| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* +++ trees.c */ | 
 | 2 | /* trees.c -- output deflated data using Huffman coding | 
 | 3 |  * Copyright (C) 1995-1996 Jean-loup Gailly | 
 | 4 |  * For conditions of distribution and use, see copyright notice in zlib.h  | 
 | 5 |  */ | 
 | 6 |  | 
 | 7 | /* | 
 | 8 |  *  ALGORITHM | 
 | 9 |  * | 
 | 10 |  *      The "deflation" process uses several Huffman trees. The more | 
 | 11 |  *      common source values are represented by shorter bit sequences. | 
 | 12 |  * | 
 | 13 |  *      Each code tree is stored in a compressed form which is itself | 
 | 14 |  * a Huffman encoding of the lengths of all the code strings (in | 
 | 15 |  * ascending order by source values).  The actual code strings are | 
 | 16 |  * reconstructed from the lengths in the inflate process, as described | 
 | 17 |  * in the deflate specification. | 
 | 18 |  * | 
 | 19 |  *  REFERENCES | 
 | 20 |  * | 
 | 21 |  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | 
 | 22 |  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | 
 | 23 |  * | 
 | 24 |  *      Storer, James A. | 
 | 25 |  *          Data Compression:  Methods and Theory, pp. 49-50. | 
 | 26 |  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. | 
 | 27 |  * | 
 | 28 |  *      Sedgewick, R. | 
 | 29 |  *          Algorithms, p290. | 
 | 30 |  *          Addison-Wesley, 1983. ISBN 0-201-06672-6. | 
 | 31 |  */ | 
 | 32 |  | 
 | 33 | /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ | 
 | 34 |  | 
 | 35 | /* #include "deflate.h" */ | 
 | 36 |  | 
 | 37 | #include <linux/zutil.h> | 
 | 38 | #include "defutil.h" | 
 | 39 |  | 
 | 40 | #ifdef DEBUG_ZLIB | 
 | 41 | #  include <ctype.h> | 
 | 42 | #endif | 
 | 43 |  | 
 | 44 | /* =========================================================================== | 
 | 45 |  * Constants | 
 | 46 |  */ | 
 | 47 |  | 
 | 48 | #define MAX_BL_BITS 7 | 
 | 49 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | 
 | 50 |  | 
 | 51 | #define END_BLOCK 256 | 
 | 52 | /* end of block literal code */ | 
 | 53 |  | 
 | 54 | #define REP_3_6      16 | 
 | 55 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | 
 | 56 |  | 
 | 57 | #define REPZ_3_10    17 | 
 | 58 | /* repeat a zero length 3-10 times  (3 bits of repeat count) */ | 
 | 59 |  | 
 | 60 | #define REPZ_11_138  18 | 
 | 61 | /* repeat a zero length 11-138 times  (7 bits of repeat count) */ | 
 | 62 |  | 
 | 63 | static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | 
 | 64 |    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | 
 | 65 |  | 
 | 66 | static const int extra_dbits[D_CODES] /* extra bits for each distance code */ | 
 | 67 |    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | 
 | 68 |  | 
 | 69 | static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | 
 | 70 |    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | 
 | 71 |  | 
 | 72 | static const uch bl_order[BL_CODES] | 
 | 73 |    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | 
 | 74 | /* The lengths of the bit length codes are sent in order of decreasing | 
 | 75 |  * probability, to avoid transmitting the lengths for unused bit length codes. | 
 | 76 |  */ | 
 | 77 |  | 
 | 78 | #define Buf_size (8 * 2*sizeof(char)) | 
 | 79 | /* Number of bits used within bi_buf. (bi_buf might be implemented on | 
 | 80 |  * more than 16 bits on some systems.) | 
 | 81 |  */ | 
 | 82 |  | 
 | 83 | /* =========================================================================== | 
 | 84 |  * Local data. These are initialized only once. | 
 | 85 |  */ | 
 | 86 |  | 
 | 87 | static ct_data static_ltree[L_CODES+2]; | 
 | 88 | /* The static literal tree. Since the bit lengths are imposed, there is no | 
 | 89 |  * need for the L_CODES extra codes used during heap construction. However | 
 | 90 |  * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init | 
 | 91 |  * below). | 
 | 92 |  */ | 
 | 93 |  | 
 | 94 | static ct_data static_dtree[D_CODES]; | 
 | 95 | /* The static distance tree. (Actually a trivial tree since all codes use | 
 | 96 |  * 5 bits.) | 
 | 97 |  */ | 
 | 98 |  | 
 | 99 | static uch dist_code[512]; | 
 | 100 | /* distance codes. The first 256 values correspond to the distances | 
 | 101 |  * 3 .. 258, the last 256 values correspond to the top 8 bits of | 
 | 102 |  * the 15 bit distances. | 
 | 103 |  */ | 
 | 104 |  | 
 | 105 | static uch length_code[MAX_MATCH-MIN_MATCH+1]; | 
 | 106 | /* length code for each normalized match length (0 == MIN_MATCH) */ | 
 | 107 |  | 
 | 108 | static int base_length[LENGTH_CODES]; | 
 | 109 | /* First normalized length for each code (0 = MIN_MATCH) */ | 
 | 110 |  | 
 | 111 | static int base_dist[D_CODES]; | 
 | 112 | /* First normalized distance for each code (0 = distance of 1) */ | 
 | 113 |  | 
 | 114 | struct static_tree_desc_s { | 
 | 115 |     const ct_data *static_tree;  /* static tree or NULL */ | 
 | 116 |     const int *extra_bits;       /* extra bits for each code or NULL */ | 
 | 117 |     int     extra_base;          /* base index for extra_bits */ | 
 | 118 |     int     elems;               /* max number of elements in the tree */ | 
 | 119 |     int     max_length;          /* max bit length for the codes */ | 
 | 120 | }; | 
 | 121 |  | 
 | 122 | static static_tree_desc  static_l_desc = | 
 | 123 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | 
 | 124 |  | 
 | 125 | static static_tree_desc  static_d_desc = | 
 | 126 | {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; | 
 | 127 |  | 
 | 128 | static static_tree_desc  static_bl_desc = | 
 | 129 | {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; | 
 | 130 |  | 
 | 131 | /* =========================================================================== | 
 | 132 |  * Local (static) routines in this file. | 
 | 133 |  */ | 
 | 134 |  | 
 | 135 | static void tr_static_init (void); | 
 | 136 | static void init_block     (deflate_state *s); | 
 | 137 | static void pqdownheap     (deflate_state *s, ct_data *tree, int k); | 
 | 138 | static void gen_bitlen     (deflate_state *s, tree_desc *desc); | 
 | 139 | static void gen_codes      (ct_data *tree, int max_code, ush *bl_count); | 
 | 140 | static void build_tree     (deflate_state *s, tree_desc *desc); | 
 | 141 | static void scan_tree      (deflate_state *s, ct_data *tree, int max_code); | 
 | 142 | static void send_tree      (deflate_state *s, ct_data *tree, int max_code); | 
 | 143 | static int  build_bl_tree  (deflate_state *s); | 
 | 144 | static void send_all_trees (deflate_state *s, int lcodes, int dcodes, | 
 | 145 |                            int blcodes); | 
