Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | ** ----------------------------------------------------------------------------- |
| 3 | ** |
| 4 | ** Perle Specialix driver for Linux |
| 5 | ** Ported from existing RIO Driver for SCO sources. |
| 6 | * |
| 7 | * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2 of the License, or |
| 12 | * (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 22 | ** |
| 23 | ** Module : rioinit.c |
| 24 | ** SID : 1.3 |
| 25 | ** Last Modified : 11/6/98 10:33:43 |
| 26 | ** Retrieved : 11/6/98 10:33:49 |
| 27 | ** |
| 28 | ** ident @(#)rioinit.c 1.3 |
| 29 | ** |
| 30 | ** ----------------------------------------------------------------------------- |
| 31 | */ |
| 32 | #ifdef SCCS_LABELS |
| 33 | static char *_rioinit_c_sccs_ = "@(#)rioinit.c 1.3"; |
| 34 | #endif |
| 35 | |
| 36 | #include <linux/config.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/slab.h> |
| 39 | #include <linux/errno.h> |
| 40 | #include <asm/io.h> |
| 41 | #include <asm/system.h> |
| 42 | #include <asm/string.h> |
| 43 | #include <asm/semaphore.h> |
| 44 | #include <asm/uaccess.h> |
| 45 | |
| 46 | #include <linux/termios.h> |
| 47 | #include <linux/serial.h> |
| 48 | |
| 49 | #include <linux/generic_serial.h> |
| 50 | |
| 51 | |
| 52 | #include "linux_compat.h" |
| 53 | #include "typdef.h" |
| 54 | #include "pkt.h" |
| 55 | #include "daemon.h" |
| 56 | #include "rio.h" |
| 57 | #include "riospace.h" |
| 58 | #include "top.h" |
| 59 | #include "cmdpkt.h" |
| 60 | #include "map.h" |
| 61 | #include "riotypes.h" |
| 62 | #include "rup.h" |
| 63 | #include "port.h" |
| 64 | #include "riodrvr.h" |
| 65 | #include "rioinfo.h" |
| 66 | #include "func.h" |
| 67 | #include "errors.h" |
| 68 | #include "pci.h" |
| 69 | |
| 70 | #include "parmmap.h" |
| 71 | #include "unixrup.h" |
| 72 | #include "board.h" |
| 73 | #include "host.h" |
| 74 | #include "error.h" |
| 75 | #include "phb.h" |
| 76 | #include "link.h" |
| 77 | #include "cmdblk.h" |
| 78 | #include "route.h" |
| 79 | #include "control.h" |
| 80 | #include "cirrus.h" |
| 81 | #include "rioioctl.h" |
| 82 | #include "rio_linux.h" |
| 83 | |
| 84 | #undef bcopy |
| 85 | #define bcopy rio_pcicopy |
| 86 | |
| 87 | int RIOPCIinit(struct rio_info *p, int Mode); |
| 88 | |
| 89 | #if 0 |
| 90 | static void RIOAllocateInterrupts(struct rio_info *); |
| 91 | static int RIOReport(struct rio_info *); |
| 92 | static void RIOStopInterrupts(struct rio_info *, int, int); |
| 93 | #endif |
| 94 | |
| 95 | static int RIOScrub(int, BYTE *, int); |
| 96 | |
| 97 | #if 0 |
| 98 | extern int rio_intr(); |
| 99 | |
| 100 | /* |
| 101 | ** Init time code. |
| 102 | */ |
| 103 | void |
| 104 | rioinit( p, info ) |
| 105 | struct rio_info * p; |
| 106 | struct RioHostInfo * info; |
| 107 | { |
| 108 | /* |
| 109 | ** Multi-Host card support - taking the easy way out - sorry ! |
| 110 | ** We allocate and set up the Host and Port structs when the |
| 111 | ** driver is called to 'install' the first host. |
| 112 | ** We check for this first 'call' by testing the RIOPortp pointer. |
| 113 | */ |
| 114 | if ( !p->RIOPortp ) |
| 115 | { |
| 116 | rio_dprintk (RIO_DEBUG_INIT, "Allocating and setting up driver data structures\n"); |
| 117 | |
| 118 | RIOAllocDataStructs(p); /* allocate host/port structs */ |
| 119 | RIOSetupDataStructs(p); /* setup topology structs */ |
| 120 | } |
| 121 | |
| 122 | RIOInitHosts( p, info ); /* hunt down the hardware */ |
| 123 | |
| 124 | RIOAllocateInterrupts(p); /* allocate interrupts */ |
| 125 | RIOReport(p); /* show what we found */ |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | ** Initialise the Cards |
| 130 | */ |
| 131 | void |
| 132 | RIOInitHosts(p, info) |
| 133 | struct rio_info * p; |
| 134 | struct RioHostInfo * info; |
| 135 | { |
| 136 | /* |
| 137 | ** 15.10.1998 ARG - ESIL 0762 part fix |
| 138 | ** If there is no ISA card definition - we always look for PCI cards. |
| 139 | ** As we currently only support one host card this lets an ISA card |
| 140 | ** definition take precedence over PLUG and PLAY. |
| 141 | ** No ISA card - we are PLUG and PLAY with PCI. |
| 142 | */ |
| 143 | |
| 144 | /* |
| 145 | ** Note - for PCI both these will be zero, that's okay because |
| 146 | ** RIOPCIInit() fills them in if a card is found. |
| 147 | */ |
| 148 | p->RIOHosts[p->RIONumHosts].Ivec = info->vector; |
| 149 | p->RIOHosts[p->RIONumHosts].PaddrP = info->location; |
| 150 | |
| 151 | /* |
| 152 | ** Check that we are able to accommodate another host |
| 153 | */ |
| 154 | if ( p->RIONumHosts >= RIO_HOSTS ) |
| 155 | { |
| 156 | p->RIOFailed++; |
| 157 | return; |
| 158 | } |
| 159 | |
| 160 | if ( info->bus & ISA_BUS ) |
| 161 | { |
| 162 | rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (ISA)\n", p->RIONumHosts); |
| 163 | RIOISAinit(p, p->mode); |
| 164 | } |
| 165 | else |
| 166 | { |
| 167 | rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (PCI)\n", p->RIONumHosts); |
| 168 | RIOPCIinit(p, RIO_PCI_DEFAULT_MODE); |
| 169 | } |
| 170 | |
| 171 | rio_dprintk (RIO_DEBUG_INIT, "Total hosts initialised so far : %d\n", p->RIONumHosts); |
| 172 | |
| 173 | |
| 174 | #ifdef FUTURE_RELEASE |
| 175 | if (p->bus & EISA_BUS) |
| 176 | /* EISA card */ |
| 177 | RIOEISAinit(p, RIO_EISA_DEFAULT_MODE); |
| 178 | |
| 179 | if (p->bus & MCA_BUS) |
| 180 | /* MCA card */ |
| 181 | RIOMCAinit(p, RIO_MCA_DEFAULT_MODE); |
| 182 | #endif |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | ** go through memory for an AT host that we pass in the device info |
| 187 | ** structure and initialise |
| 188 | */ |
| 189 | void |
| 190 | RIOISAinit(p, mode) |
| 191 | struct rio_info * p; |
| 192 | int mode; |
| 193 | { |
| 194 | |
| 195 | /* XXX Need to implement this. */ |
| 196 | #if 0 |
| 197 | p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec, |
| 198 | (int (*)())rio_intr, (char*)p->RIONumHosts); |
| 199 | |
| 200 | rio_dprintk (RIO_DEBUG_INIT, "Set interrupt handler, intr_tid = 0x%x\n", p->intr_tid ); |
| 201 | |
| 202 | if (RIODoAT(p, p->RIOHosts[p->RIONumHosts].PaddrP, mode)) { |
| 203 | return; |
| 204 | } |
| 205 | else { |
| 206 | rio_dprintk (RIO_DEBUG_INIT, "RIODoAT failed\n"); |
| 207 | p->RIOFailed++; |
| 208 | } |
| 209 | #endif |
| 210 | |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | ** RIODoAT : |
| 215 | ** |
| 216 | ** Map in a boards physical address, check that the board is there, |
| 217 | ** test the board and if everything is okay assign the board an entry |
| 218 | ** in the Rio Hosts structure. |
| 219 | */ |
| 220 | int |
| 221 | RIODoAT(p, Base, mode) |
| 222 | struct rio_info * p; |
| 223 | int Base; |
| 224 | int mode; |
| 225 | { |
| 226 | #define FOUND 1 |
| 227 | #define NOT_FOUND 0 |
| 228 | |
| 229 | caddr_t cardAddr; |
| 230 | |
| 231 | /* |
| 232 | ** Check to see if we actually have a board at this physical address. |
| 233 | */ |
| 234 | if ((cardAddr = RIOCheckForATCard(Base)) != 0) { |
