| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * linux/arch/m68k/atari/time.c | 
 | 3 |  * | 
 | 4 |  * Atari time and real time clock stuff | 
 | 5 |  * | 
 | 6 |  * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek | 
 | 7 |  * | 
 | 8 |  * This file is subject to the terms and conditions of the GNU General Public | 
 | 9 |  * License.  See the file COPYING in the main directory of this archive | 
 | 10 |  * for more details. | 
 | 11 |  */ | 
 | 12 |  | 
 | 13 | #include <linux/types.h> | 
 | 14 | #include <linux/mc146818rtc.h> | 
 | 15 | #include <linux/interrupt.h> | 
 | 16 | #include <linux/init.h> | 
 | 17 | #include <linux/rtc.h> | 
 | 18 | #include <linux/bcd.h> | 
 | 19 |  | 
 | 20 | #include <asm/atariints.h> | 
 | 21 |  | 
 | 22 | void __init | 
 | 23 | atari_sched_init(irqreturn_t (*timer_routine)(int, void *, struct pt_regs *)) | 
 | 24 | { | 
 | 25 |     /* set Timer C data Register */ | 
 | 26 |     mfp.tim_dt_c = INT_TICKS; | 
 | 27 |     /* start timer C, div = 1:100 */ | 
 | 28 |     mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60; | 
 | 29 |     /* install interrupt service routine for MFP Timer C */ | 
 | 30 |     request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, | 
 | 31 |                 "timer", timer_routine); | 
 | 32 | } | 
 | 33 |  | 
 | 34 | /* ++andreas: gettimeoffset fixed to check for pending interrupt */ | 
 | 35 |  | 
 | 36 | #define TICK_SIZE 10000 | 
 | 37 |  | 
 | 38 | /* This is always executed with interrupts disabled.  */ | 
 | 39 | unsigned long atari_gettimeoffset (void) | 
 | 40 | { | 
 | 41 |   unsigned long ticks, offset = 0; | 
 | 42 |  | 
 | 43 |   /* read MFP timer C current value */ | 
 | 44 |   ticks = mfp.tim_dt_c; | 
 | 45 |   /* The probability of underflow is less than 2% */ | 
 | 46 |   if (ticks > INT_TICKS - INT_TICKS / 50) | 
 | 47 |     /* Check for pending timer interrupt */ | 
 | 48 |     if (mfp.int_pn_b & (1 << 5)) | 
 | 49 |       offset = TICK_SIZE; | 
 | 50 |  | 
 | 51 |   ticks = INT_TICKS - ticks; | 
 | 52 |   ticks = ticks * 10000L / INT_TICKS; | 
 | 53 |  | 
 | 54 |   return ticks + offset; | 
 | 55 | } | 
 | 56 |  | 
 | 57 |  | 
 | 58 | static void mste_read(struct MSTE_RTC *val) | 
 | 59 | { | 
 | 60 | #define COPY(v) val->v=(mste_rtc.v & 0xf) | 
 | 61 | 	do { | 
 | 62 | 		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; | 
 | 63 | 		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; | 
 | 64 | 		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; | 
 | 65 | 		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; | 
 | 66 | 		COPY(year_tens) ; | 
 | 67 | 	/* prevent from reading the clock while it changed */ | 
 | 68 | 	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); | 
 | 69 | #undef COPY | 
 | 70 | } | 
 | 71 |  | 
 | 72 | static void mste_write(struct MSTE_RTC *val) | 
 | 73 | { | 
 | 74 | #define COPY(v) mste_rtc.v=val->v | 
 | 75 | 	do { | 
 | 76 | 		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; | 
 | 77 | 		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; | 
 | 78 | 		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; | 
 | 79 | 		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; | 
 | 80 | 		COPY(year_tens) ; | 
 | 81 | 	/* prevent from writing the clock while it changed */ | 
 | 82 | 	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); | 
 | 83 | #undef COPY | 
 | 84 | } | 
 | 85 |  | 
 | 86 | #define	RTC_READ(reg)				\ | 
 | 87 |     ({	unsigned char	__val;			\ | 
