| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *	Driver for the Macintosh 68K onboard MACE controller with PSC | 
 | 3 |  *	driven DMA. The MACE driver code is derived from mace.c. The | 
 | 4 |  *	Mac68k theory of operation is courtesy of the MacBSD wizards. | 
 | 5 |  * | 
 | 6 |  *	This program is free software; you can redistribute it and/or | 
 | 7 |  *	modify it under the terms of the GNU General Public License | 
 | 8 |  *	as published by the Free Software Foundation; either version | 
 | 9 |  *	2 of the License, or (at your option) any later version. | 
 | 10 |  * | 
 | 11 |  *	Copyright (C) 1996 Paul Mackerras. | 
 | 12 |  *	Copyright (C) 1998 Alan Cox <alan@redhat.com> | 
 | 13 |  * | 
 | 14 |  *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver | 
 | 15 |  */ | 
 | 16 |  | 
 | 17 |  | 
 | 18 | #include <linux/kernel.h> | 
 | 19 | #include <linux/module.h> | 
 | 20 | #include <linux/netdevice.h> | 
 | 21 | #include <linux/etherdevice.h> | 
 | 22 | #include <linux/delay.h> | 
 | 23 | #include <linux/string.h> | 
 | 24 | #include <linux/crc32.h> | 
 | 25 | #include <asm/io.h> | 
 | 26 | #include <asm/pgtable.h> | 
 | 27 | #include <asm/irq.h> | 
 | 28 | #include <asm/macintosh.h> | 
 | 29 | #include <asm/macints.h> | 
 | 30 | #include <asm/mac_psc.h> | 
 | 31 | #include <asm/page.h> | 
 | 32 | #include "mace.h" | 
 | 33 |  | 
 | 34 | #define N_TX_RING	1 | 
 | 35 | #define N_RX_RING	8 | 
 | 36 | #define N_RX_PAGES	((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE) | 
 | 37 | #define TX_TIMEOUT	HZ | 
 | 38 |  | 
 | 39 | /* Bits in transmit DMA status */ | 
 | 40 | #define TX_DMA_ERR	0x80 | 
 | 41 |  | 
 | 42 | /* The MACE is simply wired down on a Mac68K box */ | 
 | 43 |  | 
 | 44 | #define MACE_BASE	(void *)(0x50F1C000) | 
 | 45 | #define MACE_PROM	(void *)(0x50F08001) | 
 | 46 |  | 
 | 47 | struct mace_data { | 
 | 48 | 	volatile struct mace *mace; | 
 | 49 | 	volatile unsigned char *tx_ring; | 
 | 50 | 	volatile unsigned char *tx_ring_phys; | 
 | 51 | 	volatile unsigned char *rx_ring; | 
 | 52 | 	volatile unsigned char *rx_ring_phys; | 
 | 53 | 	int dma_intr; | 
 | 54 | 	struct net_device_stats stats; | 
 | 55 | 	int rx_slot, rx_tail; | 
 | 56 | 	int tx_slot, tx_sloti, tx_count; | 
 | 57 | }; | 
 | 58 |  | 
 | 59 | struct mace_frame { | 
 | 60 | 	u16	len; | 
 | 61 | 	u16	status; | 
 | 62 | 	u16	rntpc; | 
 | 63 | 	u16	rcvcc; | 
 | 64 | 	u32	pad1; | 
 | 65 | 	u32	pad2; | 
 | 66 | 	u8	data[1];	 | 
 | 67 | 	/* And frame continues.. */ | 
 | 68 | }; | 
 | 69 |  | 
 | 70 | #define PRIV_BYTES	sizeof(struct mace_data) | 
 | 71 |  | 
 | 72 | extern void psc_debug_dump(void); | 
 | 73 |  | 
 | 74 | static int mace_open(struct net_device *dev); | 
 | 75 | static int mace_close(struct net_device *dev); | 
 | 76 | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); | 
 | 77 | static struct net_device_stats *mace_stats(struct net_device *dev); | 
 | 78 | static void mace_set_multicast(struct net_device *dev); | 
 | 79 | static int mace_set_address(struct net_device *dev, void *addr); | 
