| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/arch/i386/mm/fault.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1995  Linus Torvalds | 
 | 5 |  */ | 
 | 6 |  | 
 | 7 | #include <linux/signal.h> | 
 | 8 | #include <linux/sched.h> | 
 | 9 | #include <linux/kernel.h> | 
 | 10 | #include <linux/errno.h> | 
 | 11 | #include <linux/string.h> | 
 | 12 | #include <linux/types.h> | 
 | 13 | #include <linux/ptrace.h> | 
 | 14 | #include <linux/mman.h> | 
 | 15 | #include <linux/mm.h> | 
 | 16 | #include <linux/smp.h> | 
 | 17 | #include <linux/smp_lock.h> | 
 | 18 | #include <linux/interrupt.h> | 
 | 19 | #include <linux/init.h> | 
 | 20 | #include <linux/tty.h> | 
 | 21 | #include <linux/vt_kern.h>		/* For unblank_screen() */ | 
 | 22 | #include <linux/highmem.h> | 
 | 23 | #include <linux/module.h> | 
 | 24 |  | 
 | 25 | #include <asm/system.h> | 
 | 26 | #include <asm/uaccess.h> | 
 | 27 | #include <asm/desc.h> | 
 | 28 | #include <asm/kdebug.h> | 
 | 29 |  | 
 | 30 | extern void die(const char *,struct pt_regs *,long); | 
 | 31 |  | 
 | 32 | /* | 
 | 33 |  * Unlock any spinlocks which will prevent us from getting the | 
 | 34 |  * message out  | 
 | 35 |  */ | 
 | 36 | void bust_spinlocks(int yes) | 
 | 37 | { | 
 | 38 | 	int loglevel_save = console_loglevel; | 
 | 39 |  | 
 | 40 | 	if (yes) { | 
 | 41 | 		oops_in_progress = 1; | 
 | 42 | 		return; | 
 | 43 | 	} | 
 | 44 | #ifdef CONFIG_VT | 
 | 45 | 	unblank_screen(); | 
 | 46 | #endif | 
 | 47 | 	oops_in_progress = 0; | 
 | 48 | 	/* | 
 | 49 | 	 * OK, the message is on the console.  Now we call printk() | 
 | 50 | 	 * without oops_in_progress set so that printk will give klogd | 
 | 51 | 	 * a poke.  Hold onto your hats... | 
 | 52 | 	 */ | 
 | 53 | 	console_loglevel = 15;		/* NMI oopser may have shut the console up */ | 
 | 54 | 	printk(" "); | 
 | 55 | 	console_loglevel = loglevel_save; | 
 | 56 | } | 
 | 57 |  | 
 | 58 | /* | 
 | 59 |  * Return EIP plus the CS segment base.  The segment limit is also | 
 | 60 |  * adjusted, clamped to the kernel/user address space (whichever is | 
 | 61 |  * appropriate), and returned in *eip_limit. | 
 | 62 |  * | 
 | 63 |  * The segment is checked, because it might have been changed by another | 
 | 64 |  * task between the original faulting instruction and here. | 
 | 65 |  * | 
 | 66 |  * If CS is no longer a valid code segment, or if EIP is beyond the | 
 | 67 |  * limit, or if it is a kernel address when CS is not a kernel segment, | 
 | 68 |  * then the returned value will be greater than *eip_limit. | 
 | 69 |  *  | 
 | 70 |  * This is slow, but is very rarely executed. | 
 | 71 |  */ | 
 | 72 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | 
 | 73 | 					    unsigned long *eip_limit) | 
 | 74 | { | 
 | 75 | 	unsigned long eip = regs->eip; | 
 | 76 | 	unsigned seg = regs->xcs & 0xffff; | 
 | 77 | 	u32 seg_ar, seg_limit, base, *desc; | 
 | 78 |  | 
 | 79 | 	/* The standard kernel/user address space limit. */ | 
 | 80 | 	*eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg; | 
 | 81 |  | 
