Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * |
| 3 | * BRIEF MODULE DESCRIPTION |
| 4 | * The Descriptor Based DMA channel manager that first appeared |
| 5 | * on the Au1550. I started with dma.c, but I think all that is |
| 6 | * left is this initial comment :-) |
| 7 | * |
| 8 | * Copyright 2004 Embedded Edge, LLC |
| 9 | * dan@embeddededge.com |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify it |
| 12 | * under the terms of the GNU General Public License as published by the |
| 13 | * Free Software Foundation; either version 2 of the License, or (at your |
| 14 | * option) any later version. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| 17 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 18 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN |
| 19 | * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 21 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| 22 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 23 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | * |
| 27 | * You should have received a copy of the GNU General Public License along |
| 28 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 29 | * 675 Mass Ave, Cambridge, MA 02139, USA. |
| 30 | * |
| 31 | */ |
| 32 | #include <linux/config.h> |
| 33 | #include <linux/kernel.h> |
| 34 | #include <linux/errno.h> |
| 35 | #include <linux/sched.h> |
| 36 | #include <linux/slab.h> |
| 37 | #include <linux/spinlock.h> |
| 38 | #include <linux/string.h> |
| 39 | #include <linux/delay.h> |
| 40 | #include <linux/interrupt.h> |
| 41 | #include <asm/mach-au1x00/au1000.h> |
| 42 | #include <asm/mach-au1x00/au1xxx_dbdma.h> |
| 43 | #include <asm/system.h> |
| 44 | |
| 45 | #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) |
| 46 | |
| 47 | /* |
| 48 | * The Descriptor Based DMA supports up to 16 channels. |
| 49 | * |
| 50 | * There are 32 devices defined. We keep an internal structure |
| 51 | * of devices using these channels, along with additional |
| 52 | * information. |
| 53 | * |
| 54 | * We allocate the descriptors and allow access to them through various |
| 55 | * functions. The drivers allocate the data buffers and assign them |
| 56 | * to the descriptors. |
| 57 | */ |
| 58 | static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); |
| 59 | |
| 60 | /* I couldn't find a macro that did this...... |
| 61 | */ |
| 62 | #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) |
| 63 | |
| 64 | static volatile dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE; |
| 65 | static int dbdma_initialized; |
| 66 | static void au1xxx_dbdma_init(void); |
| 67 | |
| 68 | typedef struct dbdma_device_table { |
| 69 | u32 dev_id; |
| 70 | u32 dev_flags; |
| 71 | u32 dev_tsize; |
| 72 | u32 dev_devwidth; |
| 73 | u32 dev_physaddr; /* If FIFO */ |
| 74 | u32 dev_intlevel; |
| 75 | u32 dev_intpolarity; |
| 76 | } dbdev_tab_t; |
| 77 | |
| 78 | typedef struct dbdma_chan_config { |
| 79 | u32 chan_flags; |
| 80 | u32 chan_index; |
| 81 | dbdev_tab_t *chan_src; |
| 82 | dbdev_tab_t *chan_dest; |
| 83 | au1x_dma_chan_t *chan_ptr; |
| 84 | au1x_ddma_desc_t *chan_desc_base; |
| 85 | au1x_ddma_desc_t *get_ptr, *put_ptr, *cur_ptr; |
| 86 | void *chan_callparam; |
| 87 | void (*chan_callback)(int, void *, struct pt_regs *); |
| 88 | } chan_tab_t; |
| 89 | |
| 90 | #define DEV_FLAGS_INUSE (1 << 0) |
| 91 | #define DEV_FLAGS_ANYUSE (1 << 1) |
| 92 | #define DEV_FLAGS_OUT (1 << 2) |
| 93 | #define DEV_FLAGS_IN (1 << 3) |
| 94 | |
| 95 | static dbdev_tab_t dbdev_tab[] = { |
| 96 | #ifdef CONFIG_SOC_AU1550 |
| 97 | /* UARTS */ |