 | 80 | static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs); | 
 | 81 | static irqreturn_t mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs); | 
 | 82 | static void mace_tx_timeout(struct net_device *dev); | 
 | 83 |  | 
 | 84 | /* Bit-reverse one byte of an ethernet hardware address. */ | 
 | 85 |  | 
 | 86 | static int bitrev(int b) | 
 | 87 | { | 
 | 88 | 	int d = 0, i; | 
 | 89 |  | 
 | 90 | 	for (i = 0; i < 8; ++i, b >>= 1) { | 
 | 91 | 		d = (d << 1) | (b & 1); | 
 | 92 | 	} | 
 | 93 |  | 
 | 94 | 	return d; | 
 | 95 | } | 
 | 96 |  | 
 | 97 | /* | 
 | 98 |  * Load a receive DMA channel with a base address and ring length | 
 | 99 |  */ | 
 | 100 |  | 
 | 101 | static void mace_load_rxdma_base(struct net_device *dev, int set) | 
 | 102 | { | 
 | 103 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 104 |  | 
 | 105 | 	psc_write_word(PSC_ENETRD_CMD + set, 0x0100); | 
 | 106 | 	psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); | 
 | 107 | 	psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); | 
 | 108 | 	psc_write_word(PSC_ENETRD_CMD + set, 0x9800); | 
 | 109 | 	mp->rx_tail = 0; | 
 | 110 | } | 
 | 111 |  | 
 | 112 | /* | 
 | 113 |  * Reset the receive DMA subsystem | 
 | 114 |  */ | 
 | 115 |  | 
 | 116 | static void mace_rxdma_reset(struct net_device *dev) | 
 | 117 | { | 
 | 118 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 119 | 	volatile struct mace *mace = mp->mace; | 
 | 120 | 	u8 maccc = mace->maccc; | 
 | 121 | 	 | 
 | 122 | 	mace->maccc = maccc & ~ENRCV; | 
 | 123 | 	 | 
 | 124 | 	psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
 | 125 | 	mace_load_rxdma_base(dev, 0x00); | 
 | 126 | 	psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
 | 127 | 	 | 
 | 128 | 	psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
 | 129 | 	mace_load_rxdma_base(dev, 0x10); | 
 | 130 | 	psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
 | 131 | 	 | 
 | 132 | 	mace->maccc = maccc; | 
 | 133 | 	mp->rx_slot = 0; | 
 | 134 |  | 
 | 135 | 	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); | 
 | 136 | 	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); | 
 | 137 | } | 
 | 138 |  | 
 | 139 | /* | 
 | 140 |  * Reset the transmit DMA subsystem | 
 | 141 |  */ | 
 | 142 |   | 
 | 143 | static void mace_txdma_reset(struct net_device *dev) | 
 | 144 | { | 
 | 145 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 146 | 	volatile struct mace *mace = mp->mace; | 
 | 147 | 	u8 maccc; | 
 | 148 |  | 
 | 149 | 	psc_write_word(PSC_ENETWR_CTL, 0x8800); | 
 | 150 |  | 
 | 151 | 	maccc = mace->maccc; | 
 | 152 | 	mace->maccc = maccc & ~ENXMT; | 
 | 153 |  | 
 | 154 | 	mp->tx_slot = mp->tx_sloti = 0; | 
 | 155 | 	mp->tx_count = N_TX_RING; | 
 | 156 |  | 
 | 157 | 	psc_write_word(PSC_ENETWR_CTL, 0x0400); | 
 | 158 | 	mace->maccc = maccc; | 
 | 159 | } | 
 | 160 |  | 
 | 161 | /* | 
 | 162 |  * Disable DMA | 
 | 163 |  */ | 
 | 164 |   | 
 | 165 | static void mace_dma_off(struct net_device *dev) | 
 | 166 | { | 
 | 167 | 	psc_write_word(PSC_ENETRD_CTL, 0x8800); | 
 | 168 | 	psc_write_word(PSC_ENETRD_CTL, 0x1000); | 