 | 146 | static void compress_block (deflate_state *s, ct_data *ltree, | 
 | 147 |                            ct_data *dtree); | 
 | 148 | static void set_data_type  (deflate_state *s); | 
 | 149 | static unsigned bi_reverse (unsigned value, int length); | 
 | 150 | static void bi_windup      (deflate_state *s); | 
 | 151 | static void bi_flush       (deflate_state *s); | 
 | 152 | static void copy_block     (deflate_state *s, char *buf, unsigned len, | 
 | 153 |                            int header); | 
 | 154 |  | 
 | 155 | #ifndef DEBUG_ZLIB | 
 | 156 | #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | 
 | 157 |    /* Send a code of the given tree. c and tree must not have side effects */ | 
 | 158 |  | 
 | 159 | #else /* DEBUG_ZLIB */ | 
 | 160 | #  define send_code(s, c, tree) \ | 
 | 161 |      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | 
 | 162 |        send_bits(s, tree[c].Code, tree[c].Len); } | 
 | 163 | #endif | 
 | 164 |  | 
 | 165 | #define d_code(dist) \ | 
 | 166 |    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | 
 | 167 | /* Mapping from a distance to a distance code. dist is the distance - 1 and | 
 | 168 |  * must not have side effects. dist_code[256] and dist_code[257] are never | 
 | 169 |  * used. | 
 | 170 |  */ | 
 | 171 |  | 
 | 172 | /* =========================================================================== | 
 | 173 |  * Send a value on a given number of bits. | 
 | 174 |  * IN assertion: length <= 16 and value fits in length bits. | 
 | 175 |  */ | 
 | 176 | #ifdef DEBUG_ZLIB | 
 | 177 | static void send_bits      (deflate_state *s, int value, int length); | 
 | 178 |  | 
 | 179 | static void send_bits( | 
 | 180 | 	deflate_state *s, | 
 | 181 | 	int value,  /* value to send */ | 
 | 182 | 	int length  /* number of bits */ | 
 | 183 | ) | 
 | 184 | { | 
 | 185 |     Tracevv((stderr," l %2d v %4x ", length, value)); | 
 | 186 |     Assert(length > 0 && length <= 15, "invalid length"); | 
 | 187 |     s->bits_sent += (ulg)length; | 
 | 188 |  | 
 | 189 |     /* If not enough room in bi_buf, use (valid) bits from bi_buf and | 
 | 190 |      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | 
 | 191 |      * unused bits in value. | 
 | 192 |      */ | 
 | 193 |     if (s->bi_valid > (int)Buf_size - length) { | 
 | 194 |         s->bi_buf |= (value << s->bi_valid); | 
 | 195 |         put_short(s, s->bi_buf); | 
 | 196 |         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | 
 | 197 |         s->bi_valid += length - Buf_size; | 
 | 198 |     } else { | 
 | 199 |         s->bi_buf |= value << s->bi_valid; | 
 | 200 |         s->bi_valid += length; | 
 | 201 |     } | 
 | 202 | } | 
 | 203 | #else /* !DEBUG_ZLIB */ | 
 | 204 |  | 
 | 205 | #define send_bits(s, value, length) \ | 
 | 206 | { int len = length;\ | 
 | 207 |   if (s->bi_valid > (int)Buf_size - len) {\ | 
 | 208 |     int val = value;\ | 
 | 209 |     s->bi_buf |= (val << s->bi_valid);\ | 
 | 210 |     put_short(s, s->bi_buf);\ | 
 | 211 |     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | 
 | 212 |     s->bi_valid += len - Buf_size;\ | 
 | 213 |   } else {\ | 
 | 214 |     s->bi_buf |= (value) << s->bi_valid;\ | 
 | 215 |     s->bi_valid += len;\ | 
 | 216 |   }\ | 
 | 217 | } | 
 | 218 | #endif /* DEBUG_ZLIB */ | 
 | 219 |  | 
 | 220 | /* =========================================================================== | 
 | 221 |  * Initialize the various 'constant' tables. In a multi-threaded environment, | 
 | 222 |  * this function may be called by two threads concurrently, but this is | 
 | 223 |  * harmless since both invocations do exactly the same thing. | 
 | 224 |  */ | 
 | 225 | static void tr_static_init(void) | 
 | 226 | { | 
 | 227 |     static int static_init_done; | 
 | 228 |     int n;        /* iterates over tree elements */ | 
 | 229 |     int bits;     /* bit counter */ | 
 | 230 |     int length;   /* length value */ | 
 | 231 |     int code;     /* code value */ | 
 | 232 |     int dist;     /* distance index */ | 
 | 233 |     ush bl_count[MAX_BITS+1]; | 
 | 234 |     /* number of codes at each bit length for an optimal tree */ | 
 | 235 |  | 
 | 236 |     if (static_init_done) return; | 
 | 237 |  | 
 | 238 |     /* Initialize the mapping length (0..255) -> length code (0..28) */ | 
 | 239 |     length = 0; | 
 | 240 |     for (code = 0; code < LENGTH_CODES-1; code++) { | 
 | 241 |         base_length[code] = length; | 
 | 242 |         for (n = 0; n < (1<<extra_lbits[code]); n++) { | 
 | 243 |             length_code[length++] = (uch)code; | 
 | 244 |         } | 
 | 245 |     } | 
 | 246 |     Assert (length == 256, "tr_static_init: length != 256"); | 
 | 247 |     /* Note that the length 255 (match length 258) can be represented | 
 | 248 |      * in two different ways: code 284 + 5 bits or code 285, so we | 
 | 249 |      * overwrite length_code[255] to use the best encoding: | 
 | 250 |      */ | 
 | 251 |     length_code[length-1] = (uch)code; | 
 | 252 |  | 
 | 253 |     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | 
 | 254 |     dist = 0; | 
 | 255 |     for (code = 0 ; code < 16; code++) { | 
 | 256 |         base_dist[code] = dist; | 
 | 257 |         for (n = 0; n < (1<<extra_dbits[code]); n++) { | 
 | 258 |             dist_code[dist++] = (uch)code; | 
 | 259 |         } | 
 | 260 |     } | 
 | 261 |     Assert (dist == 256, "tr_static_init: dist != 256"); | 
 | 262 |     dist >>= 7; /* from now on, all distances are divided by 128 */ | 
 | 263 |     for ( ; code < D_CODES; code++) { | 
 | 264 |         base_dist[code] = dist << 7; | 
 | 265 |         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | 
 | 266 |             dist_code[256 + dist++] = (uch)code; | 
 | 267 |         } | 
 | 268 |     } | 
 | 269 |     Assert (dist == 256, "tr_static_init: 256+dist != 512"); | 
 | 270 |  | 
 | 271 |     /* Construct the codes of the static literal tree */ | 
 | 272 |     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | 
 | 273 |     n = 0; | 
 | 274 |     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | 
 | 275 |     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | 
 | 276 |     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | 
 | 277 |     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | 
 | 278 |     /* Codes 286 and 287 do not exist, but we must include them in the | 
 | 279 |      * tree construction to get a canonical Huffman tree (longest code | 
 | 280 |      * all ones) | 
 | 281 |      */ | 
 | 282 |     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | 