| 235 | /* |
| 236 | ** Now test the board to see if it is working. |
| 237 | */ |
| 238 | if (RIOBoardTest(Base, cardAddr, RIO_AT, 0) == RIO_SUCCESS) { |
| 239 | /* |
| 240 | ** Fill out a slot in the Rio host structure. |
| 241 | */ |
| 242 | if (RIOAssignAT(p, Base, cardAddr, mode)) { |
| 243 | return(FOUND); |
| 244 | } |
| 245 | } |
| 246 | RIOMapout(Base, RIO_AT_MEM_SIZE, cardAddr); |
| 247 | } |
| 248 | return(NOT_FOUND); |
| 249 | } |
| 250 | |
| 251 | caddr_t |
| 252 | RIOCheckForATCard(Base) |
| 253 | int Base; |
| 254 | { |
| 255 | int off; |
| 256 | struct DpRam *cardp; /* (Points at the host) */ |
| 257 | caddr_t virtAddr; |
| 258 | unsigned char RIOSigTab[24]; |
| 259 | /* |
| 260 | ** Table of values to search for as prom signature of a host card |
| 261 | */ |
| 262 | strcpy(RIOSigTab, "JBJGPGGHINSMJPJR"); |
| 263 | |
| 264 | /* |
| 265 | ** Hey! Yes, You reading this code! Yo, grab a load a this: |
| 266 | ** |
| 267 | ** IF the card is using WORD MODE rather than BYTE MODE |
| 268 | ** then it will occupy 128K of PHYSICAL memory area. So, |
| 269 | ** you might think that the following Mapin is wrong. Well, |
| 270 | ** it isn't, because the SECOND 64K of occupied space is an |
| 271 | ** EXACT COPY of the FIRST 64K. (good?), so, we need only |
| 272 | ** map it in in one 64K block. |
| 273 | */ |
| 274 | if (RIOMapin(Base, RIO_AT_MEM_SIZE, &virtAddr) == -1) { |
| 275 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't map the board in!\n"); |
| 276 | return((caddr_t)0); |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | ** virtAddr points to the DP ram of the system. |
| 281 | ** We now cast this to a pointer to a RIO Host, |
| 282 | ** and have a rummage about in the PROM. |
| 283 | */ |
| 284 | cardp = (struct DpRam *)virtAddr; |
| 285 | |
| 286 | for (off=0; RIOSigTab[off]; off++) { |
| 287 | if ((RBYTE(cardp->DpSignature[off]) & 0xFF) != RIOSigTab[off]) { |
| 288 | /* |
| 289 | ** Signature mismatch - card not at this address |
| 290 | */ |
| 291 | RIOMapout(Base, RIO_AT_MEM_SIZE, virtAddr); |
| 292 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't match the signature 0x%x 0x%x!\n", |
| 293 | (int)cardp, off); |
| 294 | return((caddr_t)0); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | ** If we get here then we must have found a valid board so return |
| 300 | ** its virtual address. |
| 301 | */ |
| 302 | return(virtAddr); |
| 303 | } |
| 304 | #endif |
| 305 | |
| 306 | /** |
| 307 | ** RIOAssignAT : |
| 308 | ** |
| 309 | ** Fill out the fields in the p->RIOHosts structure now we know we know |
| 310 | ** we have a board present. |
| 311 | ** |
| 312 | ** bits < 0 indicates 8 bit operation requested, |
| 313 | ** bits > 0 indicates 16 bit operation. |
| 314 | */ |
| 315 | int |
| 316 | RIOAssignAT(p, Base, virtAddr, mode) |
| 317 | struct rio_info * p; |
| 318 | int Base; |
| 319 | caddr_t virtAddr; |
| 320 | int mode; |
| 321 | { |
| 322 | int bits; |
| 323 | struct DpRam *cardp = (struct DpRam *)virtAddr; |
| 324 | |
| 325 | if ((Base < ONE_MEG) || (mode & BYTE_ACCESS_MODE)) |
| 326 | bits = BYTE_OPERATION; |
| 327 | else |
| 328 | bits = WORD_OPERATION; |
| 329 | |
| 330 | /* |
| 331 | ** Board has passed its scrub test. Fill in all the |
| 332 | ** transient stuff. |
| 333 | */ |
| 334 | p->RIOHosts[p->RIONumHosts].Caddr = virtAddr; |
| 335 | p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)virtAddr; |
| 336 | |
| 337 | /* |
| 338 | ** Revision 01 AT host cards don't support WORD operations, |
| 339 | */ |
| 340 | if ( RBYTE(cardp->DpRevision) == 01 ) |
| 341 | bits = BYTE_OPERATION; |
| 342 | |
| 343 | p->RIOHosts[p->RIONumHosts].Type = RIO_AT; |
| 344 | p->RIOHosts[p->RIONumHosts].Copy = bcopy; |
| 345 | /* set this later */ |
| 346 | p->RIOHosts[p->RIONumHosts].Slot = -1; |
| 347 | p->RIOHosts[p->RIONumHosts].Mode = SLOW_LINKS | SLOW_AT_BUS | bits; |
| 348 | WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| 349 | BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| 350 | p->RIOHosts[p->RIONumHosts].Mode | |
| 351 | INTERRUPT_DISABLE ); |
| 352 | WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| 353 | WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| 354 | BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| 355 | p->RIOHosts[p->RIONumHosts].Mode | |
| 356 | INTERRUPT_DISABLE ); |
| 357 | WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| 358 | p->RIOHosts[p->RIONumHosts].UniqueNum = |
| 359 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)| |
| 360 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)| |
| 361 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)| |
| 362 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24); |
| 363 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Uniquenum 0x%x\n",p->RIOHosts[p->RIONumHosts].UniqueNum); |
| 364 | |
| 365 | p->RIONumHosts++; |
| 366 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Tests Passed at 0x%x\n", Base); |
| 367 | return(1); |
| 368 | } |
| 369 | #if 0 |
| 370 | #ifdef FUTURE_RELEASE |
| 371 | int RIOMCAinit(int Mode) |
| 372 | { |
| 373 | uchar SlotNumber; |
| 374 | caddr_t Caddr; |
| 375 | uint Paddr; |
| 376 | uint Ivec; |
| 377 | int Handle; |
| 378 | int ret = 0; |
| 379 | |
| 380 | /* |
| 381 | ** Valid mode information for MCA cards |
| 382 | ** is only FAST LINKS |
| 383 | */ |
| 384 | Mode = (Mode & FAST_LINKS) ? McaTpFastLinks : McaTpSlowLinks; |
| 385 | rio_dprintk (RIO_DEBUG_INIT, "RIOMCAinit(%d)\n",Mode); |
| 386 | |
| 387 | |
| 388 | /* |
| 389 | ** Check out each of the slots |
| 390 | */ |
| 391 | for (SlotNumber = 0; SlotNumber < McaMaxSlots; SlotNumber++) { |
| 392 | /* |
| 393 | ** Enable the slot we want to talk to |
| 394 | */ |
| 395 | outb( McaSlotSelect, SlotNumber | McaSlotEnable ); |
| 396 | |
| 397 | /* |
| 398 | ** Read the ID word from the slot |
| 399 | */ |
| 400 | if (((inb(McaIdHigh)<< 8)|inb(McaIdLow)) == McaRIOId) |
| 401 | { |
| 402 | rio_dprintk (RIO_DEBUG_INIT, "Potential MCA card in slot %d\n", SlotNumber); |
| 403 | |
| 404 | /* |
| 405 | ** Card appears to be a RIO MCA card! |
| 406 | */ |
| 407 | RIOMachineType |= (1<<RIO_MCA); |
| 408 | |
| 409 | /* |
| 410 | ** Just check we haven't found too many wonderful objects |
| 411 | */ |
| 412 | if ( RIONumHosts >= RIO_HOSTS ) |
| 413 | { |
| 414 | Rprintf(RIOMesgTooManyCards); |
| 415 | return(ret); |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | ** McaIrqEnable contains the interrupt vector, and a card |
| 420 | ** enable bit. |
| 421 | */ |
| 422 | Ivec = inb(McaIrqEnable); |
| 423 | |
| 424 | rio_dprintk (RIO_DEBUG_INIT, "Ivec is %x\n", Ivec); |
| 425 | |
| 426 | switch ( Ivec & McaIrqMask ) |
| 427 | { |
| 428 | case McaIrq9: |
| 429 | rio_dprintk (RIO_DEBUG_INIT, "IRQ9\n"); |
| 430 | break; |
| 431 | case McaIrq3: |
| 432 | rio_dprintk (RIO_DEBUG_INIT, "IRQ3\n"); |
| 433 | break; |
| 434 | case McaIrq4: |
| 435 | rio_dprintk (RIO_DEBUG_INIT, "IRQ4\n"); |
| 436 | break; |