 | 169 | 	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); | 
 | 170 | 	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); | 
 | 171 |  | 
 | 172 | 	psc_write_word(PSC_ENETWR_CTL, 0x8800); | 
 | 173 | 	psc_write_word(PSC_ENETWR_CTL, 0x1000); | 
 | 174 | 	psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); | 
 | 175 | 	psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); | 
 | 176 | } | 
 | 177 |  | 
 | 178 | /* | 
 | 179 |  * Not really much of a probe. The hardware table tells us if this | 
 | 180 |  * model of Macintrash has a MACE (AV macintoshes) | 
 | 181 |  */ | 
 | 182 |   | 
 | 183 | struct net_device *mace_probe(int unit) | 
 | 184 | { | 
 | 185 | 	int j; | 
 | 186 | 	struct mace_data *mp; | 
 | 187 | 	unsigned char *addr; | 
 | 188 | 	struct net_device *dev; | 
 | 189 | 	unsigned char checksum = 0; | 
 | 190 | 	static int found = 0; | 
 | 191 | 	int err; | 
 | 192 | 	 | 
 | 193 | 	if (found || macintosh_config->ether_type != MAC_ETHER_MACE) | 
 | 194 | 		return ERR_PTR(-ENODEV); | 
 | 195 |  | 
 | 196 | 	found = 1;	/* prevent 'finding' one on every device probe */ | 
 | 197 |  | 
 | 198 | 	dev = alloc_etherdev(PRIV_BYTES); | 
 | 199 | 	if (!dev) | 
 | 200 | 		return ERR_PTR(-ENOMEM); | 
 | 201 |  | 
 | 202 | 	if (unit >= 0) | 
 | 203 | 		sprintf(dev->name, "eth%d", unit); | 
 | 204 |  | 
 | 205 | 	mp = (struct mace_data *) dev->priv; | 
 | 206 | 	dev->base_addr = (u32)MACE_BASE; | 
 | 207 | 	mp->mace = (volatile struct mace *) MACE_BASE; | 
 | 208 | 	 | 
 | 209 | 	dev->irq = IRQ_MAC_MACE; | 
 | 210 | 	mp->dma_intr = IRQ_MAC_MACE_DMA; | 
 | 211 |  | 
 | 212 | 	/* | 
 | 213 | 	 * The PROM contains 8 bytes which total 0xFF when XOR'd | 
 | 214 | 	 * together. Due to the usual peculiar apple brain damage | 
 | 215 | 	 * the bytes are spaced out in a strange boundary and the | 
 | 216 | 	 * bits are reversed. | 
 | 217 | 	 */ | 
 | 218 |  | 
 | 219 | 	addr = (void *)MACE_PROM; | 
 | 220 | 		  | 
 | 221 | 	for (j = 0; j < 6; ++j) { | 
 | 222 | 		u8 v=bitrev(addr[j<<4]); | 
 | 223 | 		checksum ^= v; | 
 | 224 | 		dev->dev_addr[j] = v; | 
 | 225 | 	} | 
 | 226 | 	for (; j < 8; ++j) { | 
 | 227 | 		checksum ^= bitrev(addr[j<<4]); | 
 | 228 | 	} | 
 | 229 | 	 | 
 | 230 | 	if (checksum != 0xFF) { | 
 | 231 | 		free_netdev(dev); | 
 | 232 | 		return ERR_PTR(-ENODEV); | 
 | 233 | 	} | 
 | 234 |  | 
 | 235 | 	memset(&mp->stats, 0, sizeof(mp->stats)); | 
 | 236 |  | 
 | 237 | 	dev->open		= mace_open; | 
 | 238 | 	dev->stop		= mace_close; | 
 | 239 | 	dev->hard_start_xmit	= mace_xmit_start; | 
 | 240 | 	dev->tx_timeout		= mace_tx_timeout; | 
 | 241 | 	dev->watchdog_timeo	= TX_TIMEOUT; | 
 | 242 | 	dev->get_stats		= mace_stats; | 
 | 243 | 	dev->set_multicast_list	= mace_set_multicast; | 
 | 244 | 	dev->set_mac_address	= mace_set_address; | 
 | 245 |  | 
 | 246 | 	printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]); | 
 | 247 | 	for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]); | 
 | 248 | 	printk("\n"); | 
 | 249 |  | 
 | 250 | 	err = register_netdev(dev); | 
 | 251 | 	if (!err) | 