| 98 | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, |
| 99 | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, |
| 100 | { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, |
| 101 | { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, |
| 102 | |
| 103 | /* EXT DMA */ |
| 104 | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, |
| 105 | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, |
| 106 | { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, |
| 107 | { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, |
| 108 | |
| 109 | /* USB DEV */ |
| 110 | { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, |
| 111 | { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, |
| 112 | { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, |
| 113 | { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, |
| 114 | { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, |
| 115 | { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, |
| 116 | |
| 117 | /* PSC 0 */ |
| 118 | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, |
| 119 | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, |
| 120 | |
| 121 | /* PSC 1 */ |
| 122 | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, |
| 123 | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, |
| 124 | |
| 125 | /* PSC 2 */ |
| 126 | { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, |
| 127 | { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, |
| 128 | |
| 129 | /* PSC 3 */ |
| 130 | { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, |
| 131 | { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, |
| 132 | |
| 133 | { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ |
| 134 | { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ |
| 135 | |
| 136 | /* MAC 0 */ |
| 137 | { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 138 | { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| 139 | |
| 140 | /* MAC 1 */ |
| 141 | { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 142 | { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| 143 | |
| 144 | #endif /* CONFIG_SOC_AU1550 */ |
| 145 | |
| 146 | #ifdef CONFIG_SOC_AU1200 |
| 147 | { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, |
| 148 | { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, |
| 149 | { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, |
| 150 | { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, |
| 151 | |
| 152 | { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, |
| 153 | { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, |
| 154 | |
| 155 | { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 156 | { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 157 | { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 158 | { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 159 | |
| 160 | { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| 161 | { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 162 | { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| 163 | { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 164 | |
| 165 | { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| 166 | { DSCR_CMD0_AES_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 167 | |
| 168 | { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, |
| 169 | { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, |
| 170 | { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 171 | |
| 172 | { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, |
| 173 | { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, |