 | 82 | 	/* Unlikely, but must come before segment checks. */ | 
 | 83 | 	if (unlikely((regs->eflags & VM_MASK) != 0)) | 
 | 84 | 		return eip + (seg << 4); | 
 | 85 | 	 | 
 | 86 | 	/* By far the most common cases. */ | 
 | 87 | 	if (likely(seg == __USER_CS || seg == __KERNEL_CS)) | 
 | 88 | 		return eip; | 
 | 89 |  | 
 | 90 | 	/* Check the segment exists, is within the current LDT/GDT size, | 
 | 91 | 	   that kernel/user (ring 0..3) has the appropriate privilege, | 
 | 92 | 	   that it's a code segment, and get the limit. */ | 
 | 93 | 	__asm__ ("larl %3,%0; lsll %3,%1" | 
 | 94 | 		 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | 
 | 95 | 	if ((~seg_ar & 0x9800) || eip > seg_limit) { | 
 | 96 | 		*eip_limit = 0; | 
 | 97 | 		return 1;	 /* So that returned eip > *eip_limit. */ | 
 | 98 | 	} | 
 | 99 |  | 
 | 100 | 	/* Get the GDT/LDT descriptor base.  | 
 | 101 | 	   When you look for races in this code remember that | 
 | 102 | 	   LDT and other horrors are only used in user space. */ | 
 | 103 | 	if (seg & (1<<2)) { | 
 | 104 | 		/* Must lock the LDT while reading it. */ | 
 | 105 | 		down(¤t->mm->context.sem); | 
 | 106 | 		desc = current->mm->context.ldt; | 
 | 107 | 		desc = (void *)desc + (seg & ~7); | 
 | 108 | 	} else { | 
 | 109 | 		/* Must disable preemption while reading the GDT. */ | 
 | 110 | 		desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu()); | 
 | 111 | 		desc = (void *)desc + (seg & ~7); | 
 | 112 | 	} | 
 | 113 |  | 
 | 114 | 	/* Decode the code segment base from the descriptor */ | 
 | 115 | 	base = get_desc_base((unsigned long *)desc); | 
 | 116 |  | 
 | 117 | 	if (seg & (1<<2)) {  | 
 | 118 | 		up(¤t->mm->context.sem); | 
 | 119 | 	} else | 
 | 120 | 		put_cpu(); | 
 | 121 |  | 
 | 122 | 	/* Adjust EIP and segment limit, and clamp at the kernel limit. | 
 | 123 | 	   It's legitimate for segments to wrap at 0xffffffff. */ | 
 | 124 | 	seg_limit += base; | 
 | 125 | 	if (seg_limit < *eip_limit && seg_limit >= base) | 
 | 126 | 		*eip_limit = seg_limit; | 
 | 127 | 	return eip + base; | 
 | 128 | } | 
 | 129 |  | 
 | 130 | /*  | 
 | 131 |  * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 
 | 132 |  * Check that here and ignore it. | 
 | 133 |  */ | 
 | 134 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | 
 | 135 | {  | 
 | 136 | 	unsigned long limit; | 
 | 137 | 	unsigned long instr = get_segment_eip (regs, &limit); | 
 | 138 | 	int scan_more = 1; | 
 | 139 | 	int prefetch = 0;  | 
 | 140 | 	int i; | 
 | 141 |  | 
 | 142 | 	for (i = 0; scan_more && i < 15; i++) {  | 
 | 143 | 		unsigned char opcode; | 
 | 144 | 		unsigned char instr_hi; | 
 | 145 | 		unsigned char instr_lo; | 
 | 146 |  | 
 | 147 | 		if (instr > limit) | 
 | 148 | 			break; | 
| Domen Puncer | c7c5844 | 2005-06-25 14:58:46 -0700 | [diff] [blame] | 149 | 		if (__get_user(opcode, (unsigned char __user *) instr)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 150 | 			break;  | 
 | 151 |  | 
 | 152 | 		instr_hi = opcode & 0xf0;  | 
 | 153 | 		instr_lo = opcode & 0x0f;  | 
 | 154 | 		instr++; | 
 | 155 |  | 