 | 252 | 		return dev; | 
 | 253 |  | 
 | 254 | 	free_netdev(dev); | 
 | 255 | 	return ERR_PTR(err); | 
 | 256 | } | 
 | 257 |  | 
 | 258 | /* | 
 | 259 |  * Load the address on a mace controller. | 
 | 260 |  */ | 
 | 261 |  | 
 | 262 | static int mace_set_address(struct net_device *dev, void *addr) | 
 | 263 | { | 
 | 264 | 	unsigned char *p = addr; | 
 | 265 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 266 | 	volatile struct mace *mb = mp->mace; | 
 | 267 | 	int i; | 
 | 268 | 	unsigned long flags; | 
 | 269 | 	u8 maccc; | 
 | 270 |  | 
 | 271 | 	local_irq_save(flags); | 
 | 272 |  | 
 | 273 | 	maccc = mb->maccc; | 
 | 274 |  | 
 | 275 | 	/* load up the hardware address */ | 
 | 276 | 	mb->iac = ADDRCHG | PHYADDR; | 
 | 277 | 	while ((mb->iac & ADDRCHG) != 0); | 
 | 278 | 	 | 
 | 279 | 	for (i = 0; i < 6; ++i) { | 
 | 280 | 		mb->padr = dev->dev_addr[i] = p[i]; | 
 | 281 | 	} | 
 | 282 |  | 
 | 283 | 	mb->maccc = maccc; | 
 | 284 | 	local_irq_restore(flags); | 
 | 285 |  | 
 | 286 | 	return 0; | 
 | 287 | } | 
 | 288 |  | 
 | 289 | /* | 
 | 290 |  * Open the Macintosh MACE. Most of this is playing with the DMA | 
 | 291 |  * engine. The ethernet chip is quite friendly. | 
 | 292 |  */ | 
 | 293 |   | 
 | 294 | static int mace_open(struct net_device *dev) | 
 | 295 | { | 
 | 296 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 297 | 	volatile struct mace *mb = mp->mace; | 
 | 298 | #if 0 | 
 | 299 | 	int i; | 
 | 300 |  | 
 | 301 | 	i = 200; | 
 | 302 | 	while (--i) { | 
 | 303 | 		mb->biucc = SWRST; | 
 | 304 | 		if (mb->biucc & SWRST) { | 
 | 305 | 			udelay(10); | 
 | 306 | 			continue; | 
 | 307 | 		} | 
 | 308 | 		break; | 
 | 309 | 	} | 
 | 310 | 	if (!i) { | 
 | 311 | 		printk(KERN_ERR "%s: software reset failed!!\n", dev->name); | 
 | 312 | 		return -EAGAIN; | 
 | 313 | 	} | 
 | 314 | #endif | 
 | 315 |  | 
 | 316 | 	mb->biucc = XMTSP_64; | 
 | 317 | 	mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST; | 
 | 318 | 	mb->xmtfc = AUTO_PAD_XMIT; | 
 | 319 | 	mb->plscc = PORTSEL_AUI; | 
 | 320 | 	/* mb->utr = RTRD; */ | 
 | 321 |  | 
 | 322 | 	if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { | 
 | 323 | 		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); | 
 | 324 | 		return -EAGAIN; | 
 | 325 | 	} | 
 | 326 | 	if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { | 
 | 327 | 		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); | 
 | 328 | 		free_irq(dev->irq, dev); | 
 | 329 | 		return -EAGAIN; | 
 | 330 | 	} | 
 | 331 |  | 
 | 332 | 	/* Allocate the DMA ring buffers */ | 
 | 333 |  | 
 | 334 | 	mp->rx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, N_RX_PAGES); | 
 | 335 | 	mp->tx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, 0); | 
 | 336 | 	 | 
 | 337 | 	if (mp->tx_ring==NULL || mp->rx_ring==NULL) { | 
 | 338 | 		if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES); | 
 | 339 | 		if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0); | 
 | 340 | 		free_irq(dev->irq, dev); | 
 | 341 | 		free_irq(mp->dma_intr, dev); | 