| 174 | { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 175 | |
| 176 | { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 177 | { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 178 | { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 179 | { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 180 | |
| 181 | { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| 182 | |
| 183 | #endif // CONFIG_SOC_AU1200 |
| 184 | |
| 185 | { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 186 | { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| 187 | }; |
| 188 | |
| 189 | #define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t)) |
| 190 | |
| 191 | static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; |
| 192 | |
| 193 | static dbdev_tab_t * |
| 194 | find_dbdev_id (u32 id) |
| 195 | { |
| 196 | int i; |
| 197 | dbdev_tab_t *p; |
| 198 | for (i = 0; i < DBDEV_TAB_SIZE; ++i) { |
| 199 | p = &dbdev_tab[i]; |
| 200 | if (p->dev_id == id) |
| 201 | return p; |
| 202 | } |
| 203 | return NULL; |
| 204 | } |
| 205 | |
| 206 | /* Allocate a channel and return a non-zero descriptor if successful. |
| 207 | */ |
| 208 | u32 |
| 209 | au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, |
| 210 | void (*callback)(int, void *, struct pt_regs *), void *callparam) |
| 211 | { |
| 212 | unsigned long flags; |
| 213 | u32 used, chan, rv; |
| 214 | u32 dcp; |
| 215 | int i; |
| 216 | dbdev_tab_t *stp, *dtp; |
| 217 | chan_tab_t *ctp; |
| 218 | volatile au1x_dma_chan_t *cp; |
| 219 | |
| 220 | /* We do the intialization on the first channel allocation. |
| 221 | * We have to wait because of the interrupt handler initialization |
| 222 | * which can't be done successfully during board set up. |
| 223 | */ |
| 224 | if (!dbdma_initialized) |
| 225 | au1xxx_dbdma_init(); |
| 226 | dbdma_initialized = 1; |
| 227 | |
| 228 | if ((srcid > DSCR_NDEV_IDS) || (destid > DSCR_NDEV_IDS)) |
| 229 | return 0; |
| 230 | |
| 231 | if ((stp = find_dbdev_id(srcid)) == NULL) return 0; |
| 232 | if ((dtp = find_dbdev_id(destid)) == NULL) return 0; |
| 233 | |
| 234 | used = 0; |
| 235 | rv = 0; |
| 236 | |
| 237 | /* Check to see if we can get both channels. |
| 238 | */ |
| 239 | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); |
| 240 | if (!(stp->dev_flags & DEV_FLAGS_INUSE) || |
| 241 | (stp->dev_flags & DEV_FLAGS_ANYUSE)) { |
| 242 | /* Got source */ |
| 243 | stp->dev_flags |= DEV_FLAGS_INUSE; |
| 244 | if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || |
| 245 | (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { |
| 246 | /* Got destination */ |
| 247 | dtp->dev_flags |= DEV_FLAGS_INUSE; |
| 248 | } |
| 249 | else { |
| 250 | /* Can't get dest. Release src. |
| 251 | */ |
| 252 | stp->dev_flags &= ~DEV_FLAGS_INUSE; |
| 253 | used++; |
| 254 | } |
| 255 | } |
| 256 | else { |
| 257 | used++; |
| 258 | } |
| 259 | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); |
| 260 | |
| 261 | if (!used) { |
| 262 | /* Let's see if we can allocate a channel for it. |
| 263 | */ |
| 264 | ctp = NULL; |
| 265 | chan = 0; |
| 266 | spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); |
| 267 | for (i=0; i<NUM_DBDMA_CHANS; i++) { |
| 268 | if (chan_tab_ptr[i] == NULL) { |
| 269 | /* If kmalloc fails, it is caught below same |
| 270 | * as a channel not available. |
| 271 | */ |
| 272 | ctp = kmalloc(sizeof(chan_tab_t), GFP_KERNEL); |
| 273 | chan_tab_ptr[i] = ctp; |
| 274 | ctp->chan_index = chan = i; |
| 275 | break; |
| 276 | } |
| 277 | } |
| 278 | spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); |
| 279 | |
| 280 | if (ctp != NULL) { |