| 437 | case McaIrq7: |
| 438 | rio_dprintk (RIO_DEBUG_INIT, "IRQ7\n"); |
| 439 | break; |
| 440 | case McaIrq10: |
| 441 | rio_dprintk (RIO_DEBUG_INIT, "IRQ10\n"); |
| 442 | break; |
| 443 | case McaIrq11: |
| 444 | rio_dprintk (RIO_DEBUG_INIT, "IRQ11\n"); |
| 445 | break; |
| 446 | case McaIrq12: |
| 447 | rio_dprintk (RIO_DEBUG_INIT, "IRQ12\n"); |
| 448 | break; |
| 449 | case McaIrq15: |
| 450 | rio_dprintk (RIO_DEBUG_INIT, "IRQ15\n"); |
| 451 | break; |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | ** If the card enable bit isn't set, then set it! |
| 456 | */ |
| 457 | if ((Ivec & McaCardEnable) != McaCardEnable) { |
| 458 | rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable not set - setting!\n"); |
| 459 | outb(McaIrqEnable,Ivec|McaCardEnable); |
| 460 | } else |
| 461 | rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable already set\n"); |
| 462 | |
| 463 | /* |
| 464 | ** Convert the IRQ enable mask into something useful |
| 465 | */ |
| 466 | Ivec = RIOMcaToIvec[Ivec & McaIrqMask]; |
| 467 | |
| 468 | /* |
| 469 | ** Find the physical address |
| 470 | */ |
| 471 | rio_dprintk (RIO_DEBUG_INIT, "inb(McaMemory) is %x\n", inb(McaMemory)); |
| 472 | Paddr = McaAddress(inb(McaMemory)); |
| 473 | |
| 474 | rio_dprintk (RIO_DEBUG_INIT, "MCA card has Ivec %d Addr %x\n", Ivec, Paddr); |
| 475 | |
| 476 | if ( Paddr != 0 ) |
| 477 | { |
| 478 | |
| 479 | /* |
| 480 | ** Tell the memory mapper that we want to talk to it |
| 481 | */ |
| 482 | Handle = RIOMapin( Paddr, RIO_MCA_MEM_SIZE, &Caddr ); |
| 483 | |
| 484 | if ( Handle == -1 ) { |
| 485 | rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n", RIO_MCA_MEM_SIZE, Paddr; |
| 486 | continue; |
| 487 | } |
| 488 | |
| 489 | rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr); |
| 490 | |
| 491 | /* |
| 492 | ** And check that it is actually there! |
| 493 | */ |
| 494 | if ( RIOBoardTest( Paddr,Caddr,RIO_MCA,SlotNumber ) == RIO_SUCCESS ) |
| 495 | { |
| 496 | rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n"); |
| 497 | rio_dprintk (RIO_DEBUG_INIT, "Slot %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", |
| 498 | SlotNumber, RIO_MCA, Paddr, Caddr, Mode); |
| 499 | |
| 500 | /* |
| 501 | ** Board has passed its scrub test. Fill in all the |
| 502 | ** transient stuff. |
| 503 | */ |
| 504 | p->RIOHosts[RIONumHosts].Slot = SlotNumber; |
| 505 | p->RIOHosts[RIONumHosts].Ivec = Ivec; |
| 506 | p->RIOHosts[RIONumHosts].Type = RIO_MCA; |
| 507 | p->RIOHosts[RIONumHosts].Copy = bcopy; |
| 508 | p->RIOHosts[RIONumHosts].PaddrP = Paddr; |
| 509 | p->RIOHosts[RIONumHosts].Caddr = Caddr; |
| 510 | p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr; |
| 511 | p->RIOHosts[RIONumHosts].Mode = Mode; |
| 512 | WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt , 0xff); |
| 513 | p->RIOHosts[RIONumHosts].UniqueNum = |
| 514 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)| |
| 515 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)| |
| 516 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)| |
| 517 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24); |
| 518 | RIONumHosts++; |
| 519 | ret++; |
| 520 | } |
| 521 | else |
| 522 | { |
| 523 | /* |
| 524 | ** It failed the test, so ignore it. |
| 525 | */ |
| 526 | rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n"); |
| 527 | RIOMapout(Paddr, RIO_MCA_MEM_SIZE, Caddr ); |
| 528 | } |
| 529 | } |
| 530 | else |
| 531 | { |
| 532 | rio_dprintk (RIO_DEBUG_INIT, "Slot %d - Paddr zero!\n", SlotNumber); |
| 533 | } |
| 534 | } |
| 535 | else |
| 536 | { |
| 537 | rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber); |
| 538 | } |
| 539 | } |
| 540 | /* |
| 541 | ** Now we have checked all the slots, turn off the MCA slot selector |
| 542 | */ |
| 543 | outb(McaSlotSelect,0); |
| 544 | rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber); |
| 545 | return ret; |
| 546 | } |
| 547 | |
| 548 | int RIOEISAinit( int Mode ) |
| 549 | { |
| 550 | static int EISADone = 0; |
| 551 | uint Paddr; |
| 552 | int PollIntMixMsgDone = 0; |
| 553 | caddr_t Caddr; |
| 554 | ushort Ident; |
| 555 | uchar EisaSlot; |
| 556 | uchar Ivec; |
| 557 | int ret = 0; |
| 558 | |
| 559 | /* |
| 560 | ** The only valid mode information for EISA hosts is fast or slow |
| 561 | ** links. |
| 562 | */ |
| 563 | Mode = (Mode & FAST_LINKS) ? EISA_TP_FAST_LINKS : EISA_TP_SLOW_LINKS; |
| 564 | |
| 565 | if ( EISADone ) |
| 566 | { |
| 567 | rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit() - already done, return.\n"); |
| 568 | return(0); |
| 569 | } |
| 570 | |
| 571 | EISADone++; |
| 572 | |
| 573 | rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit()\n"); |
| 574 | |
| 575 | |
| 576 | /* |
| 577 | ** First check all cards to see if ANY are set for polled mode operation. |
| 578 | ** If so, set ALL to polled. |
| 579 | */ |
| 580 | |
| 581 | for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ ) |
| 582 | { |
| 583 | Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) | |
| 584 | INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO); |
| 585 | |
| 586 | if ( Ident == RIO_EISA_IDENT ) |
| 587 | { |
| 588 | rio_dprintk (RIO_DEBUG_INIT, "Found Specialix product\n"); |
| 589 | |
| 590 | if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE ) |
| 591 | { |
| 592 | rio_dprintk (RIO_DEBUG_INIT, "Not Specialix RIO - Product number %x\n", |
| 593 | INBZ(EisaSlot, EISA_PRODUCT_NUMBER)); |
| 594 | continue; /* next slot */ |
| 595 | } |
| 596 | /* |
| 597 | ** Its a Specialix RIO! |
| 598 | */ |
| 599 | rio_dprintk (RIO_DEBUG_INIT, "RIO Revision %d\n", |
| 600 | INBZ(EisaSlot, EISA_REVISION_NUMBER)); |
| 601 | |
| 602 | RIOMachineType |= (1<<RIO_EISA); |
| 603 | |
| 604 | /* |
| 605 | ** Just check we haven't found too many wonderful objects |
| 606 | */ |
| 607 | if ( RIONumHosts >= RIO_HOSTS ) |
| 608 | { |
| 609 | Rprintf(RIOMesgTooManyCards); |
| 610 | return 0; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | ** Ensure that the enable bit is set! |
| 615 | */ |
| 616 | OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT ); |
| 617 | |
| 618 | /* |
| 619 | ** EISA_INTERRUPT_VEC contains the interrupt vector. |
| 620 | */ |
| 621 | Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC); |
| 622 | |
| 623 | #ifdef RIODEBUG |
| 624 | switch ( Ivec & EISA_INTERRUPT_MASK ) |
| 625 | { |
| 626 | case EISA_IRQ_3: |
| 627 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 3\n"); |
| 628 | break; |
| 629 | case EISA_IRQ_4: |
| 630 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 4\n"); |
| 631 | break; |
| 632 | case EISA_IRQ_5: |
| 633 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 5\n"); |
| 634 | break; |
| 635 | case EISA_IRQ_6: |
| 636 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 6\n"); |
| 637 | break; |
| 638 | case EISA_IRQ_7: |
| 639 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 7\n"); |
| 640 | break; |
| 641 | case EISA_IRQ_9: |