 | 88 | 		(void) atari_writeb(reg,&tt_rtc.regsel);	\ | 
 | 89 | 		__val = tt_rtc.data;		\ | 
 | 90 | 		__val;				\ | 
 | 91 | 	}) | 
 | 92 |  | 
 | 93 | #define	RTC_WRITE(reg,val)			\ | 
 | 94 |     do {					\ | 
 | 95 | 		atari_writeb(reg,&tt_rtc.regsel);	\ | 
 | 96 | 		tt_rtc.data = (val);		\ | 
 | 97 | 	} while(0) | 
 | 98 |  | 
 | 99 |  | 
 | 100 | #define HWCLK_POLL_INTERVAL	5 | 
 | 101 |  | 
 | 102 | int atari_mste_hwclk( int op, struct rtc_time *t ) | 
 | 103 | { | 
 | 104 |     int hour, year; | 
 | 105 |     int hr24=0; | 
 | 106 |     struct MSTE_RTC val; | 
 | 107 |  | 
 | 108 |     mste_rtc.mode=(mste_rtc.mode | 1); | 
 | 109 |     hr24=mste_rtc.mon_tens & 1; | 
 | 110 |     mste_rtc.mode=(mste_rtc.mode & ~1); | 
 | 111 |  | 
 | 112 |     if (op) { | 
 | 113 |         /* write: prepare values */ | 
 | 114 |  | 
 | 115 |         val.sec_ones = t->tm_sec % 10; | 
 | 116 |         val.sec_tens = t->tm_sec / 10; | 
 | 117 |         val.min_ones = t->tm_min % 10; | 
 | 118 |         val.min_tens = t->tm_min / 10; | 
 | 119 |         hour = t->tm_hour; | 
 | 120 |         if (!hr24) { | 
 | 121 | 	    if (hour > 11) | 
 | 122 | 		hour += 20 - 12; | 
 | 123 | 	    if (hour == 0 || hour == 20) | 
 | 124 | 		hour += 12; | 
 | 125 |         } | 
 | 126 |         val.hr_ones = hour % 10; | 
 | 127 |         val.hr_tens = hour / 10; | 
 | 128 |         val.day_ones = t->tm_mday % 10; | 
 | 129 |         val.day_tens = t->tm_mday / 10; | 
 | 130 |         val.mon_ones = (t->tm_mon+1) % 10; | 
 | 131 |         val.mon_tens = (t->tm_mon+1) / 10; | 
 | 132 |         year = t->tm_year - 80; | 
 | 133 |         val.year_ones = year % 10; | 
 | 134 |         val.year_tens = year / 10; | 
 | 135 |         val.weekday = t->tm_wday; | 
 | 136 |         mste_write(&val); | 
 | 137 |         mste_rtc.mode=(mste_rtc.mode | 1); | 
 | 138 |         val.year_ones = (year % 4);	/* leap year register */ | 
 | 139 |         mste_rtc.mode=(mste_rtc.mode & ~1); | 
 | 140 |     } | 
 | 141 |     else { | 
 | 142 |         mste_read(&val); | 
 | 143 |         t->tm_sec = val.sec_ones + val.sec_tens * 10; | 
 | 144 |         t->tm_min = val.min_ones + val.min_tens * 10; | 
 | 145 |         hour = val.hr_ones + val.hr_tens * 10; | 
 | 146 | 	if (!hr24) { | 
 | 147 | 	    if (hour == 12 || hour == 12 + 20) | 
 | 148 | 		hour -= 12; | 
 | 149 | 	    if (hour >= 20) | 
 | 150 |                 hour += 12 - 20; | 
 | 151 |         } | 
 | 152 | 	t->tm_hour = hour; | 
 | 153 | 	t->tm_mday = val.day_ones + val.day_tens * 10; | 
 | 154 |         t->tm_mon  = val.mon_ones + val.mon_tens * 10 - 1; | 
 | 155 |         t->tm_year = val.year_ones + val.year_tens * 10 + 80; | 
 | 156 |         t->tm_wday = val.weekday; | 
 | 157 |     } | 
 | 158 |     return 0; | 
 | 159 | } | 
 | 160 |  | 
 | 161 | int atari_tt_hwclk( int op, struct rtc_time *t ) | 
 | 162 | { | 
 | 163 |     int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0; | 
 | 164 |     unsigned long	flags; | 
 | 165 |     unsigned char	ctrl; | 
 | 166 |     int pm = 0; | 
 | 167 |  | 
 | 168 |     ctrl = RTC_READ(RTC_CONTROL); /* control registers are | 
 | 169 |                                    * independent from the UIP */ | 
 | 170 |  | 
 | 171 |     if (op) { | 
 | 172 |         /* write: prepare values */ | 
 | 173 |  | 
 | 174 |         sec  = t->tm_sec; | 
 | 175 |         min  = t->tm_min; | 
 | 176 |         hour = t->tm_hour; | 
 | 177 |         day  = t->tm_mday; | 
 | 178 |         mon  = t->tm_mon + 1; | 