| 281 | memset(ctp, 0, sizeof(chan_tab_t)); |
| 282 | dcp = DDMA_CHANNEL_BASE; |
| 283 | dcp += (0x0100 * chan); |
| 284 | ctp->chan_ptr = (au1x_dma_chan_t *)dcp; |
| 285 | cp = (volatile au1x_dma_chan_t *)dcp; |
| 286 | ctp->chan_src = stp; |
| 287 | ctp->chan_dest = dtp; |
| 288 | ctp->chan_callback = callback; |
| 289 | ctp->chan_callparam = callparam; |
| 290 | |
| 291 | /* Initialize channel configuration. |
| 292 | */ |
| 293 | i = 0; |
| 294 | if (stp->dev_intlevel) |
| 295 | i |= DDMA_CFG_SED; |
| 296 | if (stp->dev_intpolarity) |
| 297 | i |= DDMA_CFG_SP; |
| 298 | if (dtp->dev_intlevel) |
| 299 | i |= DDMA_CFG_DED; |
| 300 | if (dtp->dev_intpolarity) |
| 301 | i |= DDMA_CFG_DP; |
| 302 | cp->ddma_cfg = i; |
| 303 | au_sync(); |
| 304 | |
| 305 | /* Return a non-zero value that can be used to |
| 306 | * find the channel information in subsequent |
| 307 | * operations. |
| 308 | */ |
| 309 | rv = (u32)(&chan_tab_ptr[chan]); |
| 310 | } |
| 311 | else { |
| 312 | /* Release devices. |
| 313 | */ |
| 314 | stp->dev_flags &= ~DEV_FLAGS_INUSE; |
| 315 | dtp->dev_flags &= ~DEV_FLAGS_INUSE; |
| 316 | } |
| 317 | } |
| 318 | return rv; |
| 319 | } |
| 320 | |
| 321 | /* Set the device width if source or destination is a FIFO. |
| 322 | * Should be 8, 16, or 32 bits. |
| 323 | */ |
| 324 | u32 |
| 325 | au1xxx_dbdma_set_devwidth(u32 chanid, int bits) |
| 326 | { |
| 327 | u32 rv; |
| 328 | chan_tab_t *ctp; |
| 329 | dbdev_tab_t *stp, *dtp; |
| 330 | |
| 331 | ctp = *((chan_tab_t **)chanid); |
| 332 | stp = ctp->chan_src; |
| 333 | dtp = ctp->chan_dest; |
| 334 | rv = 0; |
| 335 | |
| 336 | if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ |
| 337 | rv = stp->dev_devwidth; |
| 338 | stp->dev_devwidth = bits; |
| 339 | } |
| 340 | if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ |
| 341 | rv = dtp->dev_devwidth; |
| 342 | dtp->dev_devwidth = bits; |
| 343 | } |
| 344 | |
| 345 | return rv; |
| 346 | } |
| 347 | |
| 348 | /* Allocate a descriptor ring, initializing as much as possible. |
| 349 | */ |
| 350 | u32 |
| 351 | au1xxx_dbdma_ring_alloc(u32 chanid, int entries) |
| 352 | { |
| 353 | int i; |
| 354 | u32 desc_base, srcid, destid; |
| 355 | u32 cmd0, cmd1, src1, dest1; |
| 356 | u32 src0, dest0; |
| 357 | chan_tab_t *ctp; |
| 358 | dbdev_tab_t *stp, *dtp; |
| 359 | au1x_ddma_desc_t *dp; |
| 360 | |
| 361 | /* I guess we could check this to be within the |
| 362 | * range of the table...... |
| 363 | */ |
| 364 | ctp = *((chan_tab_t **)chanid); |
| 365 | stp = ctp->chan_src; |
| 366 | dtp = ctp->chan_dest; |
| 367 | |
| 368 | /* The descriptors must be 32-byte aligned. There is a |
| 369 | * possibility the allocation will give us such an address, |
| 370 | * and if we try that first we are likely to not waste larger |
| 371 | * slabs of memory. |
| 372 | */ |
| 373 | desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), GFP_KERNEL); |
| 374 | if (desc_base == 0) |
| 375 | return 0; |
| 376 | |
| 377 | if (desc_base & 0x1f) { |
| 378 | /* Lost....do it again, allocate extra, and round |
| 379 | * the address base. |
| 380 | */ |
| 381 | kfree((const void *)desc_base); |
| 382 | i = entries * sizeof(au1x_ddma_desc_t); |
| 383 | i += (sizeof(au1x_ddma_desc_t) - 1); |
| 384 | if ((desc_base = (u32)kmalloc(i, GFP_KERNEL)) == 0) |
| 385 | return 0; |
| 386 | |
| 387 | desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); |
| 388 | } |
| 389 | dp = (au1x_ddma_desc_t *)desc_base; |
| 390 | |
| 391 | /* Keep track of the base descriptor. |
| 392 | */ |
| 393 | ctp->chan_desc_base = dp; |
| 394 | |
