blob: ab21eb06e09b3081b6e0a54721f0e0004d3c8097 [file] [log] [blame]
john stultz4c7ee8d2006-09-30 23:28:22 -07001/*
2 * linux/kernel/time/ntp.c
3 *
4 * NTP state machine interfaces and logic.
5 *
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
10
11#include <linux/mm.h>
12#include <linux/time.h>
13#include <linux/timex.h>
14
15#include <asm/div64.h>
16#include <asm/timex.h>
17
Roman Zippelb0ee7552006-09-30 23:28:22 -070018/*
19 * Timekeeping variables
20 */
21unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
22unsigned long tick_nsec; /* ACTHZ period (nsec) */
23static u64 tick_length, tick_length_base;
24
john stultz4c7ee8d2006-09-30 23:28:22 -070025/* Don't completely fail for HZ > 500. */
26int tickadj = 500/HZ ? : 1; /* microsecs */
27
28/*
29 * phase-lock loop variables
30 */
31/* TIME_ERROR prevents overwriting the CMOS clock */
32int time_state = TIME_OK; /* clock synchronization status */
33int time_status = STA_UNSYNC; /* clock status bits */
34long time_offset; /* time adjustment (us) */
35long time_constant = 2; /* pll time constant */
36long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
37long time_precision = 1; /* clock precision (us) */
38long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
39long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
Roman Zippeldc6a43e2006-09-30 23:28:24 -070040long time_freq; /* frequency offset (scaled ppm)*/
john stultz4c7ee8d2006-09-30 23:28:22 -070041long time_reftime; /* time at last adjustment (s) */
42long time_adjust;
43long time_next_adjust;
44
Roman Zippelb0ee7552006-09-30 23:28:22 -070045/**
46 * ntp_clear - Clears the NTP state variables
47 *
48 * Must be called while holding a write on the xtime_lock
49 */
50void ntp_clear(void)
51{
52 time_adjust = 0; /* stop active adjtime() */
53 time_status |= STA_UNSYNC;
54 time_maxerror = NTP_PHASE_LIMIT;
55 time_esterror = NTP_PHASE_LIMIT;
56
57 ntp_update_frequency();
58
59 tick_length = tick_length_base;
60}
61
62#define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
63#define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / (s64)CLOCK_TICK_RATE)
64
65void ntp_update_frequency(void)
66{
67 tick_length_base = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << TICK_LENGTH_SHIFT;
68 tick_length_base += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
Roman Zippeldc6a43e2006-09-30 23:28:24 -070069 tick_length_base += ((s64)time_freq * NSEC_PER_USEC) << (TICK_LENGTH_SHIFT - SHIFT_USEC);
Roman Zippelb0ee7552006-09-30 23:28:22 -070070
71 do_div(tick_length_base, HZ);
72
73 tick_nsec = tick_length_base >> TICK_LENGTH_SHIFT;
74}
75
john stultz4c7ee8d2006-09-30 23:28:22 -070076/*
77 * this routine handles the overflow of the microsecond field
78 *
79 * The tricky bits of code to handle the accurate clock support
80 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
81 * They were originally developed for SUN and DEC kernels.
82 * All the kudos should go to Dave for this stuff.
83 */
84void second_overflow(void)
85{
Roman Zippelab8783b2006-09-30 23:28:23 -070086 long ltemp, time_adj;
john stultz4c7ee8d2006-09-30 23:28:22 -070087
88 /* Bump the maxerror field */
89 time_maxerror += time_tolerance >> SHIFT_USEC;
90 if (time_maxerror > NTP_PHASE_LIMIT) {
91 time_maxerror = NTP_PHASE_LIMIT;
92 time_status |= STA_UNSYNC;
93 }
94
95 /*
96 * Leap second processing. If in leap-insert state at the end of the
97 * day, the system clock is set back one second; if in leap-delete
98 * state, the system clock is set ahead one second. The microtime()
99 * routine or external clock driver will insure that reported time is
100 * always monotonic. The ugly divides should be replaced.
101 */
102 switch (time_state) {
103 case TIME_OK:
104 if (time_status & STA_INS)
105 time_state = TIME_INS;
106 else if (time_status & STA_DEL)
107 time_state = TIME_DEL;
108 break;
109 case TIME_INS:
110 if (xtime.tv_sec % 86400 == 0) {
111 xtime.tv_sec--;
112 wall_to_monotonic.tv_sec++;
113 /*
114 * The timer interpolator will make time change
115 * gradually instead of an immediate jump by one second
116 */
117 time_interpolator_update(-NSEC_PER_SEC);
118 time_state = TIME_OOP;
119 clock_was_set();
120 printk(KERN_NOTICE "Clock: inserting leap second "
121 "23:59:60 UTC\n");
122 }
123 break;
124 case TIME_DEL:
125 if ((xtime.tv_sec + 1) % 86400 == 0) {
126 xtime.tv_sec++;
127 wall_to_monotonic.tv_sec--;
128 /*
129 * Use of time interpolator for a gradual change of
130 * time
131 */
132 time_interpolator_update(NSEC_PER_SEC);
133 time_state = TIME_WAIT;
134 clock_was_set();
135 printk(KERN_NOTICE "Clock: deleting leap second "
136 "23:59:59 UTC\n");
137 }
138 break;
139 case TIME_OOP:
140 time_state = TIME_WAIT;
141 break;
142 case TIME_WAIT:
143 if (!(time_status & (STA_INS | STA_DEL)))
144 time_state = TIME_OK;
145 }
146
147 /*
148 * Compute the phase adjustment for the next second. In PLL mode, the
149 * offset is reduced by a fixed factor times the time constant. In FLL
150 * mode the offset is used directly. In either mode, the maximum phase
151 * adjustment for each second is clamped so as to spread the adjustment
152 * over not more than the number of seconds between updates.