 | 283 |  | 
 | 284 |     /* The static distance tree is trivial: */ | 
 | 285 |     for (n = 0; n < D_CODES; n++) { | 
 | 286 |         static_dtree[n].Len = 5; | 
 | 287 |         static_dtree[n].Code = bi_reverse((unsigned)n, 5); | 
 | 288 |     } | 
 | 289 |     static_init_done = 1; | 
 | 290 | } | 
 | 291 |  | 
 | 292 | /* =========================================================================== | 
 | 293 |  * Initialize the tree data structures for a new zlib stream. | 
 | 294 |  */ | 
 | 295 | void zlib_tr_init( | 
 | 296 | 	deflate_state *s | 
 | 297 | ) | 
 | 298 | { | 
 | 299 |     tr_static_init(); | 
 | 300 |  | 
 | 301 |     s->compressed_len = 0L; | 
 | 302 |  | 
 | 303 |     s->l_desc.dyn_tree = s->dyn_ltree; | 
 | 304 |     s->l_desc.stat_desc = &static_l_desc; | 
 | 305 |  | 
 | 306 |     s->d_desc.dyn_tree = s->dyn_dtree; | 
 | 307 |     s->d_desc.stat_desc = &static_d_desc; | 
 | 308 |  | 
 | 309 |     s->bl_desc.dyn_tree = s->bl_tree; | 
 | 310 |     s->bl_desc.stat_desc = &static_bl_desc; | 
 | 311 |  | 
 | 312 |     s->bi_buf = 0; | 
 | 313 |     s->bi_valid = 0; | 
 | 314 |     s->last_eob_len = 8; /* enough lookahead for inflate */ | 
 | 315 | #ifdef DEBUG_ZLIB | 
 | 316 |     s->bits_sent = 0L; | 
 | 317 | #endif | 
 | 318 |  | 
 | 319 |     /* Initialize the first block of the first file: */ | 
 | 320 |     init_block(s); | 
 | 321 | } | 
 | 322 |  | 
 | 323 | /* =========================================================================== | 
 | 324 |  * Initialize a new block. | 
 | 325 |  */ | 
 | 326 | static void init_block( | 
 | 327 | 	deflate_state *s | 
 | 328 | ) | 
 | 329 | { | 
 | 330 |     int n; /* iterates over tree elements */ | 
 | 331 |  | 
 | 332 |     /* Initialize the trees. */ | 
 | 333 |     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; | 
 | 334 |     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; | 
 | 335 |     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | 
 | 336 |  | 
 | 337 |     s->dyn_ltree[END_BLOCK].Freq = 1; | 
 | 338 |     s->opt_len = s->static_len = 0L; | 
 | 339 |     s->last_lit = s->matches = 0; | 
 | 340 | } | 
 | 341 |  | 
 | 342 | #define SMALLEST 1 | 
 | 343 | /* Index within the heap array of least frequent node in the Huffman tree */ | 
 | 344 |  | 
 | 345 |  | 
 | 346 | /* =========================================================================== | 
 | 347 |  * Remove the smallest element from the heap and recreate the heap with | 
 | 348 |  * one less element. Updates heap and heap_len. | 
 | 349 |  */ | 
 | 350 | #define pqremove(s, tree, top) \ | 
 | 351 | {\ | 
 | 352 |     top = s->heap[SMALLEST]; \ | 
 | 353 |     s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | 
 | 354 |     pqdownheap(s, tree, SMALLEST); \ | 
 | 355 | } | 
 | 356 |  | 
 | 357 | /* =========================================================================== | 
 | 358 |  * Compares to subtrees, using the tree depth as tie breaker when | 
 | 359 |  * the subtrees have equal frequency. This minimizes the worst case length. | 
 | 360 |  */ | 
 | 361 | #define smaller(tree, n, m, depth) \ | 
 | 362 |    (tree[n].Freq < tree[m].Freq || \ | 
 | 363 |    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | 
 | 364 |  | 
 | 365 | /* =========================================================================== | 
 | 366 |  * Restore the heap property by moving down the tree starting at node k, | 
 | 367 |  * exchanging a node with the smallest of its two sons if necessary, stopping | 
 | 368 |  * when the heap property is re-established (each father smaller than its | 
 | 369 |  * two sons). | 
 | 370 |  */ | 
 | 371 | static void pqdownheap( | 
 | 372 | 	deflate_state *s, | 
 | 373 | 	ct_data *tree,  /* the tree to restore */ | 
 | 374 | 	int k		/* node to move down */ | 
 | 375 | ) | 
 | 376 | { | 
 | 377 |     int v = s->heap[k]; | 
 | 378 |     int j = k << 1;  /* left son of k */ | 
 | 379 |     while (j <= s->heap_len) { | 
 | 380 |         /* Set j to the smallest of the two sons: */ | 
 | 381 |         if (j < s->heap_len && | 
 | 382 |             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | 
 | 383 |             j++; | 
 | 384 |         } | 
 | 385 |         /* Exit if v is smaller than both sons */ | 
 | 386 |         if (smaller(tree, v, s->heap[j], s->depth)) break; | 
 | 387 |  | 
 | 388 |         /* Exchange v with the smallest son */ | 
 | 389 |         s->heap[k] = s->heap[j];  k = j; | 
 | 390 |  | 
 | 391 |         /* And continue down the tree, setting j to the left son of k */ | 
 | 392 |         j <<= 1; | 
 | 393 |     } | 
 | 394 |     s->heap[k] = v; | 
 | 395 | } | 
 | 396 |  | 
 | 397 | /* =========================================================================== | 
 | 398 |  * Compute the optimal bit lengths for a tree and update the total bit length | 
 | 399 |  * for the current block. | 
 | 400 |  * IN assertion: the fields freq and dad are set, heap[heap_max] and | 
 | 401 |  *    above are the tree nodes sorted by increasing frequency. | 
 | 402 |  * OUT assertions: the field len is set to the optimal bit length, the | 
 | 403 |  *     array bl_count contains the frequencies for each bit length. | 
 | 404 |  *     The length opt_len is updated; static_len is also updated if stree is | 
 | 405 |  *     not null. | 
 | 406 |  */ | 
 | 407 | static void gen_bitlen( | 
 | 408 | 	deflate_state *s, | 
 | 409 | 	tree_desc *desc    /* the tree descriptor */ | 
 | 410 | ) | 
 | 411 | { | 
 | 412 |     ct_data *tree        = desc->dyn_tree; | 
 | 413 |     int max_code         = desc->max_code; | 
 | 414 |     const ct_data *stree = desc->stat_desc->static_tree; | 
 | 415 |     const int *extra     = desc->stat_desc->extra_bits; | 
 | 416 |     int base             = desc->stat_desc->extra_base; | 
 | 417 |     int max_length       = desc->stat_desc->max_length; | 
 | 418 |     int h;              /* heap index */ | 
 | 419 |     int n, m;           /* iterate over the tree elements */ | 
 | 420 |     int bits;           /* bit length */ | 
 | 421 |     int xbits;          /* extra bits */ | 
 | 422 |     ush f;              /* frequency */ | 
 | 423 |     int overflow = 0;   /* number of elements with bit length too large */ | 
 | 424 |  | 
 | 425 |     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | 
 | 426 |  | 
 | 427 |     /* In a first pass, compute the optimal bit lengths (which may | 
 | 428 |      * overflow in the case of the bit length tree). | 
 | 429 |      */ | 
 | 430 |     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | 
 | 431 |  | 
