of upper 5 bits of |
| 69 | * device number and lower 3 bits of multi-function number. |
| 70 | */ |
| 71 | if ((devfn & 7) && !is_multi) { |
| 72 | /* Don't scan multifunction addresses if this is |
| 73 | * not a multifunction device. |
| 74 | */ |
| 75 | continue; |
| 76 | } |
| 77 | |
| 78 | /* Read the header to determine card type. |
| 79 | */ |
| 80 | qs_pci_read_config_byte(bus_number, devfn, PCI_HEADER_TYPE, |
| 81 | &hdr_type); |
| 82 | |
| 83 | /* If this is a base device number, check the header to |
| 84 | * determine if it is mulifunction. |
| 85 | */ |
| 86 | if ((devfn & 7) == 0) |
| 87 | is_multi = hdr_type & 0x80; |
| 88 | |
| 89 | /* Check to see if the board is really in the slot. |
| 90 | */ |
| 91 | qs_pci_read_config_dword(bus_number, devfn, PCI_VENDOR_ID, &l); |
| 92 | /* some broken boards return 0 if a slot is empty: */ |
| 93 | if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || |
| 94 | l == 0xffff0000) { |
| 95 | /* Nothing there. |
| 96 | */ |
| 97 | is_multi = 0; |
| 98 | continue; |
| 99 | } |
| 100 | |
| 101 | /* If we are not performing an address probe, |
| 102 | * just simply print out some information. |
| 103 | */ |
| 104 | if (!addr_probe) { |
| 105 | qs_pci_read_config_dword(bus_number, devfn, |
| 106 | PCI_CLASS_REVISION, &class); |
| 107 | |
| 108 | class >>= 8; /* upper 3 bytes */ |
| 109 | |
| 110 | #if 0 |
| 111 | printf("Found (%3d:%d): vendor 0x%04x, device 0x%04x, class 0x%06x\n", |
| 112 | (devfn >> 3), (devfn & 7), |
| 113 | (l & 0xffff), (l >> 16) & 0xffff, class); |
| 114 | #else |
| 115 | puts("Found ("); puthex(devfn >> 3); |
| 116 | puts(":"); puthex(devfn & 7); |
| 117 | puts("): vendor "); puthex(l & 0xffff); |
| 118 | puts(", device "); puthex((l >> 16) & 0xffff); |
| 119 | puts(", class "); puthex(class); puts("\n"); |
| 120 | #endif |
| 121 | } |
| 122 | else { |
| 123 | /* If this is a "normal" device, build address list. |
| 124 | */ |
| 125 | if ((hdr_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) |
| 126 | probe_addresses(bus_number, devfn); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /* Now map the boards. |
| 131 | */ |
| 132 | if (addr_probe) |
| 133 | map_pci_addrs(); |
| 134 | } |
| 135 | |
| 136 | /* Probe addresses for the specified device. This is a destructive |
| 137 | * operation because it writes the registers. |
| 138 | */ |
| 139 | void |
| 140 | probe_addresses(bus, devfn) |
| 141 | { |
| 142 | int i; |
| 143 | uint pciaddr; |
| 144 | ushort pcicmd; |
| 145 | pci_map_t *pm; |
| 146 | |
| 147 | if (pci_dev_cnt >= MAX_PCI_DEVS) { |
| 148 | puts("Too many PCI devices\n"); |
| 149 | return; |
| 150 | } |
| 151 | |
| 152 | pm = &pci_map[pci_dev_cnt++]; |
| 153 | |
| 154 | pm->pci_bus = bus; |
| 155 | pm->pci_devfn = devfn; |
| 156 | |
| 157 | for (i=0; i<6; i++) { |
| 158 | qs_pci_write_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), -1); |
| 159 | qs_pci_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), |
| 160 | &pciaddr); |
| 161 | pm->pci_addrs[i] = pciaddr; |
| 162 | qs_pci_read_config_word(bus, devfn, PCI_COMMAND, &pcicmd); |
| 163 | pm->pci_command = pcicmd; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | /* Map the cards into the PCI space. The PCI has separate memory |
| 168 | * and I/O spaces. In addition, some memory devices require mapping |
| 169 | * below 1M. The least significant 4 bits of the address register |
| 170 | * provide information. If this is an I/O device, only the LS bit |