 | 156 | 		switch (instr_hi) {  | 
 | 157 | 		case 0x20: | 
 | 158 | 		case 0x30: | 
 | 159 | 			/* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | 
 | 160 | 			scan_more = ((instr_lo & 7) == 0x6); | 
 | 161 | 			break; | 
 | 162 | 			 | 
 | 163 | 		case 0x60: | 
 | 164 | 			/* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
 | 165 | 			scan_more = (instr_lo & 0xC) == 0x4; | 
 | 166 | 			break;		 | 
 | 167 | 		case 0xF0: | 
 | 168 | 			/* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | 
 | 169 | 			scan_more = !instr_lo || (instr_lo>>1) == 1; | 
 | 170 | 			break;			 | 
 | 171 | 		case 0x00: | 
 | 172 | 			/* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
 | 173 | 			scan_more = 0; | 
 | 174 | 			if (instr > limit) | 
 | 175 | 				break; | 
| Domen Puncer | c7c5844 | 2005-06-25 14:58:46 -0700 | [diff] [blame] | 176 | 			if (__get_user(opcode, (unsigned char __user *) instr)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 177 | 				break; | 
 | 178 | 			prefetch = (instr_lo == 0xF) && | 
 | 179 | 				(opcode == 0x0D || opcode == 0x18); | 
 | 180 | 			break;			 | 
 | 181 | 		default: | 
 | 182 | 			scan_more = 0; | 
 | 183 | 			break; | 
 | 184 | 		}  | 
 | 185 | 	} | 
 | 186 | 	return prefetch; | 
 | 187 | } | 
 | 188 |  | 
 | 189 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | 
 | 190 | 			      unsigned long error_code) | 
 | 191 | { | 
 | 192 | 	if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | 
 | 193 | 		     boot_cpu_data.x86 >= 6)) { | 
 | 194 | 		/* Catch an obscure case of prefetch inside an NX page. */ | 
 | 195 | 		if (nx_enabled && (error_code & 16)) | 
 | 196 | 			return 0; | 
 | 197 | 		return __is_prefetch(regs, addr); | 
 | 198 | 	} | 
 | 199 | 	return 0; | 
 | 200 | }  | 
 | 201 |  | 
 | 202 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | 
 | 203 |  | 
 | 204 | /* | 
 | 205 |  * This routine handles page faults.  It determines the address, | 
 | 206 |  * and the problem, and then passes it off to one of the appropriate | 
 | 207 |  * routines. | 
 | 208 |  * | 
 | 209 |  * error_code: | 
 | 210 |  *	bit 0 == 0 means no page found, 1 means protection fault | 
 | 211 |  *	bit 1 == 0 means read, 1 means write | 
 | 212 |  *	bit 2 == 0 means kernel, 1 means user-mode | 
 | 213 |  */ | 
 | 214 | fastcall void do_page_fault(struct pt_regs *regs, unsigned long error_code) | 
 | 215 | { | 
 | 216 | 	struct task_struct *tsk; | 
 | 217 | 	struct mm_struct *mm; | 
 | 218 | 	struct vm_area_struct * vma; | 
 | 219 | 	unsigned long address; | 
 | 220 | 	unsigned long page; | 
 | 221 | 	int write; | 
 | 222 | 	siginfo_t info; | 
 | 223 |  | 
 | 224 | 	/* get the address */ | 
 | 225 | 	__asm__("movl %%cr2,%0":"=r" (address)); | 
 | 226 |  | 
 | 227 | 	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, | 
 | 228 | 					SIGSEGV) == NOTIFY_STOP) | 
 | 229 | 		return; | 
 | 230 | 	/* It's safe to allow irq's after cr2 has been saved */ | 
 | 231 | 	if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | 
 | 232 | 		local_irq_enable(); | 
 | 233 |  | 