 | 432 |     for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | 
 | 433 |         n = s->heap[h]; | 
 | 434 |         bits = tree[tree[n].Dad].Len + 1; | 
 | 435 |         if (bits > max_length) bits = max_length, overflow++; | 
 | 436 |         tree[n].Len = (ush)bits; | 
 | 437 |         /* We overwrite tree[n].Dad which is no longer needed */ | 
 | 438 |  | 
 | 439 |         if (n > max_code) continue; /* not a leaf node */ | 
 | 440 |  | 
 | 441 |         s->bl_count[bits]++; | 
 | 442 |         xbits = 0; | 
 | 443 |         if (n >= base) xbits = extra[n-base]; | 
 | 444 |         f = tree[n].Freq; | 
 | 445 |         s->opt_len += (ulg)f * (bits + xbits); | 
 | 446 |         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | 
 | 447 |     } | 
 | 448 |     if (overflow == 0) return; | 
 | 449 |  | 
 | 450 |     Trace((stderr,"\nbit length overflow\n")); | 
 | 451 |     /* This happens for example on obj2 and pic of the Calgary corpus */ | 
 | 452 |  | 
 | 453 |     /* Find the first bit length which could increase: */ | 
 | 454 |     do { | 
 | 455 |         bits = max_length-1; | 
 | 456 |         while (s->bl_count[bits] == 0) bits--; | 
 | 457 |         s->bl_count[bits]--;      /* move one leaf down the tree */ | 
 | 458 |         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | 
 | 459 |         s->bl_count[max_length]--; | 
 | 460 |         /* The brother of the overflow item also moves one step up, | 
 | 461 |          * but this does not affect bl_count[max_length] | 
 | 462 |          */ | 
 | 463 |         overflow -= 2; | 
 | 464 |     } while (overflow > 0); | 
 | 465 |  | 
 | 466 |     /* Now recompute all bit lengths, scanning in increasing frequency. | 
 | 467 |      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | 
 | 468 |      * lengths instead of fixing only the wrong ones. This idea is taken | 
 | 469 |      * from 'ar' written by Haruhiko Okumura.) | 
 | 470 |      */ | 
 | 471 |     for (bits = max_length; bits != 0; bits--) { | 
 | 472 |         n = s->bl_count[bits]; | 
 | 473 |         while (n != 0) { | 
 | 474 |             m = s->heap[--h]; | 
 | 475 |             if (m > max_code) continue; | 
 | 476 |             if (tree[m].Len != (unsigned) bits) { | 
 | 477 |                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | 
 | 478 |                 s->opt_len += ((long)bits - (long)tree[m].Len) | 
 | 479 |                               *(long)tree[m].Freq; | 
 | 480 |                 tree[m].Len = (ush)bits; | 
 | 481 |             } | 
 | 482 |             n--; | 
 | 483 |         } | 
 | 484 |     } | 
 | 485 | } | 
 | 486 |  | 
 | 487 | /* =========================================================================== | 
 | 488 |  * Generate the codes for a given tree and bit counts (which need not be | 
 | 489 |  * optimal). | 
 | 490 |  * IN assertion: the array bl_count contains the bit length statistics for | 
 | 491 |  * the given tree and the field len is set for all tree elements. | 
 | 492 |  * OUT assertion: the field code is set for all tree elements of non | 
 | 493 |  *     zero code length. | 
 | 494 |  */ | 
 | 495 | static void gen_codes( | 
 | 496 | 	ct_data *tree,             /* the tree to decorate */ | 
 | 497 | 	int max_code,              /* largest code with non zero frequency */ | 
 | 498 | 	ush *bl_count             /* number of codes at each bit length */ | 
 | 499 | ) | 
 | 500 | { | 
 | 501 |     ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | 
 | 502 |     ush code = 0;              /* running code value */ | 
 | 503 |     int bits;                  /* bit index */ | 
 | 504 |     int n;                     /* code index */ | 
 | 505 |  | 
 | 506 |     /* The distribution counts are first used to generate the code values | 
 | 507 |      * without bit reversal. | 
 | 508 |      */ | 
 | 509 |     for (bits = 1; bits <= MAX_BITS; bits++) { | 
 | 510 |         next_code[bits] = code = (code + bl_count[bits-1]) << 1; | 
 | 511 |     } | 
 | 512 |     /* Check that the bit counts in bl_count are consistent. The last code | 
 | 513 |      * must be all ones. | 
 | 514 |      */ | 
 | 515 |     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | 
 | 516 |             "inconsistent bit counts"); | 
 | 517 |     Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | 
 | 518 |  | 
 | 519 |     for (n = 0;  n <= max_code; n++) { | 
 | 520 |         int len = tree[n].Len; | 
 | 521 |         if (len == 0) continue; | 
 | 522 |         /* Now reverse the bits */ | 
 | 523 |         tree[n].Code = bi_reverse(next_code[len]++, len); | 
 | 524 |  | 
 | 525 |         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | 
 | 526 |              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | 
 | 527 |     } | 
 | 528 | } | 
 | 529 |  | 
 | 530 | /* =========================================================================== | 
 | 531 |  * Construct one Huffman tree and assigns the code bit strings and lengths. | 
 | 532 |  * Update the total bit length for the current block. | 
 | 533 |  * IN assertion: the field freq is set for all tree elements. | 
 | 534 |  * OUT assertions: the fields len and code are set to the optimal bit length | 
 | 535 |  *     and corresponding code. The length opt_len is updated; static_len is | 
 | 536 |  *     also updated if stree is not null. The field max_code is set. | 
 | 537 |  */ | 
 | 538 | static void build_tree( | 
 | 539 | 	deflate_state *s, | 
 | 540 | 	tree_desc *desc	 /* the tree descriptor */ | 
 | 541 | ) | 
 | 542 | { | 
 | 543 |     ct_data *tree         = desc->dyn_tree; | 
 | 544 |     const ct_data *stree  = desc->stat_desc->static_tree; | 
 | 545 |     int elems             = desc->stat_desc->elems; | 
 | 546 |     int n, m;          /* iterate over heap elements */ | 
 | 547 |     int max_code = -1; /* largest code with non zero frequency */ | 
 | 548 |     int node;          /* new node being created */ | 
 | 549 |  | 
 | 550 |     /* Construct the initial heap, with least frequent element in | 
 | 551 |      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | 
 | 552 |      * heap[0] is not used. | 
 | 553 |      */ | 
 | 554 |     s->heap_len = 0, s->heap_max = HEAP_SIZE; | 
 | 555 |  | 
 | 556 |     for (n = 0; n < elems; n++) { | 
 | 557 |         if (tree[n].Freq != 0) { | 
 | 558 |             s->heap[++(s->heap_len)] = max_code = n; | 
 | 559 |             s->depth[n] = 0; | 
 | 560 |         } else { | 
 | 561 |             tree[n].Len = 0; | 
 | 562 |         } | 
 | 563 |     } | 
 | 564 |  | 
 | 565 |     /* The pkzip format requires that at least one distance code exists, | 