153 */
154 ltemp = time_offset;
155 if (!(time_status & STA_FLL))
156 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
157 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
158 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
159 time_offset -= ltemp;
160 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
161
162 /*
163 * Compute the frequency estimate and additional phase adjustment due
164 * to frequency error for the next second.
165 */
john stultz4c7ee8d2006-09-30 23:28:22 -0700166
167#if HZ == 100
168 /*
169 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
170 * get 128.125; => only 0.125% error (p. 14)
171 */
172 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
173#endif
174#if HZ == 250
175 /*
176 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
177 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
178 */
179 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
180#endif
181#if HZ == 1000
182 /*
183 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
184 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
185 */
186 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
187#endif
Roman Zippelb0ee7552006-09-30 23:28:22 -0700188 tick_length = tick_length_base;
Roman Zippelab8783b2006-09-30 23:28:23 -0700189 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
john stultz4c7ee8d2006-09-30 23:28:22 -0700190}
191
192/*
193 * Returns how many microseconds we need to add to xtime this tick
194 * in doing an adjustment requested with adjtime.
195 */
196static long adjtime_adjustment(void)
197{
198 long time_adjust_step;
199
200 time_adjust_step = time_adjust;
201 if (time_adjust_step) {
202 /*
203 * We are doing an adjtime thing. Prepare time_adjust_step to
204 * be within bounds. Note that a positive time_adjust means we
205 * want the clock to run faster.
206 *
207 * Limit the amount of the step to be in the range
208 * -tickadj .. +tickadj
209 */
210 time_adjust_step = min(time_adjust_step, (long)tickadj);
211 time_adjust_step = max(time_adjust_step, (long)-tickadj);
212 }
213 return time_adjust_step;
214}
215
216/* in the NTP reference this is called "hardclock()" */
217void update_ntp_one_tick(void)
218{
219 long time_adjust_step;
220
221 time_adjust_step = adjtime_adjustment();
222 if (time_adjust_step)
223 /* Reduce by this step the amount of time left */
224 time_adjust -= time_adjust_step;
225
226 /* Changes by adjtime() do not take effect till next tick. */
227 if (time_next_adjust != 0) {
228 time_adjust = time_next_adjust;
229 time_next_adjust = 0;
230 }
231}
232
233/*
234 * Return how long ticks are at the moment, that is, how much time
235 * update_wall_time_one_tick will add to xtime next time we call it
236 * (assuming no calls to do_adjtimex in the meantime).
237 * The return value is in fixed-point nanoseconds shifted by the
238 * specified number of bits to the right of the binary point.
239 * This function has no side-effects.
240 */
241u64 current_tick_length(void)
242{
john stultz4c7ee8d2006-09-30 23:28:22 -0700243 u64 ret;
244
245 /* calculate the finest interval NTP will allow.
john stultz4c7ee8d2006-09-30 23:28:22 -0700246 */
Roman Zippelb0ee7552006-09-30 23:28:22 -0700247 ret = tick_length;
248 ret += (u64)(adjtime_adjustment() * 1000) << TICK_LENGTH_SHIFT;
john stultz4c7ee8d2006-09-30 23:28:22 -0700249
250 return ret;
251}
252
253
254void __attribute__ ((weak)) notify_arch_cmos_timer(void)
255{
256 return;
257}
258
259/* adjtimex mainly allows reading (and writing, if superuser) of
260 * kernel time-keeping variables. used by xntpd.