 | 234 | 	tsk = current; | 
 | 235 |  | 
 | 236 | 	info.si_code = SEGV_MAPERR; | 
 | 237 |  | 
 | 238 | 	/* | 
 | 239 | 	 * We fault-in kernel-space virtual memory on-demand. The | 
 | 240 | 	 * 'reference' page table is init_mm.pgd. | 
 | 241 | 	 * | 
 | 242 | 	 * NOTE! We MUST NOT take any locks for this case. We may | 
 | 243 | 	 * be in an interrupt or a critical region, and should | 
 | 244 | 	 * only copy the information from the master page table, | 
 | 245 | 	 * nothing more. | 
 | 246 | 	 * | 
 | 247 | 	 * This verifies that the fault happens in kernel space | 
 | 248 | 	 * (error_code & 4) == 0, and that the fault was not a | 
 | 249 | 	 * protection error (error_code & 1) == 0. | 
 | 250 | 	 */ | 
 | 251 | 	if (unlikely(address >= TASK_SIZE)) {  | 
 | 252 | 		if (!(error_code & 5)) | 
 | 253 | 			goto vmalloc_fault; | 
 | 254 | 		/*  | 
 | 255 | 		 * Don't take the mm semaphore here. If we fixup a prefetch | 
 | 256 | 		 * fault we could otherwise deadlock. | 
 | 257 | 		 */ | 
 | 258 | 		goto bad_area_nosemaphore; | 
 | 259 | 	}  | 
 | 260 |  | 
 | 261 | 	mm = tsk->mm; | 
 | 262 |  | 
 | 263 | 	/* | 
 | 264 | 	 * If we're in an interrupt, have no user context or are running in an | 
 | 265 | 	 * atomic region then we must not take the fault.. | 
 | 266 | 	 */ | 
 | 267 | 	if (in_atomic() || !mm) | 
 | 268 | 		goto bad_area_nosemaphore; | 
 | 269 |  | 
 | 270 | 	/* When running in the kernel we expect faults to occur only to | 
 | 271 | 	 * addresses in user space.  All other faults represent errors in the | 
 | 272 | 	 * kernel and should generate an OOPS.  Unfortunatly, in the case of an | 
 | 273 | 	 * erroneous fault occuring in a code path which already holds mmap_sem | 
 | 274 | 	 * we will deadlock attempting to validate the fault against the | 
 | 275 | 	 * address space.  Luckily the kernel only validly references user | 
 | 276 | 	 * space from well defined areas of code, which are listed in the | 
 | 277 | 	 * exceptions table. | 
 | 278 | 	 * | 
 | 279 | 	 * As the vast majority of faults will be valid we will only perform | 
 | 280 | 	 * the source reference check when there is a possibilty of a deadlock. | 
 | 281 | 	 * Attempt to lock the address space, if we cannot we then validate the | 
 | 282 | 	 * source.  If this is invalid we can skip the address space check, | 
 | 283 | 	 * thus avoiding the deadlock. | 
 | 284 | 	 */ | 
 | 285 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 286 | 		if ((error_code & 4) == 0 && | 
 | 287 | 		    !search_exception_tables(regs->eip)) | 
 | 288 | 			goto bad_area_nosemaphore; | 
 | 289 | 		down_read(&mm->mmap_sem); | 
 | 290 | 	} | 
 | 291 |  | 
 | 292 | 	vma = find_vma(mm, address); | 
 | 293 | 	if (!vma) | 
 | 294 | 		goto bad_area; | 
 | 295 | 	if (vma->vm_start <= address) | 
 | 296 | 		goto good_area; | 
 | 297 | 	if (!(vma->vm_flags & VM_GROWSDOWN)) | 
 | 298 | 		goto bad_area; | 
 | 299 | 	if (error_code & 4) { | 
 | 300 | 		/* | 
 | 301 | 		 * accessing the stack below %esp is always a bug. | 
 | 302 | 		 * The "+ 32" is there due to some instructions (like | 