 | 566 |      * and that at least one bit should be sent even if there is only one | 
 | 567 |      * possible code. So to avoid special checks later on we force at least | 
 | 568 |      * two codes of non zero frequency. | 
 | 569 |      */ | 
 | 570 |     while (s->heap_len < 2) { | 
 | 571 |         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | 
 | 572 |         tree[node].Freq = 1; | 
 | 573 |         s->depth[node] = 0; | 
 | 574 |         s->opt_len--; if (stree) s->static_len -= stree[node].Len; | 
 | 575 |         /* node is 0 or 1 so it does not have extra bits */ | 
 | 576 |     } | 
 | 577 |     desc->max_code = max_code; | 
 | 578 |  | 
 | 579 |     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | 
 | 580 |      * establish sub-heaps of increasing lengths: | 
 | 581 |      */ | 
 | 582 |     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | 
 | 583 |  | 
 | 584 |     /* Construct the Huffman tree by repeatedly combining the least two | 
 | 585 |      * frequent nodes. | 
 | 586 |      */ | 
 | 587 |     node = elems;              /* next internal node of the tree */ | 
 | 588 |     do { | 
 | 589 |         pqremove(s, tree, n);  /* n = node of least frequency */ | 
 | 590 |         m = s->heap[SMALLEST]; /* m = node of next least frequency */ | 
 | 591 |  | 
 | 592 |         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | 
 | 593 |         s->heap[--(s->heap_max)] = m; | 
 | 594 |  | 
 | 595 |         /* Create a new node father of n and m */ | 
 | 596 |         tree[node].Freq = tree[n].Freq + tree[m].Freq; | 
 | 597 |         s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); | 
 | 598 |         tree[n].Dad = tree[m].Dad = (ush)node; | 
 | 599 | #ifdef DUMP_BL_TREE | 
 | 600 |         if (tree == s->bl_tree) { | 
 | 601 |             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | 
 | 602 |                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | 
 | 603 |         } | 
 | 604 | #endif | 
 | 605 |         /* and insert the new node in the heap */ | 
 | 606 |         s->heap[SMALLEST] = node++; | 
 | 607 |         pqdownheap(s, tree, SMALLEST); | 
 | 608 |  | 
 | 609 |     } while (s->heap_len >= 2); | 
 | 610 |  | 
 | 611 |     s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | 
 | 612 |  | 
 | 613 |     /* At this point, the fields freq and dad are set. We can now | 
 | 614 |      * generate the bit lengths. | 
 | 615 |      */ | 
 | 616 |     gen_bitlen(s, (tree_desc *)desc); | 
 | 617 |  | 
 | 618 |     /* The field len is now set, we can generate the bit codes */ | 
 | 619 |     gen_codes ((ct_data *)tree, max_code, s->bl_count); | 
 | 620 | } | 
 | 621 |  | 
 | 622 | /* =========================================================================== | 
 | 623 |  * Scan a literal or distance tree to determine the frequencies of the codes | 
 | 624 |  * in the bit length tree. | 
 | 625 |  */ | 
 | 626 | static void scan_tree( | 
 | 627 | 	deflate_state *s, | 
 | 628 | 	ct_data *tree,   /* the tree to be scanned */ | 
 | 629 | 	int max_code     /* and its largest code of non zero frequency */ | 
 | 630 | ) | 
 | 631 | { | 
 | 632 |     int n;                     /* iterates over all tree elements */ | 
 | 633 |     int prevlen = -1;          /* last emitted length */ | 
 | 634 |     int curlen;                /* length of current code */ | 
 | 635 |     int nextlen = tree[0].Len; /* length of next code */ | 
 | 636 |     int count = 0;             /* repeat count of the current code */ | 
 | 637 |     int max_count = 7;         /* max repeat count */ | 
 | 638 |     int min_count = 4;         /* min repeat count */ | 
 | 639 |  | 
 | 640 |     if (nextlen == 0) max_count = 138, min_count = 3; | 
 | 641 |     tree[max_code+1].Len = (ush)0xffff; /* guard */ | 
 | 642 |  | 
 | 643 |     for (n = 0; n <= max_code; n++) { | 
 | 644 |         curlen = nextlen; nextlen = tree[n+1].Len; | 
 | 645 |         if (++count < max_count && curlen == nextlen) { | 
 | 646 |             continue; | 
 | 647 |         } else if (count < min_count) { | 
 | 648 |             s->bl_tree[curlen].Freq += count; | 
 | 649 |         } else if (curlen != 0) { | 
 | 650 |             if (curlen != prevlen) s->bl_tree[curlen].Freq++; | 
 | 651 |             s->bl_tree[REP_3_6].Freq++; | 
 | 652 |         } else if (count <= 10) { | 
 | 653 |             s->bl_tree[REPZ_3_10].Freq++; | 
 | 654 |         } else { | 
 | 655 |             s->bl_tree[REPZ_11_138].Freq++; | 
 | 656 |         } | 
 | 657 |         count = 0; prevlen = curlen; | 
 | 658 |         if (nextlen == 0) { | 
 | 659 |             max_count = 138, min_count = 3; | 
 | 660 |         } else if (curlen == nextlen) { | 
 | 661 |             max_count = 6, min_count = 3; | 
 | 662 |         } else { | 
 | 663 |             max_count = 7, min_count = 4; | 
 | 664 |         } | 
 | 665 |     } | 
 | 666 | } | 
 | 667 |  | 
 | 668 | /* =========================================================================== | 
 | 669 |  * Send a literal or distance tree in compressed form, using the codes in | 
 | 670 |  * bl_tree. | 
 | 671 |  */ | 
 | 672 | static void send_tree( | 
 | 673 | 	deflate_state *s, | 
 | 674 | 	ct_data *tree, /* the tree to be scanned */ | 
 | 675 | 	int max_code   /* and its largest code of non zero frequency */ | 
 | 676 | ) | 
 | 677 | { | 
 | 678 |     int n;                     /* iterates over all tree elements */ | 
 | 679 |     int prevlen = -1;          /* last emitted length */ | 
 | 680 |     int curlen;                /* length of current code */ | 
 | 681 |     int nextlen = tree[0].Len; /* length of next code */ | 
 | 682 |     int count = 0;             /* repeat count of the current code */ | 
 | 683 |     int max_count = 7;         /* max repeat count */ | 
 | 684 |     int min_count = 4;         /* min repeat count */ | 
 | 685 |  | 
 | 686 |     /* tree[max_code+1].Len = -1; */  /* guard already set */ | 
 | 687 |     if (nextlen == 0) max_count = 138, min_count = 3; | 
 | 688 |  | 
 | 689 |     for (n = 0; n <= max_code; n++) { | 
 | 690 |         curlen = nextlen; nextlen = tree[n+1].Len; | 
 | 691 |         if (++count < max_count && curlen == nextlen) { | 
 | 692 |             continue; | 
 | 693 |         } else if (count < min_count) { | 
 | 694 |             do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | 
 | 695 |  | 
 | 696 |         } else if (curlen != 0) { | 
 | 697 |             if (curlen != prevlen) { | 
 | 698 |                 send_code(s, curlen, s->bl_tree); count--; | 
 | 699 |             } | 