 | 342 | 		printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name); | 
 | 343 | 		return -ENOMEM; | 
 | 344 | 	} | 
 | 345 |  | 
 | 346 | 	mp->rx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->rx_ring); | 
 | 347 | 	mp->tx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->tx_ring); | 
 | 348 |  | 
 | 349 | 	/* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */ | 
 | 350 |  | 
 | 351 | 	kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER);	 | 
 | 352 | 	kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH); | 
 | 353 |  | 
 | 354 | 	mace_dma_off(dev); | 
 | 355 |  | 
 | 356 | 	/* Not sure what these do */ | 
 | 357 |  | 
 | 358 | 	psc_write_word(PSC_ENETWR_CTL, 0x9000); | 
 | 359 | 	psc_write_word(PSC_ENETRD_CTL, 0x9000); | 
 | 360 | 	psc_write_word(PSC_ENETWR_CTL, 0x0400); | 
 | 361 | 	psc_write_word(PSC_ENETRD_CTL, 0x0400); | 
 | 362 |  | 
 | 363 | #if 0 | 
 | 364 | 	/* load up the hardware address */ | 
 | 365 | 	 | 
 | 366 | 	mb->iac = ADDRCHG | PHYADDR; | 
 | 367 | 	 | 
 | 368 | 	while ((mb->iac & ADDRCHG) != 0); | 
 | 369 | 	 | 
 | 370 | 	for (i = 0; i < 6; ++i) | 
 | 371 | 		mb->padr = dev->dev_addr[i]; | 
 | 372 |  | 
 | 373 | 	/* clear the multicast filter */ | 
 | 374 | 	mb->iac = ADDRCHG | LOGADDR; | 
 | 375 |  | 
 | 376 | 	while ((mb->iac & ADDRCHG) != 0); | 
 | 377 | 	 | 
 | 378 | 	for (i = 0; i < 8; ++i) | 
 | 379 | 		mb->ladrf = 0; | 
 | 380 |  | 
 | 381 | 	mb->plscc = PORTSEL_GPSI + ENPLSIO; | 
 | 382 |  | 
 | 383 | 	mb->maccc = ENXMT | ENRCV; | 
 | 384 | 	mb->imr = RCVINT; | 
 | 385 | #endif | 
 | 386 |  | 
 | 387 | 	mace_rxdma_reset(dev); | 
 | 388 | 	mace_txdma_reset(dev); | 
 | 389 | 	 | 
 | 390 | 	return 0; | 
 | 391 | } | 
 | 392 |  | 
 | 393 | /* | 
 | 394 |  * Shut down the mace and its interrupt channel | 
 | 395 |  */ | 
 | 396 |   | 
 | 397 | static int mace_close(struct net_device *dev) | 
 | 398 | { | 
 | 399 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 400 | 	volatile struct mace *mb = mp->mace; | 
 | 401 |  | 
 | 402 | 	mb->maccc = 0;		/* disable rx and tx	 */ | 
 | 403 | 	mb->imr = 0xFF;		/* disable all irqs	 */ | 
 | 404 | 	mace_dma_off(dev);	/* disable rx and tx dma */ | 
 | 405 |  | 
 | 406 | 	free_irq(dev->irq, dev); | 
 | 407 | 	free_irq(IRQ_MAC_MACE_DMA, dev); | 
 | 408 |  | 
 | 409 | 	free_pages((u32) mp->rx_ring, N_RX_PAGES); | 
 | 410 | 	free_pages((u32) mp->tx_ring, 0); | 
 | 411 |  | 
 | 412 | 	return 0; | 
 | 413 | } | 
 | 414 |  | 
 | 415 | /* | 
 | 416 |  * Transmit a frame | 
 | 417 |  */ | 
 | 418 |   | 
 | 419 | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) | 
 | 420 | { | 
 | 421 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 422 |  | 
 | 423 | 	/* Stop the queue if the buffer is full */ | 
 | 424 |  | 
 | 425 | 	if (!mp->tx_count) { | 
 | 426 | 		netif_stop_queue(dev); | 
 | 427 | 		return 1; | 
 | 428 | 	} | 
 | 429 | 	mp->tx_count--; | 
 | 430 | 	 | 
 | 431 | 	mp->stats.tx_packets++; | 
 | 432 | 	mp->stats.tx_bytes += skb->len; | 
 | 433 |  | 
 | 434 | 	/* We need to copy into our xmit buffer to take care of alignment and caching issues */ | 