| 642 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 9\n"); |
| 643 | break; |
| 644 | case EISA_IRQ_10: |
| 645 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 10\n"); |
| 646 | break; |
| 647 | case EISA_IRQ_11: |
| 648 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 11\n"); |
| 649 | break; |
| 650 | case EISA_IRQ_12: |
| 651 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 12\n"); |
| 652 | break; |
| 653 | case EISA_IRQ_14: |
| 654 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 14\n"); |
| 655 | break; |
| 656 | case EISA_IRQ_15: |
| 657 | rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 15\n"); |
| 658 | break; |
| 659 | case EISA_POLLED: |
| 660 | rio_dprintk (RIO_DEBUG_INIT, "EISA POLLED\n"); |
| 661 | break; |
| 662 | default: |
| 663 | rio_dprintk (RIO_DEBUG_INIT, NULL,DBG_INIT|DBG_FAIL,"Shagged interrupt number!\n"); |
| 664 | Ivec &= EISA_CONTROL_MASK; |
| 665 | } |
| 666 | #endif |
| 667 | |
| 668 | if ( (Ivec & EISA_INTERRUPT_MASK) == |
| 669 | EISA_POLLED ) |
| 670 | { |
| 671 | RIOWillPoll = 1; |
| 672 | break; /* From EisaSlot loop */ |
| 673 | } |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | ** Do it all again now we know whether to change all cards to polled |
| 679 | ** mode or not |
| 680 | */ |
| 681 | |
| 682 | for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ ) |
| 683 | { |
| 684 | Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) | |
| 685 | INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO); |
| 686 | |
| 687 | if ( Ident == RIO_EISA_IDENT ) |
| 688 | { |
| 689 | if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE ) |
| 690 | continue; /* next slot */ |
| 691 | |
| 692 | /* |
| 693 | ** Its a Specialix RIO! |
| 694 | */ |
| 695 | |
| 696 | /* |
| 697 | ** Ensure that the enable bit is set! |
| 698 | */ |
| 699 | OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT ); |
| 700 | |
| 701 | /* |
| 702 | ** EISA_INTERRUPT_VEC contains the interrupt vector. |
| 703 | */ |
| 704 | Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC); |
| 705 | |
| 706 | if ( RIOWillPoll ) |
| 707 | { |
| 708 | /* |
| 709 | ** If we are going to operate in polled mode, but this |
| 710 | ** board is configured to be interrupt driven, display |
| 711 | ** the message explaining the situation to the punter, |
| 712 | ** assuming we haven't already done so. |
| 713 | */ |
| 714 | |
| 715 | if ( !PollIntMixMsgDone && |
| 716 | (Ivec & EISA_INTERRUPT_MASK) != EISA_POLLED ) |
| 717 | { |
| 718 | Rprintf(RIOMesgAllPolled); |
| 719 | PollIntMixMsgDone = 1; |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | ** Ungraciously ignore whatever the board reports as its |
| 724 | ** interrupt vector... |
| 725 | */ |
| 726 | |
| 727 | Ivec &= ~EISA_INTERRUPT_MASK; |
| 728 | |
| 729 | /* |
| 730 | ** ...and force it to dance to the poll tune. |
| 731 | */ |
| 732 | |
| 733 | Ivec |= EISA_POLLED; |
| 734 | } |
| 735 | |
| 736 | /* |
| 737 | ** Convert the IRQ enable mask into something useful (0-15) |
| 738 | */ |
| 739 | Ivec = RIOEisaToIvec(Ivec); |
| 740 | |
| 741 | rio_dprintk (RIO_DEBUG_INIT, "EISA host in slot %d has Ivec 0x%x\n", |
| 742 | EisaSlot, Ivec); |
| 743 | |
| 744 | /* |
| 745 | ** Find the physical address |
| 746 | */ |
| 747 | Paddr = (INBZ(EisaSlot,EISA_MEMORY_BASE_HI)<<24) | |
| 748 | (INBZ(EisaSlot,EISA_MEMORY_BASE_LO)<<16); |
| 749 | |
| 750 | rio_dprintk (RIO_DEBUG_INIT, "EISA card has Ivec %d Addr %x\n", Ivec, Paddr); |
| 751 | |
| 752 | if ( Paddr == 0 ) |
| 753 | { |
| 754 | rio_dprintk (RIO_DEBUG_INIT, |
| 755 | "Board in slot %d configured for address zero!\n", EisaSlot); |
| 756 | continue; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | ** Tell the memory mapper that we want to talk to it |
| 761 | */ |
| 762 | rio_dprintk (RIO_DEBUG_INIT, "About to map EISA card \n"); |
| 763 | |
| 764 | if (RIOMapin( Paddr, RIO_EISA_MEM_SIZE, &Caddr) == -1) { |
| 765 | rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n", |
| 766 | RIO_EISA_MEM_SIZE,Paddr); |
| 767 | continue; |
| 768 | } |
| 769 | |
| 770 | rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr); |
| 771 | |
| 772 | /* |
| 773 | ** And check that it is actually there! |
| 774 | */ |
| 775 | if ( RIOBoardTest( Paddr,Caddr,RIO_EISA,EisaSlot) == RIO_SUCCESS ) |
| 776 | { |
| 777 | rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n"); |
| 778 | rio_dprintk (RIO_DEBUG_INIT, |
| 779 | "Slot %d. Ivec %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", |
| 780 | EisaSlot,Ivec,RIO_EISA,Paddr,Caddr,Mode); |
| 781 | |
| 782 | /* |
| 783 | ** Board has passed its scrub test. Fill in all the |
| 784 | ** transient stuff. |
| 785 | */ |
| 786 | p->RIOHosts[RIONumHosts].Slot = EisaSlot; |
| 787 | p->RIOHosts[RIONumHosts].Ivec = Ivec; |
| 788 | p->RIOHosts[RIONumHosts].Type = RIO_EISA; |
| 789 | p->RIOHosts[RIONumHosts].Copy = bcopy; |
| 790 | p->RIOHosts[RIONumHosts].PaddrP = Paddr; |
| 791 | p->RIOHosts[RIONumHosts].Caddr = Caddr; |
| 792 | p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr; |
| 793 | p->RIOHosts[RIONumHosts].Mode = Mode; |
| 794 | /* |
| 795 | ** because the EISA prom is mapped into IO space, we |
| 796 | ** need to copy the unqiue number into the memory area |
| 797 | ** that it would have occupied, so that the download |
| 798 | ** code can determine its ID and card type. |
| 799 | */ |
| 800 | WBYTE(p->RIOHosts[RIONumHosts].Unique[0],INBZ(EisaSlot,EISA_UNIQUE_NUM_0)); |
| 801 | WBYTE(p->RIOHosts[RIONumHosts].Unique[1],INBZ(EisaSlot,EISA_UNIQUE_NUM_1)); |
| 802 | WBYTE(p->RIOHosts[RIONumHosts].Unique[2],INBZ(EisaSlot,EISA_UNIQUE_NUM_2)); |
| 803 | WBYTE(p->RIOHosts[RIONumHosts].Unique[3],INBZ(EisaSlot,EISA_UNIQUE_NUM_3)); |
| 804 | p->RIOHosts[RIONumHosts].UniqueNum = |
| 805 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)| |
| 806 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)| |
| 807 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)| |
| 808 | ((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24); |
| 809 | INBZ(EisaSlot,EISA_INTERRUPT_RESET); |
| 810 | RIONumHosts++; |
| 811 | ret++; |
| 812 | } |
| 813 | else |
| 814 | { |
| 815 | /* |
| 816 | ** It failed the test, so ignore it. |
| 817 | */ |
| 818 | rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n"); |
| 819 | |
| 820 | RIOMapout(Paddr, RIO_EISA_MEM_SIZE, Caddr ); |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | if (RIOMachineType & RIO_EISA) |
| 825 | return ret+1; |
| 826 | return ret; |
| 827 | } |
| 828 | #endif |
| 829 | |
| 830 | |
| 831 | #ifndef linux |
| 832 | |
| 833 | #define CONFIG_ADDRESS 0xcf8 |
| 834 | #define CONFIG_DATA 0xcfc |
| 835 | #define FORWARD_REG 0xcfa |
| 836 | |
| 837 | |
| 838 | static int |
| 839 | read_config(int bus_number, int device_num, int r_number) |
| 840 | { |
| 841 | unsigned int cav; |
| 842 | unsigned int val; |
| 843 | |
| 844 | /* |
| 845 | Build config_address_value: |
| 846 | |
| 847 | 31 24 23 16 15 11 10 8 7 0 |