 | 700 |             Assert(count >= 3 && count <= 6, " 3_6?"); | 
 | 701 |             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | 
 | 702 |  | 
 | 703 |         } else if (count <= 10) { | 
 | 704 |             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | 
 | 705 |  | 
 | 706 |         } else { | 
 | 707 |             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | 
 | 708 |         } | 
 | 709 |         count = 0; prevlen = curlen; | 
 | 710 |         if (nextlen == 0) { | 
 | 711 |             max_count = 138, min_count = 3; | 
 | 712 |         } else if (curlen == nextlen) { | 
 | 713 |             max_count = 6, min_count = 3; | 
 | 714 |         } else { | 
 | 715 |             max_count = 7, min_count = 4; | 
 | 716 |         } | 
 | 717 |     } | 
 | 718 | } | 
 | 719 |  | 
 | 720 | /* =========================================================================== | 
 | 721 |  * Construct the Huffman tree for the bit lengths and return the index in | 
 | 722 |  * bl_order of the last bit length code to send. | 
 | 723 |  */ | 
 | 724 | static int build_bl_tree( | 
 | 725 | 	deflate_state *s | 
 | 726 | ) | 
 | 727 | { | 
 | 728 |     int max_blindex;  /* index of last bit length code of non zero freq */ | 
 | 729 |  | 
 | 730 |     /* Determine the bit length frequencies for literal and distance trees */ | 
 | 731 |     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | 
 | 732 |     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | 
 | 733 |  | 
 | 734 |     /* Build the bit length tree: */ | 
 | 735 |     build_tree(s, (tree_desc *)(&(s->bl_desc))); | 
 | 736 |     /* opt_len now includes the length of the tree representations, except | 
 | 737 |      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | 
 | 738 |      */ | 
 | 739 |  | 
 | 740 |     /* Determine the number of bit length codes to send. The pkzip format | 
 | 741 |      * requires that at least 4 bit length codes be sent. (appnote.txt says | 
 | 742 |      * 3 but the actual value used is 4.) | 
 | 743 |      */ | 
 | 744 |     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | 
 | 745 |         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | 
 | 746 |     } | 
 | 747 |     /* Update opt_len to include the bit length tree and counts */ | 
 | 748 |     s->opt_len += 3*(max_blindex+1) + 5+5+4; | 
 | 749 |     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | 
 | 750 |             s->opt_len, s->static_len)); | 
 | 751 |  | 
 | 752 |     return max_blindex; | 
 | 753 | } | 
 | 754 |  | 
 | 755 | /* =========================================================================== | 
 | 756 |  * Send the header for a block using dynamic Huffman trees: the counts, the | 
 | 757 |  * lengths of the bit length codes, the literal tree and the distance tree. | 
 | 758 |  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | 
 | 759 |  */ | 
 | 760 | static void send_all_trees( | 
 | 761 | 	deflate_state *s, | 
 | 762 | 	int lcodes,  /* number of codes for each tree */ | 
 | 763 | 	int dcodes,  /* number of codes for each tree */ | 
 | 764 | 	int blcodes  /* number of codes for each tree */ | 
 | 765 | ) | 
 | 766 | { | 
 | 767 |     int rank;                    /* index in bl_order */ | 
 | 768 |  | 
 | 769 |     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | 
 | 770 |     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | 
 | 771 |             "too many codes"); | 
 | 772 |     Tracev((stderr, "\nbl counts: ")); | 
 | 773 |     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | 
 | 774 |     send_bits(s, dcodes-1,   5); | 
 | 775 |     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */ | 
 | 776 |     for (rank = 0; rank < blcodes; rank++) { | 
 | 777 |         Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | 
 | 778 |         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | 
 | 779 |     } | 
 | 780 |     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | 
 | 781 |  | 
 | 782 |     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | 
 | 783 |     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | 
 | 784 |  | 
 | 785 |     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | 
 | 786 |     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | 
 | 787 | } | 
 | 788 |  | 
 | 789 | /* =========================================================================== | 
 | 790 |  * Send a stored block | 
 | 791 |  */ | 
 | 792 | void zlib_tr_stored_block( | 
 | 793 | 	deflate_state *s, | 
 | 794 | 	char *buf,        /* input block */ | 
 | 795 | 	ulg stored_len,   /* length of input block */ | 
 | 796 | 	int eof           /* true if this is the last block for a file */ | 
 | 797 | ) | 
 | 798 | { | 
 | 799 |     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */ | 
 | 800 |     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | 
 | 801 |     s->compressed_len += (stored_len + 4) << 3; | 
 | 802 |  | 
 | 803 |     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | 
 | 804 | } | 
 | 805 |  | 
 | 806 | /* Send just the `stored block' type code without any length bytes or data. | 
 | 807 |  */ | 
 | 808 | void zlib_tr_stored_type_only( | 
 | 809 | 	deflate_state *s | 
 | 810 | ) | 
 | 811 | { | 
 | 812 |     send_bits(s, (STORED_BLOCK << 1), 3); | 
 | 813 |     bi_windup(s); | 
 | 814 |     s->compressed_len = (s->compressed_len + 3) & ~7L; | 
 | 815 | } | 
 | 816 |  | 
 | 817 |  | 
 | 818 | /* =========================================================================== | 
 | 819 |  * Send one empty static block to give enough lookahead for inflate. | 
 | 820 |  * This takes 10 bits, of which 7 may remain in the bit buffer. | 
 | 821 |  * The current inflate code requires 9 bits of lookahead. If the | 
 | 822 |  * last two codes for the previous block (real code plus EOB) were coded | 
 | 823 |  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | 
 | 824 |  * the last real code. In this case we send two empty static blocks instead | 
 | 825 |  * of one. (There are no problems if the previous block is stored or fixed.) | 
 | 826 |  * To simplify the code, we assume the worst case of last real code encoded | 
 | 827 |  * on one bit only. | 
 | 828 |  */ | 
 | 829 | void zlib_tr_align( | 
 | 830 | 	deflate_state *s | 
 | 831 | ) | 
 | 832 | { | 
 | 833 |     send_bits(s, STATIC_TREES<<1, 3); | 
 | 834 |     send_code(s, END_BLOCK, static_ltree); | 
 | 835 |     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | 
 | 836 |     bi_flush(s); | 
 | 837 |     /* Of the 10 bits for the empty block, we have already sent | 