 | 435 |  | 
 | 436 | 	memcpy((void *) mp->tx_ring, skb->data, skb->len); | 
 | 437 |  | 
 | 438 | 	/* load the Tx DMA and fire it off */ | 
 | 439 |  | 
 | 440 | 	psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys); | 
 | 441 | 	psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); | 
 | 442 | 	psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); | 
 | 443 |  | 
 | 444 | 	mp->tx_slot ^= 0x10; | 
 | 445 |  | 
 | 446 | 	dev_kfree_skb(skb); | 
 | 447 |  | 
 | 448 | 	return 0; | 
 | 449 | } | 
 | 450 |  | 
 | 451 | static struct net_device_stats *mace_stats(struct net_device *dev) | 
 | 452 | { | 
 | 453 | 	struct mace_data *p = (struct mace_data *) dev->priv; | 
 | 454 | 	return &p->stats; | 
 | 455 | } | 
 | 456 |  | 
 | 457 | static void mace_set_multicast(struct net_device *dev) | 
 | 458 | { | 
 | 459 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 460 | 	volatile struct mace *mb = mp->mace; | 
 | 461 | 	int i, j; | 
 | 462 | 	u32 crc; | 
 | 463 | 	u8 maccc; | 
 | 464 |  | 
 | 465 | 	maccc = mb->maccc; | 
 | 466 | 	mb->maccc &= ~PROM; | 
 | 467 |  | 
 | 468 | 	if (dev->flags & IFF_PROMISC) { | 
 | 469 | 		mb->maccc |= PROM; | 
 | 470 | 	} else { | 
 | 471 | 		unsigned char multicast_filter[8]; | 
 | 472 | 		struct dev_mc_list *dmi = dev->mc_list; | 
 | 473 |  | 
 | 474 | 		if (dev->flags & IFF_ALLMULTI) { | 
 | 475 | 			for (i = 0; i < 8; i++) { | 
 | 476 | 				multicast_filter[i] = 0xFF; | 
 | 477 | 			} | 
 | 478 | 		} else { | 
 | 479 | 			for (i = 0; i < 8; i++) | 
 | 480 | 				multicast_filter[i] = 0; | 
 | 481 | 			for (i = 0; i < dev->mc_count; i++) { | 
 | 482 | 				crc = ether_crc_le(6, dmi->dmi_addr); | 
 | 483 | 				j = crc >> 26;	/* bit number in multicast_filter */ | 
 | 484 | 				multicast_filter[j >> 3] |= 1 << (j & 7); | 
 | 485 | 				dmi = dmi->next; | 
 | 486 | 			} | 
 | 487 | 		} | 
 | 488 |  | 
 | 489 | 		mb->iac = ADDRCHG | LOGADDR; | 
 | 490 | 		while (mb->iac & ADDRCHG); | 
 | 491 | 		 | 
 | 492 | 		for (i = 0; i < 8; ++i) { | 
 | 493 | 			mb->ladrf = multicast_filter[i]; | 
 | 494 | 		} | 
 | 495 | 	} | 
 | 496 |  | 
 | 497 | 	mb->maccc = maccc; | 
 | 498 | } | 
 | 499 |  | 
 | 500 | /* | 
 | 501 |  * Miscellaneous interrupts are handled here. We may end up  | 
 | 502 |  * having to bash the chip on the head for bad errors | 
 | 503 |  */ | 
 | 504 |   | 
 | 505 | static void mace_handle_misc_intrs(struct mace_data *mp, int intr) | 
 | 506 | { | 
 | 507 | 	volatile struct mace *mb = mp->mace; | 
 | 508 | 	static int mace_babbles, mace_jabbers; | 
 | 509 |  | 
 | 510 | 	if (intr & MPCO) { | 
 | 511 | 		mp->stats.rx_missed_errors += 256; | 
 | 512 | 	} | 
 | 513 | 	mp->stats.rx_missed_errors += mb->mpc;	/* reading clears it */ | 
 | 514 |  | 
 | 515 | 	if (intr & RNTPCO) { | 
 | 516 | 		mp->stats.rx_length_errors += 256; | 
 | 517 | 	} | 
 | 518 | 	mp->stats.rx_length_errors += mb->rntpc;	/* reading clears it */ | 
 | 519 |  | 
 | 520 | 	if (intr & CERR) { | 
 | 521 | 		++mp->stats.tx_heartbeat_errors; | 
 | 522 | 	} | 
 | 523 | 	if (intr & BABBLE) { | 
 | 524 | 		if (mace_babbles++ < 4) { | 