| 848 | ------------------------------------------------------ |
| 849 | |1| 0000000 | bus_number | device # | 000 | register | |
| 850 | ------------------------------------------------------ |
| 851 | */ |
| 852 | |
| 853 | cav = r_number & 0xff; |
| 854 | cav |= ((device_num & 0x1f) << 11); |
| 855 | cav |= ((bus_number & 0xff) << 16); |
| 856 | cav |= 0x80000000; /* Enable bit */ |
| 857 | outpd(CONFIG_ADDRESS,cav); |
| 858 | val = inpd(CONFIG_DATA); |
| 859 | outpd(CONFIG_ADDRESS,0); |
| 860 | return val; |
| 861 | } |
| 862 | |
| 863 | static |
| 864 | write_config(bus_number,device_num,r_number,val) |
| 865 | { |
| 866 | unsigned int cav; |
| 867 | |
| 868 | /* |
| 869 | Build config_address_value: |
| 870 | |
| 871 | 31 24 23 16 15 11 10 8 7 0 |
| 872 | ------------------------------------------------------ |
| 873 | |1| 0000000 | bus_number | device # | 000 | register | |
| 874 | ------------------------------------------------------ |
| 875 | */ |
| 876 | |
| 877 | cav = r_number & 0xff; |
| 878 | cav |= ((device_num & 0x1f) << 11); |
| 879 | cav |= ((bus_number & 0xff) << 16); |
| 880 | cav |= 0x80000000; /* Enable bit */ |
| 881 | outpd(CONFIG_ADDRESS, cav); |
| 882 | outpd(CONFIG_DATA, val); |
| 883 | outpd(CONFIG_ADDRESS, 0); |
| 884 | return val; |
| 885 | } |
| 886 | #else |
| 887 | /* XXX Implement these... */ |
| 888 | static int |
| 889 | read_config(int bus_number, int device_num, int r_number) |
| 890 | { |
| 891 | return 0; |
| 892 | } |
| 893 | |
| 894 | static int |
| 895 | write_config(int bus_number, int device_num, int r_number) |
| 896 | { |
| 897 | return 0; |
| 898 | } |
| 899 | |
| 900 | #endif |
| 901 | |
| 902 | int |
| 903 | RIOPCIinit(p, Mode) |
| 904 | struct rio_info *p; |
| 905 | int Mode; |
| 906 | { |
| 907 | #define MAX_PCI_SLOT 32 |
| 908 | #define RIO_PCI_JET_CARD 0x200011CB |
| 909 | |
| 910 | static int slot; /* count of machine's PCI slots searched so far */ |
| 911 | caddr_t Caddr; /* Virtual address of the current PCI host card. */ |
| 912 | unsigned char Ivec; /* interrupt vector for the current PCI host */ |
| 913 | unsigned long Paddr; /* Physical address for the current PCI host */ |
| 914 | int Handle; /* Handle to Virtual memory allocated for current PCI host */ |
| 915 | |
| 916 | |
| 917 | rio_dprintk (RIO_DEBUG_INIT, "Search for a RIO PCI card - start at slot %d\n", slot); |
| 918 | |
| 919 | /* |
| 920 | ** Initialise the search status |
| 921 | */ |
| 922 | p->RIOLastPCISearch = RIO_FAIL; |
| 923 | |
| 924 | while ( (slot < MAX_PCI_SLOT) & (p->RIOLastPCISearch != RIO_SUCCESS) ) |
| 925 | { |
| 926 | rio_dprintk (RIO_DEBUG_INIT, "Currently testing slot %d\n", slot); |
| 927 | |
| 928 | if (read_config(0,slot,0) == RIO_PCI_JET_CARD) { |
| 929 | p->RIOHosts[p->RIONumHosts].Ivec = 0; |
| 930 | Paddr = read_config(0,slot,0x18); |
| 931 | Paddr = Paddr - (Paddr & 0x1); /* Mask off the io bit */ |
| 932 | |
| 933 | if ( (Paddr == 0) || ((Paddr & 0xffff0000) == 0xffff0000) ) { |
| 934 | rio_dprintk (RIO_DEBUG_INIT, "Goofed up slot\n"); /* what! */ |
| 935 | slot++; |
| 936 | continue; |
| 937 | } |
| 938 | |
| 939 | p->RIOHosts[p->RIONumHosts].PaddrP = Paddr; |
| 940 | Ivec = (read_config(0,slot,0x3c) & 0xff); |
| 941 | |
| 942 | rio_dprintk (RIO_DEBUG_INIT, "PCI Host at 0x%x, Intr %d\n", (int)Paddr, Ivec); |
| 943 | |
| 944 | Handle = RIOMapin( Paddr, RIO_PCI_MEM_SIZE, &Caddr ); |
| 945 | if (Handle == -1) { |
| 946 | rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at 0x%x\n", RIO_PCI_MEM_SIZE, (int)Paddr); |
| 947 | slot++; |
| 948 | continue; |
| 949 | } |
| 950 | p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32; |
| 951 | p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec, |
| 952 | (int (*)())rio_intr, (char *)p->RIONumHosts); |
| 953 | if (RIOBoardTest( Paddr, Caddr, RIO_PCI, 0 ) == RIO_SUCCESS) { |
| 954 | rio_dprintk (RIO_DEBUG_INIT, ("Board has passed test\n"); |
| 955 | rio_dprintk (RIO_DEBUG_INIT, ("Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", Paddr, Caddr, Mode); |
| 956 | |
| 957 | /* |
| 958 | ** Board has passed its scrub test. Fill in all the |
| 959 | ** transient stuff. |
| 960 | */ |
| 961 | p->RIOHosts[p->RIONumHosts].Slot = 0; |
| 962 | p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32; |
| 963 | p->RIOHosts[p->RIONumHosts].Type = RIO_PCI; |
| 964 | p->RIOHosts[p->RIONumHosts].Copy = rio_pcicopy; |
| 965 | p->RIOHosts[p->RIONumHosts].PaddrP = Paddr; |
| 966 | p->RIOHosts[p->RIONumHosts].Caddr = Caddr; |
| 967 | p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)Caddr; |
| 968 | p->RIOHosts[p->RIONumHosts].Mode = Mode; |
| 969 | |
| 970 | #if 0 |
| 971 | WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| 972 | BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| 973 | p->RIOHosts[p->RIONumHosts].Mode | |
| 974 | INTERRUPT_DISABLE ); |
| 975 | WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| 976 | WBYTE(p->RIOHosts[p->RIONumHosts].Control, |
| 977 | BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| 978 | p->RIOHosts[p->RIONumHosts].Mode | |
| 979 | INTERRUPT_DISABLE ); |
| 980 | WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff); |
| 981 | #else |
| 982 | WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt, 0xff); |
| 983 | #endif |
| 984 | p->RIOHosts[p->RIONumHosts].UniqueNum = |
| 985 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)| |
| 986 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)| |
| 987 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)| |
| 988 | ((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24); |
| 989 | |
| 990 | rio_dprintk (RIO_DEBUG_INIT, "Unique no 0x%x.\n", |
| 991 | p->RIOHosts[p->RIONumHosts].UniqueNum); |
| 992 | |
| 993 | p->RIOLastPCISearch = RIO_SUCCESS; |
| 994 | p->RIONumHosts++; |
| 995 | } |
| 996 | } |
| 997 | slot++; |
| 998 | } |
| 999 | |
| 1000 | if ( slot >= MAX_PCI_SLOT ) { |
| 1001 | rio_dprintk (RIO_DEBUG_INIT, "All %d PCI slots have tested for RIO cards !!!\n", |
| 1002 | MAX_PCI_SLOT); |
| 1003 | } |
| 1004 | |
| 1005 | |
| 1006 | /* |
| 1007 | ** I don't think we want to do this anymore |
| 1008 | ** |
| 1009 | |
| 1010 | if (!p->RIOLastPCISearch == RIO_FAIL ) { |
| 1011 | p->RIOFailed++; |
| 1012 | } |
| 1013 | |
| 1014 | ** |
| 1015 | */ |
| 1016 | } |
| 1017 | |
| 1018 | #ifdef FUTURE_RELEASE |
| 1019 | void riohalt( void ) |
| 1020 | { |
| 1021 | int host; |
| 1022 | for ( host=0; host<p->RIONumHosts; host++ ) |
| 1023 | { |
| 1024 | rio_dprintk (RIO_DEBUG_INIT, "Stop host %d\n", host); |
| 1025 | (void)RIOBoardTest( p->RIOHosts[host].PaddrP, p->RIOHosts[host].Caddr, p->RIOHosts[host].Type,p->RIOHosts[host].Slot ); |
| 1026 | } |
| 1027 | } |
| 1028 | #endif |
| 1029 | #endif |
| 1030 | |
| 1031 | static uchar val[] = { |
| 1032 | #ifdef VERY_LONG_TEST |
| 1033 | 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, |
| 1034 | 0xa5, 0xff, 0x5a, 0x00, 0xff, 0xc9, 0x36, |
| 1035 | #endif |
| 1036 | 0xff, 0x00, 0x00 }; |
| 1037 | |