| 395 | /* Initialize the rings with as much information as we know. |
| 396 | */ |
| 397 | srcid = stp->dev_id; |
| 398 | destid = dtp->dev_id; |
| 399 | |
| 400 | cmd0 = cmd1 = src1 = dest1 = 0; |
| 401 | src0 = dest0 = 0; |
| 402 | |
| 403 | cmd0 |= DSCR_CMD0_SID(srcid); |
| 404 | cmd0 |= DSCR_CMD0_DID(destid); |
| 405 | cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; |
| 406 | cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_CURRENT); |
| 407 | |
| 408 | switch (stp->dev_devwidth) { |
| 409 | case 8: |
| 410 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); |
| 411 | break; |
| 412 | case 16: |
| 413 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); |
| 414 | break; |
| 415 | case 32: |
| 416 | default: |
| 417 | cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); |
| 418 | break; |
| 419 | } |
| 420 | |
| 421 | switch (dtp->dev_devwidth) { |
| 422 | case 8: |
| 423 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); |
| 424 | break; |
| 425 | case 16: |
| 426 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); |
| 427 | break; |
| 428 | case 32: |
| 429 | default: |
| 430 | cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); |
| 431 | break; |
| 432 | } |
| 433 | |
| 434 | /* If the device is marked as an in/out FIFO, ensure it is |
| 435 | * set non-coherent. |
| 436 | */ |
| 437 | if (stp->dev_flags & DEV_FLAGS_IN) |
| 438 | cmd0 |= DSCR_CMD0_SN; /* Source in fifo */ |
| 439 | if (dtp->dev_flags & DEV_FLAGS_OUT) |
| 440 | cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */ |
| 441 | |
| 442 | /* Set up source1. For now, assume no stride and increment. |
| 443 | * A channel attribute update can change this later. |
| 444 | */ |
| 445 | switch (stp->dev_tsize) { |
| 446 | case 1: |
| 447 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); |
| 448 | break; |
| 449 | case 2: |
| 450 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); |
| 451 | break; |
| 452 | case 4: |
| 453 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); |
| 454 | break; |
| 455 | case 8: |
| 456 | default: |
| 457 | src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); |
| 458 | break; |
| 459 | } |
| 460 | |
| 461 | /* If source input is fifo, set static address. |
| 462 | */ |
| 463 | if (stp->dev_flags & DEV_FLAGS_IN) { |
| 464 | src0 = stp->dev_physaddr; |
| 465 | src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); |
| 466 | } |
| 467 | |
| 468 | /* Set up dest1. For now, assume no stride and increment. |
| 469 | * A channel attribute update can change this later. |
| 470 | */ |
| 471 | switch (dtp->dev_tsize) { |
| 472 | case 1: |
| 473 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); |
| 474 | break; |
| 475 | case 2: |
| 476 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); |
| 477 | break; |
| 478 | case 4: |
| 479 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); |
| 480 | break; |
| 481 | case 8: |
| 482 | default: |
| 483 | dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); |
| 484 | break; |
| 485 | } |
| 486 | |
| 487 | /* If destination output is fifo, set static address. |
| 488 | */ |
| 489 | if (dtp->dev_flags & DEV_FLAGS_OUT) { |
| 490 | dest0 = dtp->dev_physaddr; |
| 491 | dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); |
| 492 | } |
| 493 | |
| 494 | for (i=0; i<entries; i++) { |
| 495 | dp->dscr_cmd0 = cmd0; |
| 496 | dp->dscr_cmd1 = cmd1; |
| 497 | dp->dscr_source0 = src0; |
| 498 | dp->dscr_source1 = src1; |
| 499 | dp->dscr_dest0 = dest0; |
| 500 | dp->dscr_dest1 = dest1; |
| 501 | dp->dscr_stat = 0; |
| 502 | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); |