 | 303 | 		 * pusha) doing post-decrement on the stack and that | 
 | 304 | 		 * doesn't show up until later.. | 
 | 305 | 		 */ | 
 | 306 | 		if (address + 32 < regs->esp) | 
 | 307 | 			goto bad_area; | 
 | 308 | 	} | 
 | 309 | 	if (expand_stack(vma, address)) | 
 | 310 | 		goto bad_area; | 
 | 311 | /* | 
 | 312 |  * Ok, we have a good vm_area for this memory access, so | 
 | 313 |  * we can handle it.. | 
 | 314 |  */ | 
 | 315 | good_area: | 
 | 316 | 	info.si_code = SEGV_ACCERR; | 
 | 317 | 	write = 0; | 
 | 318 | 	switch (error_code & 3) { | 
 | 319 | 		default:	/* 3: write, present */ | 
 | 320 | #ifdef TEST_VERIFY_AREA | 
 | 321 | 			if (regs->cs == KERNEL_CS) | 
 | 322 | 				printk("WP fault at %08lx\n", regs->eip); | 
 | 323 | #endif | 
 | 324 | 			/* fall through */ | 
 | 325 | 		case 2:		/* write, not present */ | 
 | 326 | 			if (!(vma->vm_flags & VM_WRITE)) | 
 | 327 | 				goto bad_area; | 
 | 328 | 			write++; | 
 | 329 | 			break; | 
 | 330 | 		case 1:		/* read, present */ | 
 | 331 | 			goto bad_area; | 
 | 332 | 		case 0:		/* read, not present */ | 
 | 333 | 			if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | 
 | 334 | 				goto bad_area; | 
 | 335 | 	} | 
 | 336 |  | 
 | 337 |  survive: | 
 | 338 | 	/* | 
 | 339 | 	 * If for any reason at all we couldn't handle the fault, | 
 | 340 | 	 * make sure we exit gracefully rather than endlessly redo | 
 | 341 | 	 * the fault. | 
 | 342 | 	 */ | 
 | 343 | 	switch (handle_mm_fault(mm, vma, address, write)) { | 
 | 344 | 		case VM_FAULT_MINOR: | 
 | 345 | 			tsk->min_flt++; | 
 | 346 | 			break; | 
 | 347 | 		case VM_FAULT_MAJOR: | 
 | 348 | 			tsk->maj_flt++; | 
 | 349 | 			break; | 
 | 350 | 		case VM_FAULT_SIGBUS: | 
 | 351 | 			goto do_sigbus; | 
 | 352 | 		case VM_FAULT_OOM: | 
 | 353 | 			goto out_of_memory; | 
 | 354 | 		default: | 
 | 355 | 			BUG(); | 
 | 356 | 	} | 
 | 357 |  | 
 | 358 | 	/* | 
 | 359 | 	 * Did it hit the DOS screen memory VA from vm86 mode? | 
 | 360 | 	 */ | 
 | 361 | 	if (regs->eflags & VM_MASK) { | 
 | 362 | 		unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | 
 | 363 | 		if (bit < 32) | 
 | 364 | 			tsk->thread.screen_bitmap |= 1 << bit; | 
 | 365 | 	} | 
 | 366 | 	up_read(&mm->mmap_sem); | 
 | 367 | 	return; | 
 | 368 |  | 
 | 369 | /* | 
 | 370 |  * Something tried to access memory that isn't in our memory map.. | 
 | 371 |  * Fix it, but check if it's kernel or user first.. | 
 | 372 |  */ | 
 | 373 | bad_area: | 
 | 374 | 	up_read(&mm->mmap_sem); | 
 | 375 |  | 
 | 376 | bad_area_nosemaphore: | 
 | 377 | 	/* User mode accesses just cause a SIGSEGV */ | 
 | 378 | 	if (error_code & 4) { | 
 | 379 | 		/*  | 
 | 380 | 		 * Valid to do another page fault here because this one came  | 
 | 381 | 		 * from user space. | 
 | 382 | 		 */ | 
 | 383 | 		if (is_prefetch(regs, address, error_code)) | 
 | 384 | 			return; | 
 | 385 |  | 
 | 386 | 		tsk->thread.cr2 = address; | 
 | 387 | 		/* Kernel addresses are always protection faults */ | 
 | 388 | 		tsk->thread.error_code = error_code | (address >= TASK_SIZE); | 