| 1038 | #define TEST_END sizeof(val) |
| 1039 | |
| 1040 | /* |
| 1041 | ** RAM test a board. |
| 1042 | ** Nothing too complicated, just enough to check it out. |
| 1043 | */ |
| 1044 | int |
| 1045 | RIOBoardTest(paddr, caddr, type, slot) |
| 1046 | paddr_t paddr; |
| 1047 | caddr_t caddr; |
| 1048 | uchar type; |
| 1049 | int slot; |
| 1050 | { |
| 1051 | struct DpRam *DpRam = (struct DpRam *)caddr; |
| 1052 | char *ram[4]; |
| 1053 | int size[4]; |
| 1054 | int op, bank; |
| 1055 | int nbanks; |
| 1056 | |
| 1057 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Reset host type=%d, DpRam=0x%x, slot=%d\n", |
| 1058 | type,(int)DpRam, slot); |
| 1059 | |
| 1060 | RIOHostReset(type, DpRam, slot); |
| 1061 | |
| 1062 | /* |
| 1063 | ** Scrub the memory. This comes in several banks: |
| 1064 | ** DPsram1 - 7000h bytes |
| 1065 | ** DPsram2 - 200h bytes |
| 1066 | ** DPsram3 - 7000h bytes |
| 1067 | ** scratch - 1000h bytes |
| 1068 | */ |
| 1069 | |
| 1070 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Setup ram/size arrays\n"); |
| 1071 | |
| 1072 | size[0] = DP_SRAM1_SIZE; |
| 1073 | size[1] = DP_SRAM2_SIZE; |
| 1074 | size[2] = DP_SRAM3_SIZE; |
| 1075 | size[3] = DP_SCRATCH_SIZE; |
| 1076 | |
| 1077 | ram[0] = (char *)&DpRam->DpSram1[0]; |
| 1078 | ram[1] = (char *)&DpRam->DpSram2[0]; |
| 1079 | ram[2] = (char *)&DpRam->DpSram3[0]; |
| 1080 | nbanks = (type == RIO_PCI) ? 3 : 4; |
| 1081 | if (nbanks == 4) |
| 1082 | ram[3] = (char *)&DpRam->DpScratch[0]; |
| 1083 | |
| 1084 | |
| 1085 | if (nbanks == 3) { |
| 1086 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Memory: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n", |
| 1087 | (int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2]); |
| 1088 | } else { |
| 1089 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n", |
| 1090 | (int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2], (int)ram[3], |
| 1091 | size[3]); |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | ** This scrub operation will test for crosstalk between |
| 1096 | ** banks. TEST_END is a magic number, and relates to the offset |
| 1097 | ** within the 'val' array used by Scrub. |
| 1098 | */ |
| 1099 | for (op=0; op<TEST_END; op++) { |
| 1100 | for (bank=0; bank<nbanks; bank++) { |
| 1101 | if (RIOScrub(op, (BYTE *)ram[bank], size[bank]) == RIO_FAIL) { |
| 1102 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: RIOScrub band %d, op %d failed\n", |
| 1103 | bank, op); |
| 1104 | return RIO_FAIL; |
| 1105 | } |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | rio_dprintk (RIO_DEBUG_INIT, "Test completed\n"); |
| 1110 | return RIO_SUCCESS; |
| 1111 | } |
| 1112 | |
| 1113 | |
| 1114 | /* |
| 1115 | ** Scrub an area of RAM. |
| 1116 | ** Define PRETEST and POSTTEST for a more thorough checking of the |
| 1117 | ** state of the memory. |
| 1118 | ** Call with op set to an index into the above 'val' array to determine |
| 1119 | ** which value will be written into memory. |
| 1120 | ** Call with op set to zero means that the RAM will not be read and checked |
| 1121 | ** before it is written. |
| 1122 | ** Call with op not zero, and the RAM will be read and compated with val[op-1] |
| 1123 | ** to check that the data from the previous phase was retained. |
| 1124 | */ |
| 1125 | static int |
| 1126 | RIOScrub(op, ram, size) |
| 1127 | int op; |
| 1128 | BYTE * ram; |
| 1129 | int size; |
| 1130 | { |
| 1131 | int off; |
| 1132 | unsigned char oldbyte; |
| 1133 | unsigned char newbyte; |
| 1134 | unsigned char invbyte; |
| 1135 | unsigned short oldword; |
| 1136 | unsigned short newword; |
| 1137 | unsigned short invword; |
| 1138 | unsigned short swapword; |
| 1139 | |
| 1140 | if (op) { |
| 1141 | oldbyte = val[op-1]; |
| 1142 | oldword = oldbyte | (oldbyte<<8); |
| 1143 | } else |
| 1144 | oldbyte = oldword = 0; /* Tell the compiler we've initilalized them. */ |
| 1145 | newbyte = val[op]; |
| 1146 | newword = newbyte | (newbyte<<8); |
| 1147 | invbyte = ~newbyte; |
| 1148 | invword = invbyte | (invbyte<<8); |
| 1149 | |
| 1150 | /* |
| 1151 | ** Check that the RAM contains the value that should have been left there |
| 1152 | ** by the previous test (not applicable for pass zero) |
| 1153 | */ |
| 1154 | if (op) { |
| 1155 | for (off=0; off<size; off++) { |
| 1156 | if (RBYTE(ram[off]) != oldbyte) { |
| 1157 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 1: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off])); |
| 1158 | return RIO_FAIL; |
| 1159 | } |
| 1160 | } |
| 1161 | for (off=0; off<size; off+=2) { |
| 1162 | if (*(ushort *)&ram[off] != oldword) { |
| 1163 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: WORD at offset 0x%x should have been=%x, was=%x\n",off,oldword,*(ushort *)&ram[off]); |
| 1164 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| 1165 | return RIO_FAIL; |
| 1166 | } |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | ** Now write the INVERSE of the test data into every location, using |
| 1172 | ** BYTE write operations, first checking before each byte is written |
| 1173 | ** that the location contains the old value still, and checking after |
| 1174 | ** the write that the location contains the data specified - this is |
| 1175 | ** the BYTE read/write test. |
| 1176 | */ |
| 1177 | for (off=0; off<size; off++) { |
| 1178 | if (op && (RBYTE(ram[off]) != oldbyte)) { |
| 1179 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off])); |
| 1180 | return RIO_FAIL; |
| 1181 | } |
| 1182 | WBYTE(ram[off],invbyte); |
| 1183 | if (RBYTE(ram[off]) != invbyte) { |
| 1184 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Inv Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, invbyte, RBYTE(ram[off])); |
| 1185 | return RIO_FAIL; |
| 1186 | } |
| 1187 | } |
| 1188 | |
| 1189 | /* |
| 1190 | ** now, use WORD operations to write the test value into every location, |
| 1191 | ** check as before that the location contains the previous test value |
| 1192 | ** before overwriting, and that it contains the data value written |
| 1193 | ** afterwards. |
| 1194 | ** This is the WORD operation test. |
| 1195 | */ |
| 1196 | for (off=0; off<size; off+=2) { |
| 1197 | if (*(ushort *)&ram[off] != invword) { |
| 1198 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: WORD at offset 0x%x should have been=%x, was=%x\n", off, invword, *(ushort *)&ram[off]); |
| 1199 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| 1200 | return RIO_FAIL; |
| 1201 | } |
| 1202 | |
| 1203 | *(ushort *)&ram[off] = newword; |
| 1204 | if ( *(ushort *)&ram[off] != newword ) { |
| 1205 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]); |
| 1206 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| 1207 | return RIO_FAIL; |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | /* |
| 1212 | ** now run through the block of memory again, first in byte mode |
| 1213 | ** then in word mode, and check that all the locations contain the |