261 */
262int do_adjtimex(struct timex *txc)
263{
264 long ltemp, mtemp, save_adjust;
265 int result;
266
267 /* In order to modify anything, you gotta be super-user! */
268 if (txc->modes && !capable(CAP_SYS_TIME))
269 return -EPERM;
270
271 /* Now we validate the data before disabling interrupts */
272
273 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
274 /* singleshot must not be used with any other mode bits */
275 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
276 return -EINVAL;
277
278 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
279 /* adjustment Offset limited to +- .512 seconds */
280 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
281 return -EINVAL;
282
283 /* if the quartz is off by more than 10% something is VERY wrong ! */
284 if (txc->modes & ADJ_TICK)
285 if (txc->tick < 900000/USER_HZ ||
286 txc->tick > 1100000/USER_HZ)
287 return -EINVAL;
288
289 write_seqlock_irq(&xtime_lock);
290 result = time_state; /* mostly `TIME_OK' */
291
292 /* Save for later - semantics of adjtime is to return old value */
293 save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
294
295#if 0 /* STA_CLOCKERR is never set yet */
296 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
297#endif
298 /* If there are input parameters, then process them */
299 if (txc->modes)
300 {
301 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
302 time_status = (txc->status & ~STA_RONLY) |
303 (time_status & STA_RONLY);
304
305 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
306 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
307 result = -EINVAL;
308 goto leave;
309 }
310 time_freq = txc->freq;
311 }
312
313 if (txc->modes & ADJ_MAXERROR) {
314 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
315 result = -EINVAL;
316 goto leave;
317 }
318 time_maxerror = txc->maxerror;
319 }
320
321 if (txc->modes & ADJ_ESTERROR) {
322 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
323 result = -EINVAL;
324 goto leave;
325 }
326 time_esterror = txc->esterror;
327 }
328
329 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
330 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
331 result = -EINVAL;
332 goto leave;
333 }
334 time_constant = txc->constant;
335 }
336
337 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
338 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
339 /* adjtime() is independent from ntp_adjtime() */
340 if ((time_next_adjust = txc->offset) == 0)
341 time_adjust = 0;
342 }
343 else if (time_status & STA_PLL) {
344 ltemp = txc->offset;
345
346 /*
347 * Scale the phase adjustment and
348 * clamp to the operating range.
349 */
350 if (ltemp > MAXPHASE)
351 time_offset = MAXPHASE << SHIFT_UPDATE;
352 else if (ltemp < -MAXPHASE)
353 time_offset = -(MAXPHASE << SHIFT_UPDATE);
354 else
355 time_offset = ltemp << SHIFT_UPDATE;
356
357 /*
358 * Select whether the frequency is to be controlled
359 * and in which mode (PLL or FLL). Clamp to the operating
360 * range. Ugly multiply/divide should be replaced someday.
361 */
362
363 if (time_status & STA_FREQHOLD || time_reftime == 0)
364 time_reftime = xtime.tv_sec;
365 mtemp = xtime.tv_sec - time_reftime;
366 time_reftime = xtime.tv_sec;
367 if (time_status & STA_FLL) {
368 if (mtemp >= MINSEC) {
369 ltemp = (time_offset / mtemp) << (SHIFT_USEC -
370 SHIFT_UPDATE);
371 time_freq += shift_right(ltemp, SHIFT_KH);
372 } else /* calibration interval too short (p. 12) */
373 result = TIME_ERROR;
374 } else { /* PLL mode */
375 if (mtemp < MAXSEC) {
376 ltemp *= mtemp;
377 time_freq += shift_right(ltemp,(time_constant +
378 time_constant +
379 SHIFT_KF - SHIFT_USEC));
380 } else /* calibration interval too long (p. 12) */
381 result = TIME_ERROR;
382 }
383 time_freq = min(time_freq, time_tolerance);
384 time_freq = max(time_freq, -time_tolerance);
385 } /* STA_PLL */
386 } /* txc->modes & ADJ_OFFSET */
Roman Zippelb0ee7552006-09-30 23:28:22 -0700387 if (txc->modes & ADJ_TICK)
john stultz4c7ee8d2006-09-30 23:28:22 -0700388 tick_usec = txc->tick;
Roman Zippelb0ee7552006-09-30 23:28:22 -0700389
Roman Zippeldc6a43e2006-09-30 23:28:24 -0700390 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
Roman Zippelb0ee7552006-09-30 23:28:22 -0700391 ntp_update_frequency();
john stultz4c7ee8d2006-09-30 23:28:22 -0700392 } /* txc->modes */
393leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
394 result = TIME_ERROR;
395
396 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
397 txc->offset = save_adjust;
398 else {
399 txc->offset = shift_right(time_offset, SHIFT_UPDATE);
400 }
401 txc->freq = time_freq;
402 txc->maxerror = time_maxerror;
403 txc->esterror = time_esterror;
404 txc->status = time_status;
405 txc->constant = time_constant;
406 txc->precision = time_precision;
407 txc->tolerance = time_tolerance;
408 txc->tick = tick_usec;
409
410 /* PPS is not implemented, so these are zero */
411 txc->ppsfreq = 0;
412 txc->jitter = 0;
413 txc->shift = 0;
414 txc->stabil = 0;
415 txc->jitcnt = 0;
416 txc->calcnt = 0;
417 txc->errcnt = 0;
418 txc->stbcnt = 0;
419 write_sequnlock_irq(&xtime_lock);
420 do_gettimeofday(&txc->time);
421 notify_arch_cmos_timer();
422 return(result);
423}