 | 389 | 		tsk->thread.trap_no = 14; | 
 | 390 | 		info.si_signo = SIGSEGV; | 
 | 391 | 		info.si_errno = 0; | 
 | 392 | 		/* info.si_code has been set above */ | 
 | 393 | 		info.si_addr = (void __user *)address; | 
 | 394 | 		force_sig_info(SIGSEGV, &info, tsk); | 
 | 395 | 		return; | 
 | 396 | 	} | 
 | 397 |  | 
 | 398 | #ifdef CONFIG_X86_F00F_BUG | 
 | 399 | 	/* | 
 | 400 | 	 * Pentium F0 0F C7 C8 bug workaround. | 
 | 401 | 	 */ | 
 | 402 | 	if (boot_cpu_data.f00f_bug) { | 
 | 403 | 		unsigned long nr; | 
 | 404 | 		 | 
 | 405 | 		nr = (address - idt_descr.address) >> 3; | 
 | 406 |  | 
 | 407 | 		if (nr == 6) { | 
 | 408 | 			do_invalid_op(regs, 0); | 
 | 409 | 			return; | 
 | 410 | 		} | 
 | 411 | 	} | 
 | 412 | #endif | 
 | 413 |  | 
 | 414 | no_context: | 
 | 415 | 	/* Are we prepared to handle this kernel fault?  */ | 
 | 416 | 	if (fixup_exception(regs)) | 
 | 417 | 		return; | 
 | 418 |  | 
 | 419 | 	/*  | 
 | 420 | 	 * Valid to do another page fault here, because if this fault | 
 | 421 | 	 * had been triggered by is_prefetch fixup_exception would have  | 
 | 422 | 	 * handled it. | 
 | 423 | 	 */ | 
 | 424 |  	if (is_prefetch(regs, address, error_code)) | 
 | 425 |  		return; | 
 | 426 |  | 
 | 427 | /* | 
 | 428 |  * Oops. The kernel tried to access some bad page. We'll have to | 
 | 429 |  * terminate things with extreme prejudice. | 
 | 430 |  */ | 
 | 431 |  | 
 | 432 | 	bust_spinlocks(1); | 
 | 433 |  | 
 | 434 | #ifdef CONFIG_X86_PAE | 
 | 435 | 	if (error_code & 16) { | 
 | 436 | 		pte_t *pte = lookup_address(address); | 
 | 437 |  | 
 | 438 | 		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | 
 | 439 | 			printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid); | 
 | 440 | 	} | 
 | 441 | #endif | 
 | 442 | 	if (address < PAGE_SIZE) | 
 | 443 | 		printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | 
 | 444 | 	else | 
 | 445 | 		printk(KERN_ALERT "Unable to handle kernel paging request"); | 
 | 446 | 	printk(" at virtual address %08lx\n",address); | 
 | 447 | 	printk(KERN_ALERT " printing eip:\n"); | 
 | 448 | 	printk("%08lx\n", regs->eip); | 
 | 449 | 	asm("movl %%cr3,%0":"=r" (page)); | 
 | 450 | 	page = ((unsigned long *) __va(page))[address >> 22]; | 
 | 451 | 	printk(KERN_ALERT "*pde = %08lx\n", page); | 
 | 452 | 	/* | 
 | 453 | 	 * We must not directly access the pte in the highpte | 
 | 454 | 	 * case, the page table might be allocated in highmem. | 
 | 455 | 	 * And lets rather not kmap-atomic the pte, just in case | 
 | 456 | 	 * it's allocated already. | 
 | 457 | 	 */ | 
 | 458 | #ifndef CONFIG_HIGHPTE | 
 | 459 | 	if (page & 1) { | 
 | 460 | 		page &= PAGE_MASK; | 
 | 461 | 		address &= 0x003ff000; | 
 | 462 | 		page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; | 
 | 463 | 		printk(KERN_ALERT "*pte = %08lx\n", page); | 
 | 464 | 	} | 
 | 465 | #endif | 
| Alexander Nyberg | 4f339ec | 2005-06-25 14:58:27 -0700 | [diff] [blame] | 466 | 	tsk->thread.cr2 = address; | 
 | 467 | 	tsk->thread.trap_no = 14; | 