| 1214 | ** required test data. |
| 1215 | */ |
| 1216 | for (off=0; off<size; off++) { |
| 1217 | if (RBYTE(ram[off]) != newbyte) { |
| 1218 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Byte Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off])); |
| 1219 | return RIO_FAIL; |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | for (off=0; off<size; off+=2) { |
| 1224 | if ( *(ushort *)&ram[off] != newword ) { |
| 1225 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]); |
| 1226 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| 1227 | return RIO_FAIL; |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | /* |
| 1232 | ** time to check out byte swapping errors |
| 1233 | */ |
| 1234 | swapword = invbyte | (newbyte << 8); |
| 1235 | |
| 1236 | for (off=0; off<size; off+=2) { |
| 1237 | WBYTE(ram[off],invbyte); |
| 1238 | WBYTE(ram[off+1],newbyte); |
| 1239 | } |
| 1240 | |
| 1241 | for ( off=0; off<size; off+=2 ) { |
| 1242 | if (*(ushort *)&ram[off] != swapword) { |
| 1243 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, swapword, *((ushort *)&ram[off])); |
| 1244 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1])); |
| 1245 | return RIO_FAIL; |
| 1246 | } |
| 1247 | *((ushort *)&ram[off]) = ~swapword; |
| 1248 | } |
| 1249 | |
| 1250 | for (off=0; off<size; off+=2) { |
| 1251 | if (RBYTE(ram[off]) != newbyte) { |
| 1252 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off])); |
| 1253 | return RIO_FAIL; |
| 1254 | } |
| 1255 | if (RBYTE(ram[off+1]) != invbyte) { |
| 1256 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off+1, invbyte, RBYTE(ram[off+1])); |
| 1257 | return RIO_FAIL; |
| 1258 | } |
| 1259 | *((ushort *)&ram[off]) = newword; |
| 1260 | } |
| 1261 | return RIO_SUCCESS; |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | ** try to ensure that every host is either in polled mode |
| 1266 | ** or is in interrupt mode. Only allow interrupt mode if |
| 1267 | ** all hosts can interrupt (why?) |
| 1268 | ** and force into polled mode if told to. Patch up the |
| 1269 | ** interrupt vector & salute The Queen when you've done. |
| 1270 | */ |
| 1271 | #if 0 |
| 1272 | static void |
| 1273 | RIOAllocateInterrupts(p) |
| 1274 | struct rio_info * p; |
| 1275 | { |
| 1276 | int Host; |
| 1277 | |
| 1278 | /* |
| 1279 | ** Easy case - if we have been told to poll, then we poll. |
| 1280 | */ |
| 1281 | if (p->mode & POLLED_MODE) { |
| 1282 | RIOStopInterrupts(p, 0, 0); |
| 1283 | return; |
| 1284 | } |
| 1285 | |
| 1286 | /* |
| 1287 | ** check - if any host has been set to polled mode, then all must be. |
| 1288 | */ |
| 1289 | for (Host=0; Host<p->RIONumHosts; Host++) { |
| 1290 | if ( (p->RIOHosts[Host].Type != RIO_AT) && |
| 1291 | (p->RIOHosts[Host].Ivec == POLLED) ) { |
| 1292 | RIOStopInterrupts(p, 1, Host ); |
| 1293 | return; |
| 1294 | } |
| 1295 | } |
| 1296 | for (Host=0; Host<p->RIONumHosts; Host++) { |
| 1297 | if (p->RIOHosts[Host].Type == RIO_AT) { |
| 1298 | if ( (p->RIOHosts[Host].Ivec - 32) == 0) { |
| 1299 | RIOStopInterrupts(p, 2, Host ); |
| 1300 | return; |
| 1301 | } |
| 1302 | } |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | /* |
| 1307 | ** something has decided that we can't be doing with these |
| 1308 | ** new-fangled interrupt thingies. Set everything up to just |
| 1309 | ** poll. |
| 1310 | */ |
| 1311 | static void |
| 1312 | RIOStopInterrupts(p, Reason, Host) |
| 1313 | struct rio_info * p; |
| 1314 | int Reason; |
| 1315 | int Host; |
| 1316 | { |
| 1317 | #ifdef FUTURE_RELEASE |
| 1318 | switch (Reason) { |
| 1319 | case 0: /* forced into polling by rio_polled */ |
| 1320 | break; |
| 1321 | case 1: /* SCU has set 'Host' into polled mode */ |
| 1322 | break; |
| 1323 | case 2: /* there aren't enough interrupt vectors for 'Host' */ |
| 1324 | break; |
| 1325 | } |
| 1326 | #endif |
| 1327 | |
| 1328 | for (Host=0; Host<p->RIONumHosts; Host++ ) { |
| 1329 | struct Host *HostP = &p->RIOHosts[Host]; |
| 1330 | |
| 1331 | switch (HostP->Type) { |
| 1332 | case RIO_AT: |
| 1333 | /* |
| 1334 | ** The AT host has it's interrupts disabled by clearing the |
| 1335 | ** int_enable bit. |
| 1336 | */ |
| 1337 | HostP->Mode &= ~INTERRUPT_ENABLE; |
| 1338 | HostP->Ivec = POLLED; |
| 1339 | break; |
| 1340 | #ifdef FUTURE_RELEASE |
| 1341 | case RIO_EISA: |
| 1342 | /* |
| 1343 | ** The EISA host has it's interrupts disabled by setting the |
| 1344 | ** Ivec to zero |
| 1345 | */ |
| 1346 | HostP->Ivec = POLLED; |
| 1347 | break; |
| 1348 | #endif |
| 1349 | case RIO_PCI: |
| 1350 | /* |
| 1351 | ** The PCI host has it's interrupts disabled by clearing the |
| 1352 | ** int_enable bit, like a regular host card. |
| 1353 | */ |
| 1354 | HostP->Mode &= ~RIO_PCI_INT_ENABLE; |
| 1355 | HostP->Ivec = POLLED; |
| 1356 | break; |
| 1357 | #ifdef FUTURE_RELEASE |
| 1358 | case RIO_MCA: |
| 1359 | /* |
| 1360 | ** There's always one, isn't there? |
| 1361 | ** The MCA host card cannot have it's interrupts disabled. |
| 1362 | */ |
| 1363 | RIOPatchVec(HostP); |
| 1364 | break; |
| 1365 | #endif |
| 1366 | } |
| 1367 | } |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | ** This function is called at init time to setup the data structures. |
| 1372 | */ |
| 1373 | void |
| 1374 | RIOAllocDataStructs(p) |
| 1375 | struct rio_info * p; |
| 1376 | { |
| 1377 | int port, |
| 1378 | host, |
| 1379 | tm; |
| 1380 | |
| 1381 | p->RIOPortp = (struct Port *)sysbrk(RIO_PORTS * sizeof(struct Port)); |
| 1382 | if (!p->RIOPortp) { |
| 1383 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for port structures\n"); |
| 1384 | p->RIOFailed++; |
| 1385 | return; |
| 1386 | } |
| 1387 | bzero( p->RIOPortp, sizeof(struct Port) * RIO_PORTS ); |
| 1388 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for port structs\n"); |
| 1389 | rio_dprintk (RIO_DEBUG_INIT, "First RIO port struct @0x%x, size=0x%x bytes\n", |
| 1390 | (int)p->RIOPortp, sizeof(struct Port)); |
| 1391 | |
| 1392 | for( port=0; port<RIO_PORTS; port++ ) { |
| 1393 | p->RIOPortp[port].PortNum = port; |
| 1394 | p->RIOPortp[port].TtyP = &p->channel[port]; |
| 1395 | sreset (p->RIOPortp[port].InUse); /* Let the first guy uses it */ |
| 1396 | p->RIOPortp[port].portSem = -1; /* Let the first guy takes it */ |
| 1397 | p->RIOPortp[port].ParamSem = -1; /* Let the first guy takes it */ |
| 1398 | p->RIOPortp[port].timeout_id = 0; /* Let the first guy takes it */ |
| 1399 | } |
| 1400 | |
| 1401 | p->RIOHosts = (struct Host *)sysbrk(RIO_HOSTS * sizeof(struct Host)); |
| 1402 | if (!p->RIOHosts) { |
| 1403 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for host structures\n"); |
| 1404 | p->RIOFailed++; |
| 1405 | return; |
| 1406 | } |
| 1407 | bzero(p->RIOHosts, sizeof(struct Host)*RIO_HOSTS); |
| 1408 | rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for host structs\n"); |
| 1409 | rio_dprintk (RIO_DEBUG_INIT, "First RIO host struct @0x%x, size=0x%x bytes\n", |
| 1410 | (int)p->RIOHosts, sizeof(struct Host)); |