| 171 | * is used to indicate that, so I/O devices can be mapped to a two byte |
| 172 | * boundard. Memory addresses can be mapped to a 32 byte boundary. |
| 173 | * The QSpan implementations usually have a 1Gbyte space for each |
| 174 | * memory and I/O spaces. |
| 175 | * |
| 176 | * This isn't a terribly fancy algorithm. I just map the spaces from |
| 177 | * the top starting with the largest address space. When finished, |
| 178 | * the registers are written and the card enabled. |
| 179 | * |
| 180 | * While the Tundra can map a large address space on most boards, we |
| 181 | * need to be careful because it may overlap other devices (like IMMR). |
| 182 | */ |
| 183 | #define MEMORY_SPACE_SIZE 0x20000000 |
| 184 | #define IO_SPACE_SIZE 0x20000000 |
| 185 | |
| 186 | void |
| 187 | map_pci_addrs() |
| 188 | { |
| 189 | uint pci_mem_top, pci_mem_low; |
| 190 | uint pci_io_top; |
| 191 | uint addr_mask, reg_addr, space; |
| 192 | int i, j; |
| 193 | pci_map_t *pm; |
| 194 | |
| 195 | pci_mem_top = MEMORY_SPACE_SIZE; |
| 196 | pci_io_top = IO_SPACE_SIZE; |
| 197 | pci_mem_low = (1 * 1024 * 1024); /* Below one meg addresses */ |
| 198 | |
| 199 | /* We can't map anything more than the maximum space, but test |
| 200 | * for it anyway to catch devices out of range. |
| 201 | */ |
| 202 | addr_mask = 0x80000000; |
| 203 | |
| 204 | do { |
| 205 | space = (~addr_mask) + 1; /* Size of the space */ |
| 206 | for (i=0; i<pci_dev_cnt; i++) { |
| 207 | pm = &pci_map[i]; |
| 208 | for (j=0; j<6; j++) { |
| 209 | /* If the MS bit is not set, this has either |
| 210 | * already been mapped, or is not used. |
| 211 | */ |
| 212 | reg_addr = pm->pci_addrs[j]; |
| 213 | if ((reg_addr & 0x80000000) == 0) |
| 214 | continue; |
| 215 | if (reg_addr & PCI_BASE_ADDRESS_SPACE_IO) { |
| 216 | if ((reg_addr & PCI_BASE_ADDRESS_IO_MASK) != addr_mask) |
| 217 | continue; |
| 218 | if (pci_io_top < space) { |
| 219 | puts("Out of PCI I/O space\n"); |
| 220 | } |
| 221 | else { |
| 222 | pci_io_top -= space; |
| 223 | pm->pci_addrs[j] = pci_io_top; |
| 224 | pm->pci_command |= PCI_COMMAND_IO; |
| 225 | } |
| 226 | } |
| 227 | else { |
| 228 | if ((reg_addr & PCI_BASE_ADDRESS_MEM_MASK) != addr_mask) |
| 229 | continue; |
| 230 | |
| 231 | /* Memory space. Test if below 1M. |
| 232 | */ |
| 233 | if (reg_addr & PCI_BASE_ADDRESS_MEM_TYPE_1M) { |
| 234 | if (pci_mem_low < space) { |
| 235 | puts("Out of PCI 1M space\n"); |
| 236 | } |
| 237 | else { |
| 238 | pci_mem_low -= space; |
| 239 | pm->pci_addrs[j] = pci_mem_low; |
| 240 | } |
| 241 | } |
| 242 | else { |
| 243 | if (pci_mem_top < space) { |
| 244 | puts("Out of PCI Mem space\n"); |
| 245 | } |
| 246 | else { |
| 247 | pci_mem_top -= space; |
| 248 | pm->pci_addrs[j] = pci_mem_top; |
| 249 | } |
| 250 | } |
| 251 | pm->pci_command |= PCI_COMMAND_MEMORY; |
| 252 | } |
| 253 | } |
| 254 | } |
| 255 | addr_mask >>= 1; |
| 256 | addr_mask |= 0x80000000; |
| 257 | } while (addr_mask != 0xfffffffe); |
| 258 | |
| 259 | /* Now, run the list one more time and map everything. |
| 260 | */ |
| 261 | for (i=0; i<pci_dev_cnt; i++) { |
| 262 | pm = &pci_map[i]; |
| 263 | for (j=0; j<6; j++) { |
| 264 | qs_pci_write_config_dword(pm->pci_bus, pm->pci_devfn, |
| 265 | PCI_BASE_ADDRESS_0 + (j * 4), pm->pci_addrs[j]); |
| 266 | } |
| 267 | |
| 268 | /* Enable memory or address mapping. |
| 269 | */ |
| 270 | qs_pci_write_config_word(pm->pci_bus, pm->pci_devfn, PCI_COMMAND, |
| 271 | pm->pci_command); |
| 272 | } |
| 273 | } |
| 274 | |