 | 468 | 	tsk->thread.error_code = error_code; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 469 | 	die("Oops", regs, error_code); | 
 | 470 | 	bust_spinlocks(0); | 
 | 471 | 	do_exit(SIGKILL); | 
 | 472 |  | 
 | 473 | /* | 
 | 474 |  * We ran out of memory, or some other thing happened to us that made | 
 | 475 |  * us unable to handle the page fault gracefully. | 
 | 476 |  */ | 
 | 477 | out_of_memory: | 
 | 478 | 	up_read(&mm->mmap_sem); | 
 | 479 | 	if (tsk->pid == 1) { | 
 | 480 | 		yield(); | 
 | 481 | 		down_read(&mm->mmap_sem); | 
 | 482 | 		goto survive; | 
 | 483 | 	} | 
 | 484 | 	printk("VM: killing process %s\n", tsk->comm); | 
 | 485 | 	if (error_code & 4) | 
 | 486 | 		do_exit(SIGKILL); | 
 | 487 | 	goto no_context; | 
 | 488 |  | 
 | 489 | do_sigbus: | 
 | 490 | 	up_read(&mm->mmap_sem); | 
 | 491 |  | 
 | 492 | 	/* Kernel mode? Handle exceptions or die */ | 
 | 493 | 	if (!(error_code & 4)) | 
 | 494 | 		goto no_context; | 
 | 495 |  | 
 | 496 | 	/* User space => ok to do another page fault */ | 
 | 497 | 	if (is_prefetch(regs, address, error_code)) | 
 | 498 | 		return; | 
 | 499 |  | 
 | 500 | 	tsk->thread.cr2 = address; | 
 | 501 | 	tsk->thread.error_code = error_code; | 
 | 502 | 	tsk->thread.trap_no = 14; | 
 | 503 | 	info.si_signo = SIGBUS; | 
 | 504 | 	info.si_errno = 0; | 
 | 505 | 	info.si_code = BUS_ADRERR; | 
 | 506 | 	info.si_addr = (void __user *)address; | 
 | 507 | 	force_sig_info(SIGBUS, &info, tsk); | 
 | 508 | 	return; | 
 | 509 |  | 
 | 510 | vmalloc_fault: | 
 | 511 | 	{ | 
 | 512 | 		/* | 
 | 513 | 		 * Synchronize this task's top level page-table | 
 | 514 | 		 * with the 'reference' page table. | 
 | 515 | 		 * | 
 | 516 | 		 * Do _not_ use "tsk" here. We might be inside | 
 | 517 | 		 * an interrupt in the middle of a task switch.. | 
 | 518 | 		 */ | 
 | 519 | 		int index = pgd_index(address); | 
 | 520 | 		unsigned long pgd_paddr; | 
 | 521 | 		pgd_t *pgd, *pgd_k; | 
 | 522 | 		pud_t *pud, *pud_k; | 
 | 523 | 		pmd_t *pmd, *pmd_k; | 
 | 524 | 		pte_t *pte_k; | 
 | 525 |  | 
 | 526 | 		asm("movl %%cr3,%0":"=r" (pgd_paddr)); | 
 | 527 | 		pgd = index + (pgd_t *)__va(pgd_paddr); | 
 | 528 | 		pgd_k = init_mm.pgd + index; | 
 | 529 |  | 
 | 530 | 		if (!pgd_present(*pgd_k)) | 
 | 531 | 			goto no_context; | 
 | 532 |  | 
 | 533 | 		/* | 
 | 534 | 		 * set_pgd(pgd, *pgd_k); here would be useless on PAE | 
 | 535 | 		 * and redundant with the set_pmd() on non-PAE. As would | 
 | 536 | 		 * set_pud. | 
 | 537 | 		 */ | 
 | 538 |  | 
 | 539 | 		pud = pud_offset(pgd, address); | 
 | 540 | 		pud_k = pud_offset(pgd_k, address); | 
 | 541 | 		if (!pud_present(*pud_k)) | 
 | 542 | 			goto no_context; | 
 | 543 | 		 | 
 | 544 | 		pmd = pmd_offset(pud, address); | 
 | 545 | 		pmd_k = pmd_offset(pud_k, address); | 
 | 546 | 		if (!pmd_present(*pmd_k)) | 
 | 547 | 			goto no_context; | 
 | 548 | 		set_pmd(pmd, *pmd_k); | 
 | 549 |  | 
 | 550 | 		pte_k = pte_offset_kernel(pmd_k, address); | 
 | 551 | 		if (!pte_present(*pte_k)) | 
 | 552 | 			goto no_context; | 
 | 553 | 		return; | 
 | 554 | 	} | 
 | 555 | } |