| 503 | dp++; |
| 504 | } |
| 505 | |
| 506 | /* Make last descrptor point to the first. |
| 507 | */ |
| 508 | dp--; |
| 509 | dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); |
| 510 | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; |
| 511 | |
| 512 | return (u32)(ctp->chan_desc_base); |
| 513 | } |
| 514 | |
| 515 | /* Put a source buffer into the DMA ring. |
| 516 | * This updates the source pointer and byte count. Normally used |
| 517 | * for memory to fifo transfers. |
| 518 | */ |
| 519 | u32 |
| 520 | au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes) |
| 521 | { |
| 522 | chan_tab_t *ctp; |
| 523 | au1x_ddma_desc_t *dp; |
| 524 | |
| 525 | /* I guess we could check this to be within the |
| 526 | * range of the table...... |
| 527 | */ |
| 528 | ctp = *((chan_tab_t **)chanid); |
| 529 | |
| 530 | /* We should have multiple callers for a particular channel, |
| 531 | * an interrupt doesn't affect this pointer nor the descriptor, |
| 532 | * so no locking should be needed. |
| 533 | */ |
| 534 | dp = ctp->put_ptr; |
| 535 | |
| 536 | /* If the descriptor is valid, we are way ahead of the DMA |
| 537 | * engine, so just return an error condition. |
| 538 | */ |
| 539 | if (dp->dscr_cmd0 & DSCR_CMD0_V) { |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | /* Load up buffer address and byte count. |
| 544 | */ |
| 545 | dp->dscr_source0 = virt_to_phys(buf); |
| 546 | dp->dscr_cmd1 = nbytes; |
| 547 | dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ |
| 548 | ctp->chan_ptr->ddma_dbell = 0xffffffff; /* Make it go */ |
| 549 | |
| 550 | /* Get next descriptor pointer. |
| 551 | */ |
| 552 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| 553 | |
| 554 | /* return something not zero. |
| 555 | */ |
| 556 | return nbytes; |
| 557 | } |
| 558 | |
| 559 | /* Put a destination buffer into the DMA ring. |
| 560 | * This updates the destination pointer and byte count. Normally used |
| 561 | * to place an empty buffer into the ring for fifo to memory transfers. |
| 562 | */ |
| 563 | u32 |
| 564 | au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes) |
| 565 | { |
| 566 | chan_tab_t *ctp; |
| 567 | au1x_ddma_desc_t *dp; |
| 568 | |
| 569 | /* I guess we could check this to be within the |
| 570 | * range of the table...... |
| 571 | */ |
| 572 | ctp = *((chan_tab_t **)chanid); |
| 573 | |
| 574 | /* We should have multiple callers for a particular channel, |
| 575 | * an interrupt doesn't affect this pointer nor the descriptor, |
| 576 | * so no locking should be needed. |
| 577 | */ |
| 578 | dp = ctp->put_ptr; |
| 579 | |
| 580 | /* If the descriptor is valid, we are way ahead of the DMA |
| 581 | * engine, so just return an error condition. |
| 582 | */ |
| 583 | if (dp->dscr_cmd0 & DSCR_CMD0_V) |
| 584 | return 0; |
| 585 | |
| 586 | /* Load up buffer address and byte count. |
| 587 | */ |
| 588 | dp->dscr_dest0 = virt_to_phys(buf); |
| 589 | dp->dscr_cmd1 = nbytes; |
| 590 | dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ |
| 591 | |
| 592 | /* Get next descriptor pointer. |
| 593 | */ |
| 594 | ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| 595 | |
| 596 | /* return something not zero. |
| 597 | */ |
| 598 | return nbytes; |
| 599 | } |
| 600 | |
| 601 | /* Get a destination buffer into the DMA ring. |
| 602 | * Normally used to get a full buffer from the ring during fifo |
| 603 | * to memory transfers. This does not set the valid bit, you will |
| 604 | * have to put another destination buffer to keep the DMA going. |
| 605 | */ |
| 606 | u32 |