 | 838 |      * (10 - bi_valid) bits. The lookahead for the last real code (before | 
 | 839 |      * the EOB of the previous block) was thus at least one plus the length | 
 | 840 |      * of the EOB plus what we have just sent of the empty static block. | 
 | 841 |      */ | 
 | 842 |     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { | 
 | 843 |         send_bits(s, STATIC_TREES<<1, 3); | 
 | 844 |         send_code(s, END_BLOCK, static_ltree); | 
 | 845 |         s->compressed_len += 10L; | 
 | 846 |         bi_flush(s); | 
 | 847 |     } | 
 | 848 |     s->last_eob_len = 7; | 
 | 849 | } | 
 | 850 |  | 
 | 851 | /* =========================================================================== | 
 | 852 |  * Determine the best encoding for the current block: dynamic trees, static | 
 | 853 |  * trees or store, and output the encoded block to the zip file. This function | 
 | 854 |  * returns the total compressed length for the file so far. | 
 | 855 |  */ | 
 | 856 | ulg zlib_tr_flush_block( | 
 | 857 | 	deflate_state *s, | 
 | 858 | 	char *buf,        /* input block, or NULL if too old */ | 
 | 859 | 	ulg stored_len,   /* length of input block */ | 
 | 860 | 	int eof           /* true if this is the last block for a file */ | 
 | 861 | ) | 
 | 862 | { | 
 | 863 |     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | 
 | 864 |     int max_blindex = 0;  /* index of last bit length code of non zero freq */ | 
 | 865 |  | 
 | 866 |     /* Build the Huffman trees unless a stored block is forced */ | 
 | 867 |     if (s->level > 0) { | 
 | 868 |  | 
 | 869 | 	 /* Check if the file is ascii or binary */ | 
 | 870 | 	if (s->data_type == Z_UNKNOWN) set_data_type(s); | 
 | 871 |  | 
 | 872 | 	/* Construct the literal and distance trees */ | 
 | 873 | 	build_tree(s, (tree_desc *)(&(s->l_desc))); | 
 | 874 | 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | 
 | 875 | 		s->static_len)); | 
 | 876 |  | 
 | 877 | 	build_tree(s, (tree_desc *)(&(s->d_desc))); | 
 | 878 | 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | 
 | 879 | 		s->static_len)); | 
 | 880 | 	/* At this point, opt_len and static_len are the total bit lengths of | 
 | 881 | 	 * the compressed block data, excluding the tree representations. | 
 | 882 | 	 */ | 
 | 883 |  | 
 | 884 | 	/* Build the bit length tree for the above two trees, and get the index | 
 | 885 | 	 * in bl_order of the last bit length code to send. | 
 | 886 | 	 */ | 
 | 887 | 	max_blindex = build_bl_tree(s); | 
 | 888 |  | 
 | 889 | 	/* Determine the best encoding. Compute first the block length in bytes*/ | 
 | 890 | 	opt_lenb = (s->opt_len+3+7)>>3; | 
 | 891 | 	static_lenb = (s->static_len+3+7)>>3; | 
 | 892 |  | 
 | 893 | 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | 
 | 894 | 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | 
 | 895 | 		s->last_lit)); | 
 | 896 |  | 
 | 897 | 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | 
 | 898 |  | 
 | 899 |     } else { | 
 | 900 |         Assert(buf != (char*)0, "lost buf"); | 
 | 901 | 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | 
 | 902 |     } | 
 | 903 |  | 
 | 904 |     /* If compression failed and this is the first and last block, | 
 | 905 |      * and if the .zip file can be seeked (to rewrite the local header), | 
 | 906 |      * the whole file is transformed into a stored file: | 
 | 907 |      */ | 
 | 908 | #ifdef STORED_FILE_OK | 
 | 909 | #  ifdef FORCE_STORED_FILE | 
 | 910 |     if (eof && s->compressed_len == 0L) { /* force stored file */ | 
 | 911 | #  else | 
 | 912 |     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | 
 | 913 | #  endif | 
 | 914 |         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | 
 | 915 |         if (buf == (char*)0) error ("block vanished"); | 
 | 916 |  | 
 | 917 |         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ | 
 | 918 |         s->compressed_len = stored_len << 3; | 
 | 919 |         s->method = STORED; | 
 | 920 |     } else | 
 | 921 | #endif /* STORED_FILE_OK */ | 
 | 922 |  | 
 | 923 | #ifdef FORCE_STORED | 
 | 924 |     if (buf != (char*)0) { /* force stored block */ | 
 | 925 | #else | 
 | 926 |     if (stored_len+4 <= opt_lenb && buf != (char*)0) { | 
 | 927 |                        /* 4: two words for the lengths */ | 
 | 928 | #endif | 
 | 929 |         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | 
 | 930 |          * Otherwise we can't have processed more than WSIZE input bytes since | 
 | 931 |          * the last block flush, because compression would have been | 
 | 932 |          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | 
 | 933 |          * transform a block into a stored block. | 
 | 934 |          */ | 
 | 935 |         zlib_tr_stored_block(s, buf, stored_len, eof); | 
 | 936 |  | 
 | 937 | #ifdef FORCE_STATIC | 
 | 938 |     } else if (static_lenb >= 0) { /* force static trees */ | 
 | 939 | #else | 
 | 940 |     } else if (static_lenb == opt_lenb) { | 
 | 941 | #endif | 
 | 942 |         send_bits(s, (STATIC_TREES<<1)+eof, 3); | 
 | 943 |         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | 
 | 944 |         s->compressed_len += 3 + s->static_len; | 
 | 945 |     } else { | 
 | 946 |         send_bits(s, (DYN_TREES<<1)+eof, 3); | 
 | 947 |         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | 
 | 948 |                        max_blindex+1); | 
 | 949 |         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | 
 | 950 |         s->compressed_len += 3 + s->opt_len; | 
 | 951 |     } | 
 | 952 |     Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | 
 | 953 |     init_block(s); | 
 | 954 |  | 
 | 955 |     if (eof) { | 
 | 956 |         bi_windup(s); | 
 | 957 |         s->compressed_len += 7;  /* align on byte boundary */ | 
 | 958 |     } | 
 | 959 |     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | 
 | 960 |            s->compressed_len-7*eof)); | 
 | 961 |  | 
 | 962 |     return s->compressed_len >> 3; | 
 | 963 | } | 
 | 964 |  | 
 | 965 | /* =========================================================================== | 
 | 966 |  * Save the match info and tally the frequency counts. Return true if | 
 | 967 |  * the current block must be flushed. | 
 | 968 |  */ | 
 | 969 | int zlib_tr_tally( | 
 | 970 | 	deflate_state *s, | 
 | 971 | 	unsigned dist,  /* distance of matched string */ | 
 | 972 | 	unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */ | 
 | 973 | ) | 
 | 974 | { | 
 | 975 |     s->d_buf[s->last_lit] = (ush)dist; | 
 | 976 |     s->l_buf[s->last_lit++] = (uch)lc; | 
 | 977 |     if (dist == 0) { | 