 | 179 |         year = t->tm_year - atari_rtc_year_offset; | 
 | 180 |         wday = t->tm_wday + (t->tm_wday >= 0); | 
 | 181 |  | 
 | 182 |         if (!(ctrl & RTC_24H)) { | 
 | 183 | 	    if (hour > 11) { | 
 | 184 | 		pm = 0x80; | 
 | 185 | 		if (hour != 12) | 
 | 186 | 		    hour -= 12; | 
 | 187 | 	    } | 
 | 188 | 	    else if (hour == 0) | 
 | 189 | 		hour = 12; | 
 | 190 |         } | 
 | 191 |  | 
 | 192 |         if (!(ctrl & RTC_DM_BINARY)) { | 
 | 193 |             BIN_TO_BCD(sec); | 
 | 194 |             BIN_TO_BCD(min); | 
 | 195 |             BIN_TO_BCD(hour); | 
 | 196 |             BIN_TO_BCD(day); | 
 | 197 |             BIN_TO_BCD(mon); | 
 | 198 |             BIN_TO_BCD(year); | 
 | 199 |             if (wday >= 0) BIN_TO_BCD(wday); | 
 | 200 |         } | 
 | 201 |     } | 
 | 202 |  | 
 | 203 |     /* Reading/writing the clock registers is a bit critical due to | 
 | 204 |      * the regular update cycle of the RTC. While an update is in | 
 | 205 |      * progress, registers 0..9 shouldn't be touched. | 
 | 206 |      * The problem is solved like that: If an update is currently in | 
 | 207 |      * progress (the UIP bit is set), the process sleeps for a while | 
 | 208 |      * (50ms). This really should be enough, since the update cycle | 
 | 209 |      * normally needs 2 ms. | 
 | 210 |      * If the UIP bit reads as 0, we have at least 244 usecs until the | 
 | 211 |      * update starts. This should be enough... But to be sure, | 
 | 212 |      * additionally the RTC_SET bit is set to prevent an update cycle. | 
 | 213 |      */ | 
 | 214 |  | 
 | 215 |     while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) { | 
 | 216 |         current->state = TASK_INTERRUPTIBLE; | 
 | 217 |         schedule_timeout(HWCLK_POLL_INTERVAL); | 
 | 218 |     } | 
 | 219 |  | 
 | 220 |     local_irq_save(flags); | 
 | 221 |     RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET ); | 
 | 222 |     if (!op) { | 
 | 223 |         sec  = RTC_READ( RTC_SECONDS ); | 
 | 224 |         min  = RTC_READ( RTC_MINUTES ); | 
 | 225 |         hour = RTC_READ( RTC_HOURS ); | 
 | 226 |         day  = RTC_READ( RTC_DAY_OF_MONTH ); | 
 | 227 |         mon  = RTC_READ( RTC_MONTH ); | 
 | 228 |         year = RTC_READ( RTC_YEAR ); | 
 | 229 |         wday = RTC_READ( RTC_DAY_OF_WEEK ); | 
 | 230 |     } | 
 | 231 |     else { | 
 | 232 |         RTC_WRITE( RTC_SECONDS, sec ); | 
 | 233 |         RTC_WRITE( RTC_MINUTES, min ); | 
 | 234 |         RTC_WRITE( RTC_HOURS, hour + pm); | 
 | 235 |         RTC_WRITE( RTC_DAY_OF_MONTH, day ); | 
 | 236 |         RTC_WRITE( RTC_MONTH, mon ); | 
 | 237 |         RTC_WRITE( RTC_YEAR, year ); | 
 | 238 |         if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday ); | 
 | 239 |     } | 
 | 240 |     RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET ); | 
 | 241 |     local_irq_restore(flags); | 
 | 242 |  | 
 | 243 |     if (!op) { | 
 | 244 |         /* read: adjust values */ | 
 | 245 |  | 
 | 246 |         if (hour & 0x80) { | 
 | 247 | 	    hour &= ~0x80; | 
 | 248 | 	    pm = 1; | 
 | 249 | 	} | 
 | 250 |  | 
 | 251 | 	if (!(ctrl & RTC_DM_BINARY)) { | 
 | 252 |             BCD_TO_BIN(sec); | 
 | 253 |             BCD_TO_BIN(min); | 
 | 254 |             BCD_TO_BIN(hour); | 
 | 255 |             BCD_TO_BIN(day); | 
 | 256 |             BCD_TO_BIN(mon); | 
 | 257 |             BCD_TO_BIN(year); | 
 | 258 |             BCD_TO_BIN(wday); | 
 | 259 |         } | 