| 607 | au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) |
| 608 | { |
| 609 | chan_tab_t *ctp; |
| 610 | au1x_ddma_desc_t *dp; |
| 611 | u32 rv; |
| 612 | |
| 613 | /* I guess we could check this to be within the |
| 614 | * range of the table...... |
| 615 | */ |
| 616 | ctp = *((chan_tab_t **)chanid); |
| 617 | |
| 618 | /* We should have multiple callers for a particular channel, |
| 619 | * an interrupt doesn't affect this pointer nor the descriptor, |
| 620 | * so no locking should be needed. |
| 621 | */ |
| 622 | dp = ctp->get_ptr; |
| 623 | |
| 624 | /* If the descriptor is valid, we are way ahead of the DMA |
| 625 | * engine, so just return an error condition. |
| 626 | */ |
| 627 | if (dp->dscr_cmd0 & DSCR_CMD0_V) |
| 628 | return 0; |
| 629 | |
| 630 | /* Return buffer address and byte count. |
| 631 | */ |
| 632 | *buf = (void *)(phys_to_virt(dp->dscr_dest0)); |
| 633 | *nbytes = dp->dscr_cmd1; |
| 634 | rv = dp->dscr_stat; |
| 635 | |
| 636 | /* Get next descriptor pointer. |
| 637 | */ |
| 638 | ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| 639 | |
| 640 | /* return something not zero. |
| 641 | */ |
| 642 | return rv; |
| 643 | } |
| 644 | |
| 645 | void |
| 646 | au1xxx_dbdma_stop(u32 chanid) |
| 647 | { |
| 648 | chan_tab_t *ctp; |
| 649 | volatile au1x_dma_chan_t *cp; |
| 650 | int halt_timeout = 0; |
| 651 | |
| 652 | ctp = *((chan_tab_t **)chanid); |
| 653 | |
| 654 | cp = ctp->chan_ptr; |
| 655 | cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ |
| 656 | au_sync(); |
| 657 | while (!(cp->ddma_stat & DDMA_STAT_H)) { |
| 658 | udelay(1); |
| 659 | halt_timeout++; |
| 660 | if (halt_timeout > 100) { |
| 661 | printk("warning: DMA channel won't halt\n"); |
| 662 | break; |
| 663 | } |
| 664 | } |
| 665 | /* clear current desc valid and doorbell */ |
| 666 | cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); |
| 667 | au_sync(); |
| 668 | } |
| 669 | |
| 670 | /* Start using the current descriptor pointer. If the dbdma encounters |
| 671 | * a not valid descriptor, it will stop. In this case, we can just |
| 672 | * continue by adding a buffer to the list and starting again. |
| 673 | */ |
| 674 | void |
| 675 | au1xxx_dbdma_start(u32 chanid) |
| 676 | { |
| 677 | chan_tab_t *ctp; |
| 678 | volatile au1x_dma_chan_t *cp; |
| 679 | |
| 680 | ctp = *((chan_tab_t **)chanid); |
| 681 | |
| 682 | cp = ctp->chan_ptr; |
| 683 | cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); |
| 684 | cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ |
| 685 | au_sync(); |
| 686 | cp->ddma_dbell = 0xffffffff; /* Make it go */ |
| 687 | au_sync(); |
| 688 | } |
| 689 | |
| 690 | void |
| 691 | au1xxx_dbdma_reset(u32 chanid) |
| 692 | { |
| 693 | chan_tab_t *ctp; |
| 694 | au1x_ddma_desc_t *dp; |
| 695 | |
| 696 | au1xxx_dbdma_stop(chanid); |
| 697 | |
| 698 | ctp = *((chan_tab_t **)chanid); |
| 699 | ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; |
| 700 | |
| 701 | /* Run through the descriptors and reset the valid indicator. |
| 702 | */ |
| 703 | dp = ctp->chan_desc_base; |
| 704 | |
| 705 | do { |
| 706 | dp->dscr_cmd0 &= ~DSCR_CMD0_V; |
| 707 | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| 708 | } while (dp != ctp->chan_desc_base); |
| 709 | } |
| 710 | |
| 711 | u32 |
| 712 | au1xxx_get_dma_residue(u32 chanid) |
| 713 | { |
| 714 | chan_tab_t *ctp; |
| 715 | volatile au1x_dma_chan_t *cp; |
| 716 | u32 rv; |
| 717 | |
| 718 | ctp = *((chan_tab_t **)chanid); |
| 719 | cp = ctp->chan_ptr; |
| 720 | |
| 721 | /* This is only valid if the channel is stopped. |
| 722 | */ |
| 723 | rv = cp->ddma_bytecnt; |