| 1411 | |
| 1412 | for( host=0; host<RIO_HOSTS; host++ ) { |
| 1413 | spin_lock_init (&p->RIOHosts[host].HostLock); |
| 1414 | p->RIOHosts[host].timeout_id = 0; /* Let the first guy takes it */ |
| 1415 | } |
| 1416 | /* |
| 1417 | ** check that the buffer size is valid, round down to the next power of |
| 1418 | ** two if necessary; if the result is zero, then, hey, no double buffers. |
| 1419 | */ |
| 1420 | for ( tm = 1; tm && tm <= p->RIOConf.BufferSize; tm <<= 1 ) |
| 1421 | ; |
| 1422 | tm >>= 1; |
| 1423 | p->RIOBufferSize = tm; |
| 1424 | p->RIOBufferMask = tm ? tm - 1 : 0; |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | ** this function gets called whenever the data structures need to be |
| 1429 | ** re-setup, for example, after a riohalt (why did I ever invent it?) |
| 1430 | */ |
| 1431 | void |
| 1432 | RIOSetupDataStructs(p) |
| 1433 | struct rio_info * p; |
| 1434 | { |
| 1435 | int host, entry, rup; |
| 1436 | |
| 1437 | for ( host=0; host<RIO_HOSTS; host++ ) { |
| 1438 | struct Host *HostP = &p->RIOHosts[host]; |
| 1439 | for ( entry=0; entry<LINKS_PER_UNIT; entry++ ) { |
| 1440 | HostP->Topology[entry].Unit = ROUTE_DISCONNECT; |
| 1441 | HostP->Topology[entry].Link = NO_LINK; |
| 1442 | } |
| 1443 | bcopy("HOST X", HostP->Name, 7); |
| 1444 | HostP->Name[5] = '1'+host; |
| 1445 | for (rup=0; rup<(MAX_RUP + LINKS_PER_UNIT); rup++) { |
| 1446 | if (rup < MAX_RUP) { |
| 1447 | for (entry=0; entry<LINKS_PER_UNIT; entry++ ) { |
| 1448 | HostP->Mapping[rup].Topology[entry].Unit = ROUTE_DISCONNECT; |
| 1449 | HostP->Mapping[rup].Topology[entry].Link = NO_LINK; |
| 1450 | } |
| 1451 | RIODefaultName(p, HostP, rup); |
| 1452 | } |
| 1453 | spin_lock_init(&HostP->UnixRups[rup].RupLock); |
| 1454 | } |
| 1455 | } |
| 1456 | } |
| 1457 | #endif |
| 1458 | |
| 1459 | int |
| 1460 | RIODefaultName(p, HostP, UnitId) |
| 1461 | struct rio_info * p; |
| 1462 | struct Host * HostP; |
| 1463 | uint UnitId; |
| 1464 | { |
| 1465 | #ifdef CHECK |
| 1466 | CheckHost( Host ); |
| 1467 | CheckUnitId( UnitId ); |
| 1468 | #endif |
| 1469 | bcopy("UNKNOWN RTA X-XX",HostP->Mapping[UnitId].Name,17); |
| 1470 | HostP->Mapping[UnitId].Name[12]='1'+(HostP-p->RIOHosts); |
| 1471 | if ((UnitId+1) > 9) { |
| 1472 | HostP->Mapping[UnitId].Name[14]='0'+((UnitId+1)/10); |
| 1473 | HostP->Mapping[UnitId].Name[15]='0'+((UnitId+1)%10); |
| 1474 | } |
| 1475 | else { |
| 1476 | HostP->Mapping[UnitId].Name[14]='1'+UnitId; |
| 1477 | HostP->Mapping[UnitId].Name[15]=0; |
| 1478 | } |
| 1479 | return 0; |
| 1480 | } |
| 1481 | |
| 1482 | #define RIO_RELEASE "Linux" |
| 1483 | #define RELEASE_ID "1.0" |
| 1484 | |
| 1485 | #if 0 |
| 1486 | static int |
| 1487 | RIOReport(p) |
| 1488 | struct rio_info * p; |
| 1489 | { |
| 1490 | char * RIORelease = RIO_RELEASE; |
| 1491 | char * RIORelID = RELEASE_ID; |
| 1492 | int host; |
| 1493 | |
| 1494 | rio_dprintk (RIO_DEBUG_INIT, "RIO : Release: %s ID: %s\n", RIORelease, RIORelID); |
| 1495 | |
| 1496 | if ( p->RIONumHosts==0 ) { |
| 1497 | rio_dprintk (RIO_DEBUG_INIT, "\nNo Hosts configured\n"); |
| 1498 | return(0); |
| 1499 | } |
| 1500 | |
| 1501 | for ( host=0; host < p->RIONumHosts; host++ ) { |
| 1502 | struct Host *HostP = &p->RIOHosts[host]; |
| 1503 | switch ( HostP->Type ) { |
| 1504 | case RIO_AT: |
| 1505 | rio_dprintk (RIO_DEBUG_INIT, "AT BUS : found the card at 0x%x\n", HostP->PaddrP); |
| 1506 | } |
| 1507 | } |
| 1508 | return 0; |
| 1509 | } |
| 1510 | #endif |
| 1511 | |
| 1512 | static struct rioVersion stVersion; |
| 1513 | |
| 1514 | struct rioVersion * |
| 1515 | RIOVersid(void) |
| 1516 | { |
| 1517 | strlcpy(stVersion.version, "RIO driver for linux V1.0", |
| 1518 | sizeof(stVersion.version)); |
| 1519 | strlcpy(stVersion.buildDate, __DATE__, |
| 1520 | sizeof(stVersion.buildDate)); |
| 1521 | |
| 1522 | return &stVersion; |
| 1523 | } |
| 1524 | |
| 1525 | #if 0 |
| 1526 | int |
| 1527 | RIOMapin(paddr, size, vaddr) |
| 1528 | paddr_t paddr; |
| 1529 | int size; |
| 1530 | caddr_t * vaddr; |
| 1531 | { |
| 1532 | *vaddr = (caddr_t)permap( (long)paddr, size); |
| 1533 | return ((int)*vaddr); |
| 1534 | } |
| 1535 | |
| 1536 | void |
| 1537 | RIOMapout(paddr, size, vaddr) |
| 1538 | paddr_t paddr; |
| 1539 | long size; |
| 1540 | caddr_t vaddr; |
| 1541 | { |
| 1542 | } |
| 1543 | #endif |
| 1544 | |
| 1545 | |
| 1546 | void |
| 1547 | RIOHostReset(Type, DpRamP, Slot) |
| 1548 | uint Type; |
| 1549 | volatile struct DpRam *DpRamP; |
| 1550 | uint Slot; |
| 1551 | { |
| 1552 | /* |
| 1553 | ** Reset the Tpu |
| 1554 | */ |
| 1555 | rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: type 0x%x", Type); |
| 1556 | switch ( Type ) { |
| 1557 | case RIO_AT: |
| 1558 | rio_dprintk (RIO_DEBUG_INIT, " (RIO_AT)\n"); |
| 1559 | WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| 1560 | INTERRUPT_DISABLE | BYTE_OPERATION | |
| 1561 | SLOW_LINKS | SLOW_AT_BUS); |
| 1562 | WBYTE(DpRamP->DpResetTpu, 0xFF); |
| 1563 | rio_udelay (3); |
| 1564 | |
| 1565 | rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: Don't know if it worked. Try reset again\n"); |
| 1566 | WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF | |
| 1567 | INTERRUPT_DISABLE | BYTE_OPERATION | |
| 1568 | SLOW_LINKS | SLOW_AT_BUS); |
| 1569 | WBYTE(DpRamP->DpResetTpu, 0xFF); |
| 1570 | rio_udelay (3); |
| 1571 | break; |
| 1572 | #ifdef FUTURE_RELEASE |
| 1573 | case RIO_EISA: |
| 1574 | /* |
| 1575 | ** Bet this doesn't work! |
| 1576 | */ |
| 1577 | OUTBZ( Slot, EISA_CONTROL_PORT, |
| 1578 | EISA_TP_RUN | EISA_TP_BUS_DISABLE | |
| 1579 | EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM ); |
| 1580 | OUTBZ( Slot, EISA_CONTROL_PORT, |
| 1581 | EISA_TP_RESET | EISA_TP_BUS_DISABLE | |
| 1582 | EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM ); |
| 1583 | suspend( 3 ); |
| 1584 | OUTBZ( Slot, EISA_CONTROL_PORT, |
| 1585 | EISA_TP_RUN | EISA_TP_BUS_DISABLE | |
| 1586 | EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM ); |
| 1587 | break; |
| 1588 | case RIO_MCA: |
| 1589 | WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable ); |
| 1590 | WBYTE(DpRamP->DpResetTpu , 0xFF ); |
| 1591 | suspend( 3 ); |
| 1592 | WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable ); |
| 1593 | WBYTE(DpRamP->DpResetTpu , 0xFF ); |
| 1594 | suspend( 3 ); |
| 1595 | break; |
| 1596 | #endif |
| 1597 | case RIO_PCI: |
| 1598 | rio_dprintk (RIO_DEBUG_INIT, " (RIO_PCI)\n"); |
| 1599 | DpRamP->DpControl = RIO_PCI_BOOT_FROM_RAM; |
| 1600 | DpRamP->DpResetInt = 0xFF; |
| 1601 | DpRamP->DpResetTpu = 0xFF; |
| 1602 | rio_udelay (100); |
| 1603 | /* for (i=0; i<6000; i++); */ |
| 1604 | /* suspend( 3 ); */ |
| 1605 | break; |
| 1606 | #ifdef FUTURE_RELEASE |
| 1607 | default: |
| 1608 | Rprintf(RIOMesgNoSupport,Type,DpRamP,Slot); |
| 1609 | return; |
| 1610 | #endif |
| 1611 | |
| 1612 | default: |
| 1613 | rio_dprintk (RIO_DEBUG_INIT, " (UNKNOWN)\n"); |
| 1614 | break; |
| 1615 | } |
| 1616 | return; |
| 1617 | } |