 | 525 | 			printk(KERN_DEBUG "mace: babbling transmitter\n"); | 
 | 526 | 		} | 
 | 527 | 	} | 
 | 528 | 	if (intr & JABBER) { | 
 | 529 | 		if (mace_jabbers++ < 4) { | 
 | 530 | 			printk(KERN_DEBUG "mace: jabbering transceiver\n"); | 
 | 531 | 		} | 
 | 532 | 	} | 
 | 533 | } | 
 | 534 |  | 
 | 535 | /* | 
 | 536 |  *	A transmit error has occurred. (We kick the transmit side from | 
 | 537 |  *	the DMA completion) | 
 | 538 |  */ | 
 | 539 |   | 
 | 540 | static void mace_xmit_error(struct net_device *dev) | 
 | 541 | { | 
 | 542 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 543 | 	volatile struct mace *mb = mp->mace; | 
 | 544 | 	u8 xmtfs, xmtrc; | 
 | 545 | 	 | 
 | 546 | 	xmtfs = mb->xmtfs; | 
 | 547 | 	xmtrc = mb->xmtrc; | 
 | 548 | 	 | 
 | 549 | 	if (xmtfs & XMTSV) { | 
 | 550 | 		if (xmtfs & UFLO) { | 
 | 551 | 			printk("%s: DMA underrun.\n", dev->name); | 
 | 552 | 			mp->stats.tx_errors++; | 
 | 553 | 			mp->stats.tx_fifo_errors++; | 
 | 554 | 			mace_txdma_reset(dev); | 
 | 555 | 		} | 
 | 556 | 		if (xmtfs & RTRY) { | 
 | 557 | 			mp->stats.collisions++; | 
 | 558 | 		} | 
 | 559 | 	}			 | 
 | 560 | } | 
 | 561 |  | 
 | 562 | /* | 
 | 563 |  *	A receive interrupt occurred. | 
 | 564 |  */ | 
 | 565 |   | 
 | 566 | static void mace_recv_interrupt(struct net_device *dev) | 
 | 567 | { | 
 | 568 | /*	struct mace_data *mp = (struct mace_data *) dev->priv; */ | 
 | 569 | //	volatile struct mace *mb = mp->mace; | 
 | 570 | } | 
 | 571 |  | 
 | 572 | /* | 
 | 573 |  * Process the chip interrupt | 
 | 574 |  */ | 
 | 575 |   | 
 | 576 | static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 577 | { | 
 | 578 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 | 579 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 580 | 	volatile struct mace *mb = mp->mace; | 
 | 581 | 	u8 ir; | 
 | 582 | 	 | 
 | 583 | 	ir = mb->ir; | 
 | 584 | 	mace_handle_misc_intrs(mp, ir); | 
 | 585 | 	 | 
 | 586 | 	if (ir & XMTINT) { | 
 | 587 | 		mace_xmit_error(dev); | 
 | 588 | 	} | 
 | 589 | 	if (ir & RCVINT) { | 
 | 590 | 		mace_recv_interrupt(dev); | 
 | 591 | 	} | 
 | 592 | 	return IRQ_HANDLED; | 
 | 593 | } | 
 | 594 |  | 
 | 595 | static void mace_tx_timeout(struct net_device *dev) | 
 | 596 | { | 
 | 597 | /*	struct mace_data *mp = (struct mace_data *) dev->priv; */ | 
 | 598 | //	volatile struct mace *mb = mp->mace; | 
 | 599 | } | 
 | 600 |  | 
 | 601 | /* | 
 | 602 |  * Handle a newly arrived frame | 
 | 603 |  */ | 
 | 604 |   | 
 | 605 | static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) | 
 | 606 | { | 
 | 607 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 608 | 	struct sk_buff *skb; | 
 | 609 |  | 
 | 610 | 	if (mf->status & RS_OFLO) { | 
 | 611 | 		printk("%s: fifo overflow.\n", dev->name); | 
 | 612 | 		mp->stats.rx_errors++; | 
 | 613 | 		mp->stats.rx_fifo_errors++; | 
 | 614 | 	} | 
 | 615 | 	if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR)) | 
 | 616 | 		mp->stats.rx_errors++; | 
 | 617 | 		 | 
 | 618 | 	if (mf->status&RS_CLSN) { | 
 | 619 | 		mp->stats.collisions++; | 