| 724 | au_sync(); |
| 725 | |
| 726 | return rv; |
| 727 | } |
| 728 | |
| 729 | void |
| 730 | au1xxx_dbdma_chan_free(u32 chanid) |
| 731 | { |
| 732 | chan_tab_t *ctp; |
| 733 | dbdev_tab_t *stp, *dtp; |
| 734 | |
| 735 | ctp = *((chan_tab_t **)chanid); |
| 736 | stp = ctp->chan_src; |
| 737 | dtp = ctp->chan_dest; |
| 738 | |
| 739 | au1xxx_dbdma_stop(chanid); |
| 740 | |
| 741 | if (ctp->chan_desc_base != NULL) |
| 742 | kfree(ctp->chan_desc_base); |
| 743 | |
| 744 | stp->dev_flags &= ~DEV_FLAGS_INUSE; |
| 745 | dtp->dev_flags &= ~DEV_FLAGS_INUSE; |
| 746 | chan_tab_ptr[ctp->chan_index] = NULL; |
| 747 | |
| 748 | kfree(ctp); |
| 749 | } |
| 750 | |
| 751 | static irqreturn_t |
| 752 | dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 753 | { |
| 754 | u32 intstat; |
| 755 | u32 chan_index; |
| 756 | chan_tab_t *ctp; |
| 757 | au1x_ddma_desc_t *dp; |
| 758 | volatile au1x_dma_chan_t *cp; |
| 759 | |
| 760 | intstat = dbdma_gptr->ddma_intstat; |
| 761 | au_sync(); |
| 762 | chan_index = au_ffs(intstat) - 1; |
| 763 | |
| 764 | ctp = chan_tab_ptr[chan_index]; |
| 765 | cp = ctp->chan_ptr; |
| 766 | dp = ctp->cur_ptr; |
| 767 | |
| 768 | /* Reset interrupt. |
| 769 | */ |
| 770 | cp->ddma_irq = 0; |
| 771 | au_sync(); |
| 772 | |
| 773 | if (ctp->chan_callback) |
| 774 | (ctp->chan_callback)(irq, ctp->chan_callparam, regs); |
| 775 | |
| 776 | ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| 777 | |
| 778 | return IRQ_HANDLED; |
| 779 | } |
| 780 | |
| 781 | static void |
| 782 | au1xxx_dbdma_init(void) |
| 783 | { |
| 784 | dbdma_gptr->ddma_config = 0; |
| 785 | dbdma_gptr->ddma_throttle = 0; |
| 786 | dbdma_gptr->ddma_inten = 0xffff; |
| 787 | au_sync(); |
| 788 | |
| 789 | if (request_irq(AU1550_DDMA_INT, dbdma_interrupt, SA_INTERRUPT, |
| 790 | "Au1xxx dbdma", (void *)dbdma_gptr)) |
| 791 | printk("Can't get 1550 dbdma irq"); |
| 792 | } |
| 793 | |
| 794 | void |
| 795 | au1xxx_dbdma_dump(u32 chanid) |
| 796 | { |
| 797 | chan_tab_t *ctp; |
| 798 | au1x_ddma_desc_t *dp; |
| 799 | dbdev_tab_t *stp, *dtp; |
| 800 | volatile au1x_dma_chan_t *cp; |
| 801 | |
| 802 | ctp = *((chan_tab_t **)chanid); |
| 803 | stp = ctp->chan_src; |
| 804 | dtp = ctp->chan_dest; |
| 805 | cp = ctp->chan_ptr; |
| 806 | |
| 807 | printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n", |
| 808 | (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab); |
| 809 | printk("desc base %x, get %x, put %x, cur %x\n", |
| 810 | (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), |
| 811 | (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); |
| 812 | |
| 813 | printk("dbdma chan %x\n", (u32)cp); |
| 814 | printk("cfg %08x, desptr %08x, statptr %08x\n", |
| 815 | cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); |
| 816 | printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", |
| 817 | cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt); |
| 818 | |
| 819 | |
| 820 | /* Run through the descriptors |
| 821 | */ |
| 822 | dp = ctp->chan_desc_base; |
| 823 | |
| 824 | do { |
| 825 | printk("dp %08x, cmd0 %08x, cmd1 %08x\n", |
| 826 | (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); |
| 827 | printk("src0 %08x, src1 %08x, dest0 %08x\n", |
| 828 | dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0); |
| 829 | printk("dest1 %08x, stat %08x, nxtptr %08x\n", |
| 830 | dp->dscr_dest1, dp->dscr_stat, dp->dscr_nxtptr); |
| 831 | dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| 832 | } while (dp != ctp->chan_desc_base); |
| 833 | } |
| 834 | |
| 835 | #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ |
| 836 | |