 | 260 |  | 
 | 261 |         if (!(ctrl & RTC_24H)) { | 
 | 262 | 	    if (!pm && hour == 12) | 
 | 263 | 		hour = 0; | 
 | 264 | 	    else if (pm && hour != 12) | 
 | 265 | 		hour += 12; | 
 | 266 |         } | 
 | 267 |  | 
 | 268 |         t->tm_sec  = sec; | 
 | 269 |         t->tm_min  = min; | 
 | 270 |         t->tm_hour = hour; | 
 | 271 |         t->tm_mday = day; | 
 | 272 |         t->tm_mon  = mon - 1; | 
 | 273 |         t->tm_year = year + atari_rtc_year_offset; | 
 | 274 |         t->tm_wday = wday - 1; | 
 | 275 |     } | 
 | 276 |  | 
 | 277 |     return( 0 ); | 
 | 278 | } | 
 | 279 |  | 
 | 280 |  | 
 | 281 | int atari_mste_set_clock_mmss (unsigned long nowtime) | 
 | 282 | { | 
 | 283 |     short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; | 
 | 284 |     struct MSTE_RTC val; | 
 | 285 |     unsigned char rtc_minutes; | 
 | 286 |  | 
 | 287 |     mste_read(&val); | 
 | 288 |     rtc_minutes= val.min_ones + val.min_tens * 10; | 
 | 289 |     if ((rtc_minutes < real_minutes | 
 | 290 |          ? real_minutes - rtc_minutes | 
 | 291 |          : rtc_minutes - real_minutes) < 30) | 
 | 292 |     { | 
 | 293 |         val.sec_ones = real_seconds % 10; | 
 | 294 |         val.sec_tens = real_seconds / 10; | 
 | 295 |         val.min_ones = real_minutes % 10; | 
 | 296 |         val.min_tens = real_minutes / 10; | 
 | 297 |         mste_write(&val); | 
 | 298 |     } | 
 | 299 |     else | 
 | 300 |         return -1; | 
 | 301 |     return 0; | 
 | 302 | } | 
 | 303 |  | 
 | 304 | int atari_tt_set_clock_mmss (unsigned long nowtime) | 
 | 305 | { | 
 | 306 |     int retval = 0; | 
 | 307 |     short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; | 
 | 308 |     unsigned char save_control, save_freq_select, rtc_minutes; | 
 | 309 |  | 
 | 310 |     save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */ | 
 | 311 |     RTC_WRITE (RTC_CONTROL, save_control | RTC_SET); | 
 | 312 |  | 
 | 313 |     save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */ | 
 | 314 |     RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2); | 
 | 315 |  | 
 | 316 |     rtc_minutes = RTC_READ (RTC_MINUTES); | 
 | 317 |     if (!(save_control & RTC_DM_BINARY)) | 
 | 318 |         BCD_TO_BIN (rtc_minutes); | 
 | 319 |  | 
 | 320 |     /* Since we're only adjusting minutes and seconds, don't interfere | 
 | 321 |        with hour overflow.  This avoids messing with unknown time zones | 
 | 322 |        but requires your RTC not to be off by more than 30 minutes.  */ | 
 | 323 |     if ((rtc_minutes < real_minutes | 
 | 324 |          ? real_minutes - rtc_minutes | 
 | 325 |          : rtc_minutes - real_minutes) < 30) | 
 | 326 |         { | 
 | 327 |             if (!(save_control & RTC_DM_BINARY)) | 
 | 328 |                 { | 
 | 329 |                     BIN_TO_BCD (real_seconds); | 
 | 330 |                     BIN_TO_BCD (real_minutes); | 
 | 331 |                 } | 
 | 332 |             RTC_WRITE (RTC_SECONDS, real_seconds); | 
 | 333 |             RTC_WRITE (RTC_MINUTES, real_minutes); | 
 | 334 |         } | 
 | 335 |     else | 
 | 336 |         retval = -1; | 
 | 337 |  | 
 | 338 |     RTC_WRITE (RTC_FREQ_SELECT, save_freq_select); | 
 | 339 |     RTC_WRITE (RTC_CONTROL, save_control); | 
 | 340 |     return retval; | 
 | 341 | } | 
 | 342 |  | 
 | 343 | /* | 
 | 344 |  * Local variables: | 
 | 345 |  *  c-indent-level: 4 | 
 | 346 |  *  tab-width: 8 | 
 | 347 |  * End: | 
 | 348 |  */ |