 | 620 | 	} | 
 | 621 | 	if (mf->status&RS_FRAMERR) { | 
 | 622 | 		mp->stats.rx_frame_errors++; | 
 | 623 | 	} | 
 | 624 | 	if (mf->status&RS_FCSERR) { | 
 | 625 | 		mp->stats.rx_crc_errors++; | 
 | 626 | 	} | 
 | 627 | 		 | 
 | 628 | 	skb = dev_alloc_skb(mf->len+2); | 
 | 629 | 	if (!skb) { | 
 | 630 | 		mp->stats.rx_dropped++; | 
 | 631 | 		return; | 
 | 632 | 	} | 
 | 633 | 	skb_reserve(skb,2); | 
 | 634 | 	memcpy(skb_put(skb, mf->len), mf->data, mf->len); | 
 | 635 | 	 | 
 | 636 | 	skb->dev = dev; | 
 | 637 | 	skb->protocol = eth_type_trans(skb, dev); | 
 | 638 | 	netif_rx(skb); | 
 | 639 | 	dev->last_rx = jiffies; | 
 | 640 | 	mp->stats.rx_packets++; | 
 | 641 | 	mp->stats.rx_bytes += mf->len; | 
 | 642 | } | 
 | 643 |  | 
 | 644 | /* | 
 | 645 |  * The PSC has passed us a DMA interrupt event. | 
 | 646 |  */ | 
 | 647 |   | 
 | 648 | static irqreturn_t mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs) | 
 | 649 | { | 
 | 650 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 | 651 | 	struct mace_data *mp = (struct mace_data *) dev->priv; | 
 | 652 | 	int left, head; | 
 | 653 | 	u16 status; | 
 | 654 | 	u32 baka; | 
 | 655 |  | 
 | 656 | 	/* Not sure what this does */ | 
 | 657 |  | 
 | 658 | 	while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); | 
 | 659 | 	if (!(baka & 0x60000000)) return IRQ_NONE; | 
 | 660 |  | 
 | 661 | 	/* | 
 | 662 | 	 * Process the read queue | 
 | 663 | 	 */ | 
 | 664 | 		  | 
 | 665 | 	status = psc_read_word(PSC_ENETRD_CTL); | 
 | 666 | 		 | 
 | 667 | 	if (status & 0x2000) { | 
 | 668 | 		mace_rxdma_reset(dev); | 
 | 669 | 	} else if (status & 0x0100) { | 
 | 670 | 		psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); | 
 | 671 |  | 
 | 672 | 		left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); | 
 | 673 | 		head = N_RX_RING - left; | 
 | 674 |  | 
 | 675 | 		/* Loop through the ring buffer and process new packages */ | 
 | 676 |  | 
 | 677 | 		while (mp->rx_tail < head) { | 
 | 678 | 			mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800))); | 
 | 679 | 			mp->rx_tail++; | 
 | 680 | 		} | 
 | 681 | 			 | 
 | 682 | 		/* If we're out of buffers in this ring then switch to */ | 
 | 683 | 		/* the other set, otherwise just reactivate this one.  */ | 
 | 684 |  | 
 | 685 | 		if (!left) { | 
 | 686 | 			mace_load_rxdma_base(dev, mp->rx_slot); | 
 | 687 | 			mp->rx_slot ^= 0x10; | 
 | 688 | 		} else { | 
 | 689 | 			psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); | 
 | 690 | 		} | 
 | 691 | 	} | 
 | 692 | 		 | 
 | 693 | 	/* | 
 | 694 | 	 * Process the write queue | 
 | 695 | 	 */ | 
 | 696 |  | 
 | 697 | 	status = psc_read_word(PSC_ENETWR_CTL); | 
 | 698 |  | 
 | 699 | 	if (status & 0x2000) { | 
 | 700 | 		mace_txdma_reset(dev); | 
 | 701 | 	} else if (status & 0x0100) { | 
 | 702 | 		psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); | 
 | 703 | 		mp->tx_sloti ^= 0x10; | 
 | 704 | 		mp->tx_count++; | 
 | 705 | 		netif_wake_queue(dev); | 
 | 706 | 	} | 
 | 707 | 	return IRQ_HANDLED; | 
 | 708 | } | 
 | 709 |  | 
 | 710 | MODULE_LICENSE("GPL"); |