 | 978 |         /* lc is the unmatched char */ | 
 | 979 |         s->dyn_ltree[lc].Freq++; | 
 | 980 |     } else { | 
 | 981 |         s->matches++; | 
 | 982 |         /* Here, lc is the match length - MIN_MATCH */ | 
 | 983 |         dist--;             /* dist = match distance - 1 */ | 
 | 984 |         Assert((ush)dist < (ush)MAX_DIST(s) && | 
 | 985 |                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | 
 | 986 |                (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match"); | 
 | 987 |  | 
 | 988 |         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | 
 | 989 |         s->dyn_dtree[d_code(dist)].Freq++; | 
 | 990 |     } | 
 | 991 |  | 
 | 992 |     /* Try to guess if it is profitable to stop the current block here */ | 
 | 993 |     if ((s->last_lit & 0xfff) == 0 && s->level > 2) { | 
 | 994 |         /* Compute an upper bound for the compressed length */ | 
 | 995 |         ulg out_length = (ulg)s->last_lit*8L; | 
 | 996 |         ulg in_length = (ulg)((long)s->strstart - s->block_start); | 
 | 997 |         int dcode; | 
 | 998 |         for (dcode = 0; dcode < D_CODES; dcode++) { | 
 | 999 |             out_length += (ulg)s->dyn_dtree[dcode].Freq * | 
 | 1000 |                 (5L+extra_dbits[dcode]); | 
 | 1001 |         } | 
 | 1002 |         out_length >>= 3; | 
 | 1003 |         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | 
 | 1004 |                s->last_lit, in_length, out_length, | 
 | 1005 |                100L - out_length*100L/in_length)); | 
 | 1006 |         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | 
 | 1007 |     } | 
 | 1008 |     return (s->last_lit == s->lit_bufsize-1); | 
 | 1009 |     /* We avoid equality with lit_bufsize because of wraparound at 64K | 
 | 1010 |      * on 16 bit machines and because stored blocks are restricted to | 
 | 1011 |      * 64K-1 bytes. | 
 | 1012 |      */ | 
 | 1013 | } | 
 | 1014 |  | 
 | 1015 | /* =========================================================================== | 
 | 1016 |  * Send the block data compressed using the given Huffman trees | 
 | 1017 |  */ | 
 | 1018 | static void compress_block( | 
 | 1019 | 	deflate_state *s, | 
 | 1020 | 	ct_data *ltree, /* literal tree */ | 
 | 1021 | 	ct_data *dtree  /* distance tree */ | 
 | 1022 | ) | 
 | 1023 | { | 
 | 1024 |     unsigned dist;      /* distance of matched string */ | 
 | 1025 |     int lc;             /* match length or unmatched char (if dist == 0) */ | 
 | 1026 |     unsigned lx = 0;    /* running index in l_buf */ | 
 | 1027 |     unsigned code;      /* the code to send */ | 
 | 1028 |     int extra;          /* number of extra bits to send */ | 
 | 1029 |  | 
 | 1030 |     if (s->last_lit != 0) do { | 
 | 1031 |         dist = s->d_buf[lx]; | 
 | 1032 |         lc = s->l_buf[lx++]; | 
 | 1033 |         if (dist == 0) { | 
 | 1034 |             send_code(s, lc, ltree); /* send a literal byte */ | 
 | 1035 |             Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | 
 | 1036 |         } else { | 
 | 1037 |             /* Here, lc is the match length - MIN_MATCH */ | 
 | 1038 |             code = length_code[lc]; | 
 | 1039 |             send_code(s, code+LITERALS+1, ltree); /* send the length code */ | 
 | 1040 |             extra = extra_lbits[code]; | 
 | 1041 |             if (extra != 0) { | 
 | 1042 |                 lc -= base_length[code]; | 
 | 1043 |                 send_bits(s, lc, extra);       /* send the extra length bits */ | 
 | 1044 |             } | 
 | 1045 |             dist--; /* dist is now the match distance - 1 */ | 
 | 1046 |             code = d_code(dist); | 
 | 1047 |             Assert (code < D_CODES, "bad d_code"); | 
 | 1048 |  | 
 | 1049 |             send_code(s, code, dtree);       /* send the distance code */ | 
 | 1050 |             extra = extra_dbits[code]; | 
 | 1051 |             if (extra != 0) { | 
 | 1052 |                 dist -= base_dist[code]; | 
 | 1053 |                 send_bits(s, dist, extra);   /* send the extra distance bits */ | 
 | 1054 |             } | 
 | 1055 |         } /* literal or match pair ? */ | 
 | 1056 |  | 
 | 1057 |         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | 
 | 1058 |         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | 
 | 1059 |  | 
 | 1060 |     } while (lx < s->last_lit); | 
 | 1061 |  | 
 | 1062 |     send_code(s, END_BLOCK, ltree); | 
 | 1063 |     s->last_eob_len = ltree[END_BLOCK].Len; | 
 | 1064 | } | 
 | 1065 |  | 
 | 1066 | /* =========================================================================== | 
 | 1067 |  * Set the data type to ASCII or BINARY, using a crude approximation: | 
 | 1068 |  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | 
 | 1069 |  * IN assertion: the fields freq of dyn_ltree are set and the total of all | 
 | 1070 |  * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | 
 | 1071 |  */ | 
 | 1072 | static void set_data_type( | 
 | 1073 | 	deflate_state *s | 
 | 1074 | ) | 
 | 1075 | { | 
 | 1076 |     int n = 0; | 
 | 1077 |     unsigned ascii_freq = 0; | 
 | 1078 |     unsigned bin_freq = 0; | 
 | 1079 |     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq; | 
 | 1080 |     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq; | 
 | 1081 |     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | 
 | 1082 |     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); | 
 | 1083 | } | 
 | 1084 |  | 
 | 1085 | /* =========================================================================== | 
 | 1086 |  * Copy a stored block, storing first the length and its | 
 | 1087 |  * one's complement if requested. | 
 | 1088 |  */ | 
 | 1089 | static void copy_block( | 
 | 1090 | 	deflate_state *s, | 
 | 1091 | 	char    *buf,     /* the input data */ | 
 | 1092 | 	unsigned len,     /* its length */ | 
 | 1093 | 	int      header   /* true if block header must be written */ | 
 | 1094 | ) | 
 | 1095 | { | 
 | 1096 |     bi_windup(s);        /* align on byte boundary */ | 
 | 1097 |     s->last_eob_len = 8; /* enough lookahead for inflate */ | 
 | 1098 |  | 
 | 1099 |     if (header) { | 
 | 1100 |         put_short(s, (ush)len);    | 
 | 1101 |         put_short(s, (ush)~len); | 
 | 1102 | #ifdef DEBUG_ZLIB | 
 | 1103 |         s->bits_sent += 2*16; | 
 | 1104 | #endif | 
 | 1105 |     } | 
 | 1106 | #ifdef DEBUG_ZLIB | 
 | 1107 |     s->bits_sent += (ulg)len<<3; | 
 | 1108 | #endif | 
 | 1109 |     /* bundle up the put_byte(s, *buf++) calls */ | 
 | 1110 |     memcpy(&s->pending_buf[s->pending], buf, len); | 
 | 1111 |     s->pending += len; | 
 | 1112 | } | 
 | 1113 |  |